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Abstract

Decision trees and ensembles of decision trees are very popular in machine learning and

often achieve state-of-the-art performance on black-box prediction tasks. However, pop-

ular variants such as C4.5, CART, boosted trees and random forests lack a probabilistic

interpretation since they usually just specify an algorithm for training a model. We take

a probabilistic approach where we cast the decision tree structures and the parameters

associated with the nodes of a decision tree as a probabilistic model; given labeled

examples, we can train the probabilistic model using a variety of approaches (Bayesian

learning, maximum likelihood, etc). The probabilistic approach allows us to encode prior

assumptions about tree structures and share statistical strength between node parame-

ters; furthermore, it offers a principled mechanism to obtain probabilistic predictions

which is crucial for applications where uncertainty quantification is important.

Existing work on Bayesian decision trees relies on Markov chain Monte Carlo which can

be computationally slow and suffer from poor mixing. We propose a novel sequential

Monte Carlo algorithm that computes a particle approximation to the posterior over

trees in a top-down fashion. We also propose a novel sampler for Bayesian additive

regression trees by combining the above top-down particle filtering algorithm with the

Particle Gibbs (Andrieu et al., 2010) framework.

Finally, we propose Mondrian forests (MFs), a computationally efficient hybrid solution

that is competitive with non-probabilistic counterparts in terms of speed and accuracy,

but additionally produces well-calibrated uncertainty estimates. MFs use the Mondrian

process (Roy and Teh, 2009) as the randomization mechanism and hierarchically smooth

the node parameters within each tree (using a hierarchical probabilistic model and

approximate Bayesian updates), but combine the trees in a non-Bayesian fashion. MFs

can be grown in an incremental/online fashion and remarkably, the distribution of online

MFs is the same as that of batch MFs.
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Chapter 1

Outline

Decision trees are a very popular tool in machine learning and statistics for prediction

tasks (e.g. classification and regression). In a nutshell, learning a decision tree from

training data involves two steps: (i) learning an hierarchical, tree-structured partitioning

of the input space and (ii) learning to predict the label within each leaf node. During

prediction stage, we simply traverse down the decision tree from the root to the leaf

node and predict the label. Popular decision tree induction algorithms such as CART

(Breiman et al., 1984) and C4.5 (Quinlan, 1993) have been named amongst the top 10

algorithms in data mining (Wu et al., 2008). The main advantage of decision trees is that

they are computationally fast to train and test. Another advantage of decision trees is

that they are well-suited for datasets with mixed attribute types (e.g. binary, categorical,

real-valued attributes). Moreover, they deliver good accuracy and are interpretable (at

least on simple problems), hence they are very popular in practical applications.

While decision trees are powerful, they are prone to over-fitting and require heuristics

to limit their complexity (e.g. limiting the maximum depth or pruning the learned

decision tree on a validation data set) in order to minimize their generalization error.

A useful way to think about the over fitting issue is in terms of bias variance tradeoff,

using the tree depth as a complexity measure (as deeper trees can capture more complex

interactions). Deep decision trees exhibit low bias as they can potentially memorize

the training dataset, however they exhibit high variance, i.e. a decision tree algorithm

trained on two different training datasets (from the same ‘population’ distribution)

would produce very different decision trees; hence, decision trees are also referred to as

unstable learners. Another disadvantage of decision trees is that they typically do not

produce probabilistic predictions. In many applications (e.g. clinical decision making),

it is useful to have a predictor that can quantify predictive uncertainty instead of just

producing a point estimate. The probabilistic approach (Ghahramani, 2015; Murphy,

2012) provides an elegant solution to both of these problems.

Specifically, the Bayesian approach (Bayes and Price, 1763) provides a principled

mechanism to prevent over-fitting. The Bayesian approach is conceptually very simple.
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First, we introduce a prior over decision trees (e.g. a prior that prefers shallow trees)

and the leaf node parameters (i.e. the parameters that predict the label within each leaf

node). Next, we define a likelihood which measures how well a decision tree explains the

given training data. Finally, we compute the Bayesian posterior over decision trees and

the node parameters. During prediction, the predictions of trees are weighted according

to their weights according to the posterior distribution. This process is known as

Bayesian model averaging (Hoeting et al., 1999) and accounts for the uncertainty in the

model (the model is the decision tree in this case) instead of picking just one decision tree.

Moreover, the Bayesian approach allows us to better quantify predictive uncertainty, by

translating model uncertainty into predictive uncertainty. The main disadvantage of

the Bayesian approach is the computational complexity. While computing the Bayesian

posterior over node parameters is fairly straightforward, computing the exact posterior

distribution over trees is infeasible for non-trivial problems and in practice, we have to

resort to approximations. Some early examples of Bayesian decision trees are Buntine

(1992); Chipman et al. (1998); Denison et al. (1998).

Ensemble learning (Dietterich, 2000), where we combine many predictors / learners,

is another way to address over-fitting. Two popular ensemble strategies are boosting

(Schapire, 1990; Freund et al., 1999) and bootstrap aggregation, more commonly referred

to bagging (Breiman, 1996) . While ensemble learning can be combined with any learning

algorithm, ensembles of decision trees are very popular since decision trees are unstable

learners and are computationally fast to train and test. Ensembles of decision trees often

achieve state-of-the-art performance in many supervised learning problems (Caruana

and Niculescu-Mizil, 2006; Fernández-Delgado et al., 2014). While the combination of

boosting and decision trees has been studied by many researchers (cf. (Freund et al.,

1999)), the most popular variant in practice is the gradient boosted decision trees (GBRT)

algorithm proposed by Friedman (2001). While GBRTs are popular in practice, they

can over-fit and moreover, they do not produce probabilistic predictions. Chipman

et al. (2010) proposed Bayesian additive regression trees (BART), a Bayesian version of

boosted decision trees. In his seminal paper, Breiman (2001) proposed random forests

(RF) which consist of multiple randomized decision trees. Some popular strategies for

randomizing the individual trees in a random forest are (i) training individual trees

on bootstrapped versions of the original dataset, (ii) randomly sampling a subset of

the original features before optimizing for split dimension and split location and (iii)

randomly sampling candidate pairs of split dimensions and split locations and restricting

the search to just these pairs. While random forests were originally proposed for

supervised learning, the random forest framework is very flexible and can be extended

to other problems such as density estimation, manifold learning and semi-supervised

learning (Criminisi et al., 2012). Random forests are less prone to over-fitting, however

they do not produce probabilistic predictions. Another disadvantage of random forests

is that they are difficult to train incrementally.

In this thesis, we take a probabilistic approach where we cast the decision tree structures

12



and the parameters associated with the nodes of a decision tree as a probabilistic

model. The probabilistic approach allows us to encode prior assumptions about tree

structures and share statistical strength between node parameters. Moreover, the

probabilistic approach offers a principled mechanism to obtain probabilistic predictions

and quantify predictive uncertainty. The probabilistic view enables us to think about

the different sources of uncertainty and understand the computational vs performance

trade-offs involved in designing an ensemble of decision trees with desirable properties

(high accuracy, fast predictions, probabilistic predictions, efficient online training, etc).

We make several contributions in this thesis:

• In Chapter 2, we review decision trees and set up the notation. We briefly review

ensembles of decision trees, clarify what it means to be Bayesian in this context,

and discuss the relative merits of Bayesian and non-Bayesian approaches.

• In Chapter 3, we first present a novel sequential interpretation of the decision

tree prior and then propose a top-down particle filtering algorithm for Bayesian

learning of decision trees as an alternative to Markov chain Monte Carlo (MCMC)

methods. This chapter is based on (Lakshminarayanan et al., 2013), published in

ICML 2013, and is joint work with Daniel M. Roy and Yee Whye Teh.

• In Chapter 4, we combine the above top-down particle filtering algorithm with

the Particle MCMC framework (Andrieu et al., 2010) and propose PG-BART, a

Particle Gibbs sampler for BART. This chapter is based on (Lakshminarayanan

et al., 2015), published in AISTATS 2015, and is joint work with Daniel M. Roy

and Yee Whye Teh.

• In Chapter 5, we propose a novel random forest called Mondrian forest (MF) that

leverages tools from the nonparametric-Bayesian literature such as the Mondrian

process (Roy and Teh, 2009) and the hierarchical Pitman-Yor process (Teh,

2006). Unlike existing random forests, Mondrian forests produce principled

uncertainty estimates, and can be trained online efficiently. This chapter is based

on (Lakshminarayanan et al., 2014), published in NIPS 2014, and is joint work

with Daniel M. Roy and Yee Whye Teh.

• In Chapter 6, we extend Mondrian forests to regression and demonstrate that

MFs outperform approximate Gaussian processes on large-scale regression, and

produce better uncertainty estimates than popular decision forests. This chapter

is based on (Lakshminarayanan et al., 2016), published in AISTATS 2016, and is

joint work with Daniel M. Roy and Yee Whye Teh.

• We conclude in Chapter 7 and discuss avenues for future work.
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Chapter 2

Review of decision trees and

ensembles of trees

2.1 Problem setup

Given N labeled examples (x1, y1), . . . , (xN , yN ) ∈ X × Y as training data, the task in

supervised learning is to predict labels y ∈ Y for unlabeled test points x ∈ X . Since we

are interested in probabilistic predictions, our goal is to not just predict a label y ∈ Y,

but to output the distribution p(y|x), i.e. the conditional distribution of the label y

given the features x. For simplicity, we assume that X := RD, where D denotes the

dimensionality (i.e. the number of features), and restrict our attention to two popular

supervised learning scenarios:

• multi-class classification (of which binary classification is a special case) where

Y := {1, . . . ,K} (K denotes the number of classes in this case), and

• regression where Y := R.

Let X1:n := (x1, . . . ,xn), Y1:n := (y1, . . . , yn), and D1:n := (X1:n, Y1:n). For every

subset A ⊆ {1, . . . , N}, let YA := {yn : n ∈ A} and similarly for XA and DA.

2.2 Decision trees

For our purposes, a decision tree on X will be a hierarchical, axis-aligned, binary

partitioning of X and a rule for predicting the label of test points given training data.

The structure of the decision tree is a finite, rooted, strictly binary tree T, i.e., a finite

set of nodes such that 1) every node j has exactly one parent node, except for a

distinguished root node ε which has no parent, and 2) every node j is the parent of

exactly zero or two children nodes, called the left child left(j) and the right child

right(j). Denote the leaves of T (those nodes without children) by leaves(T). Each node
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Figure 2.1: A decision tree T = (T, δ, ξ) represents a hierarchical partitioning of a space. Here,
the space is the unit square and the tree T contains the nodes {ε, 0, 1, 10, 11}. The root node ε
represents the whole space Bε = RD, while its two children 0 and 1, represent the two halves
of the cut (δε, ξε) = (1, 0.5), where δε = 1 represents the dimension of the cut, and ξε = 0.5
represents the location of the cut along that dimension. (The origin is at the bottom left of each
figure, and the x-axis is dimension 1. The red circles, green stars and blue squares represent
observed data points.) The second cut, (δ1, ξ1) = (2, 0.35), splits the block B1 into the two
halves B11 and B10.
When defining the prior over decision trees given by Chipman et al. (1998), it will be necessary
to refer to the “extent” of the data in a block. Here, Bxj = exj1 × exj2 denotes the bounding box
of data (shown in gray) in block Bj , where exj1 and exj2 are the extent of the data in dimensions
1 and 2, respectively. For each node j, the set Vj contains those dimensions with non-trivial
extent. Here, V0 = {1, 2}, but V10 = {2}, because there is no variation in dimension 1.

of the tree j ∈ T is associated with a block Bj ⊂ RD of the input space as follows:

At the root, we have Bε = RD, while each internal node j ∈ T \ leaves(T) with two

children represents a split of its parent’s block into two halves, with δj ∈ {1, . . . , D}
denoting the dimension of the (axis-aligned) split, and ξj denoting the location of the

split. In particular,

Bleft(j) := {x ∈ Bj : xδj ≤ ξj} and Bright(j) := {x ∈ Bj : xδj > ξj}.

We call the tuple T = (T, δ, ξ) a decision tree. (See Figure 2.1 for more intuition on the

representation and notation of decision trees.) Note that the blocks associated with the

leaves of the tree form a partition of RD. We may write Bj =
(
`j1, uj1

]
× . . .×

(
`jD, ujD

]
,

where `jd and ujd denote the `ower and upper bounds, respectively, of the rectangular

block Bj along dimension d. Let `j = {`j1, `j2, . . . , `jD} and uj = {uj1, uj2, . . . , ujD}.

It will be useful to introduce some additional notation. Let parent(j) denote the

parent of node j. Let Nj denote the indices of training data points at node j, i.e.,

Nj = {n ∈ {1, . . . , N} : xn ∈ Bj}. Note that both Bj and Nj depend on T , although we

have chosen to elide this dependence for notational simplicity. Let DNj = {XNj , YNj}
denote the features and labels of training data points at node j. Let `xjd and uxjd denote
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the `ower and upper bounds of training data points (hence the superscript x) respectively

in node j along dimension d. Additionally, let exjd = (`xjd, u
x
jd] denote the extent of the

training data in node j along dimension d. Let Bx
j =

(
`xj1, u

x
j1

]
× . . .×

(
`xjD, u

x
jD

]
⊆ Bj

denote the smallest rectangle that encloses the training data points in node j. Let

leaf(x) denote the unique leaf node j ∈ leaves(T) such that x ∈ Bj . (Recall that the

leaves define a partition of the input space.) For brevity, we will also use the following

shortcut notation to label the nodes of the decision tree: label the root node as the

empty string ε and label left(j) = j0 and right(j) = j1. If each parent-child path is

labeled 0 or 1 depending on the outcome of the binary decision, this labeling scheme

ensures that the label of each node is the concatenation of the labels along the path from

the root till that node. We refer to Figure 2.1 for more intuition on the representation

and notation of decision trees.

Once we have a decision tree structure, we also need a rule for predicting the label of a

test points given training data. To this end, we will associate each leaf node j with a

parameter θj that parametrizes the conditional distribution p(y|x ∈ Bj). For instance,

θj would parametrize the K-dimensional discrete distribution for classification problems

and the mean of a Gaussian distribution for regression problems.

2.2.1 Learning decision trees

Learning a decision tree from training data involves two steps namely, learning the tree

structure T and estimating the leaf node parameters θ. Popular decision tree induction

algorithms include CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993). While it is

possible to learn a deep decision tree until there is an unique data point at each leaf node,

it is common to limit the complexity of the decision tree by specifying a hyper-parameter

that decides when to stop splitting a node. The most popular strategy is to require a

minimum number of samples (min samples split) at a node before it can be split. (A

variant of this strategy is to require that a split leads to a minimum number of samples

min samples leaf at each leaf node.) Alternative strategies include not splitting a node

if all the class labels are identical (for classification problems) or limiting the maximum

depth of the tree; however specifying maximum depth is relatively harder to specify in

a dataset-agnostic fashion (since deeper and/or unbalanced trees might be preferable

for some datasets). Due to its simplicity and robustness, we prefer min samples split.

We describe a typical decision tree induction algorithm in Algorithms 2.1 and 2.2.

The procedure starts with the root node ε and recurses down the tree. At node j,

CandidateSplitsj denotes the set of candidate pair of valid split dimensions and locations,

where a valid split is one where both children are non-empty. In practice, the set of

valid split candidates is obtained by sorting the training data independently along

each dimension; since the training data takes on only along a finite number of unique

values, it is sufficient to consider a single split location (usually the midpoint) for each
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of these intervals (as any split location along this midpoint has the same accuracy on

the training data). We greedily choose the best split dimension and split location from

CandidateSplitsj by optimizing an appropriate criterion, e.g. information gain or Gini

index for classification and reduction in MSE for regression.

Algorithm 2.1 BuildDecisionTree
(
D1:n,min samples split

)
1: Initialize empty tree: T = ∅, leaves(T) = ∅, δ = ∅, ξ = ∅
2: Set Nε = {1, 2, . . . , n} . entire dataset is used at root node
3: ProcessBlock

(
ε,DNε ,min samples split

)
. Algorithm 2.2

Algorithm 2.2 ProcessBlock
(
j,DNj ,min samples split

)
1: Add j to T
2: if |Nj | ≥ min samples split then . j is an internal node.
3: Set CandidateSplitsj to the set of all valid pairs of split dimensions and locations
4: Choose best split dimension δj and split location ξj amongst CandidateSplitsj

by optimizing appropriate criterion . greedy optimization
5: Set Nleft(j) = {n ∈ Nj : Xn,δj ≤ ξj} and Nright(j) = {n ∈ Nj : Xn,δj > ξj}
6: ProcessBlock

(
left(j),DNleft(j)

,min samples split
)

7: ProcessBlock
(
right(j),DNright(j)

,min samples split
)

8: else . j is a leaf node
9: Add j to leaves(T)

10: Estimate θj using YNj

For leaf nodes, we estimate the parameters θj using DNj . In the simplest case, θj is

estimated just using YNj , independent of XNj ; there exist variants where θj also depends

on XNj , however we restrict our attention to the former since it is computationally fast.

For classification problems, let cjk denote the number of data points in node j with

label k, i.e. cjk =
∑

n∈Nj 1[yn = k]; in this case, θj is estimated as

θjk =
cjk + α

|Nj |+Kα
,

where we add a small constant α to smooth the empirical histogram of labels in node

j and |Nj | (the size of the set Nj) denotes the number of data points in node j. For

regression problems, θj is set to the empirical mean of the labels in node j, i.e.

θj =
1

|Nj |
∑
n∈Nj

yn.

2.2.2 Prediction with a decision tree

Recall that leaf(x) denotes the unique leaf node j ∈ leaves(T) such that x ∈ Bj .

Prediction from a tree involves two steps: (i) traversing the decision tree starting from

the root node to identify leaf(x) and (ii) returning (a function of) the leaf node parameter

θleaf(x). For regression, the prediction is the mean θleaf(x), whereas for classification,
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one can return either the probabilistic prediction θleaf(x) or the most likely class label

argmaxkθleaf(x),k. The procedure is summarized in Algorithm 2.3.

Algorithm 2.3 Predict
(
T ,x

)
(prediction using decision tree)

1: . Description of prediction using a decision tree given T and θ
2: Initialize j = ε
3: while True do
4: if j ∈ leaves(T) then . Reached leaf(x)
5: return prediction θj
6: else
7: if xδj ≤ ξj then j ← left(j) else j ← right(j) . recurse to child where x lies

2.3 Bayesian decision trees

In the previous section, we described a simple tree induction procedure to learn a decision

tree and the leaf node parameters. However, a potential drawback is that the greedy

induction procedure can over-fit the training data, thereby leading to overconfident

predictions on unseen data. Assume that the labels were generated according to a

decision tree T ∗ (the ‘ground truth’). Given finite training data, the greedy learning

algorithm returns an estimate T̂ (a single tree) which does not equal T ∗ in general.

Specifically, there are two issues: first, there could be multiple decision tree structures

that are equally good at explaining the training data; however the induction algorithm

returns just a single decision tree. Next, the leaf node parameters are estimated using

just the data points at that leaf node; this may lead to poor generalization. Clearly, it

would be desirable to represent the uncertainty over decision tree structures and the

leaf node parameters.

The Bayesian approach (Bayes and Price, 1763) provides a principled solution to this

issue. The Bayesian approach is conceptually very simple. First, we introduce a prior

over decision trees (e.g. a prior that prefers shallow trees) and the leaf node parameters

(e.g. a prior that prefers smaller values for regression or a prior that encourages sparse

label distributions for classification). Next, we define a likelihood which measures how

well a decision tree explains the given training data. Finally, we compute the posterior

distribution over decision trees and the node parameters using Bayes theorem:

p(T ,θ|Y,X)︸ ︷︷ ︸
posterior

=
1

Z(Y,X)
p(Y |T ,θ,X)︸ ︷︷ ︸

likelihood

p(θ|T )p(T |X)︸ ︷︷ ︸
prior

,

Z(Y,X) =
∑
T

∫
θ
p(Y |T ,θ,X) p(θ|T ) p(T |X)dθ,

where Z(Y,X) is the so-called marginal likelihood of the training data. During prediction,
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the predictions of trees are weighted according to the posterior distribution, i.e.,

p(y|x) =
∑
T

∫
θ
p(y|x, T ,θ)p(T ,θ|Y,X)dθ.

This process is known as Bayesian model averaging (Hoeting et al., 1999) and accounts

for the uncertainty in the model (in this case, the model is the decision tree along with

the leaf node parameters), unlike the previous approach which predicts just using a

single decision tree and set of leaf node parameters. The Bayesian approach allows us

to quantify predictive uncertainty (by translating the model uncertainty into predictive

uncertainty) which is useful in a variety of applications such as cost-sensitive decision

making, reinforcement learning, etc.

The main challenge in the Bayesian approach is the computational complexity. While

computing the Bayesian posterior over node parameters is typically straight forward,

computing the exact posterior distribution over trees is infeasible for non-trivial problems

and in practice, we have to resort to approximations. Specifically, the integral over θ

is typically easy to compute as the likelihood is assumed to belong to the exponential

family distribution and the prior over θ is the corresponding conjugate prior. However,

the summation over T is computationally intractable as there are exponentially many

trees. In practice, the posterior is approximated with a finite set of trees as follows:

p(y|x) ≈
S∑
s=1

ws p(y|x, Ts), (2.1)

=
S∑
s=1

ws

∫
θ
p(y|x, Ts,θ)p(θ|Y,X, Ts)dθ,

where
∑

sws = 1. It is possible to approximate the posterior using standard tools such

as Markov chain Monte Carlo (MCMC). Some early examples of Bayesian decision trees

are Buntine (1992); Chipman et al. (1998); Denison et al. (1998). Intuitively, these

posterior approximations replace the intractable sum over trees with a finite summation

by focusing only on the promising trees and ignoring trees whose posterior weights are

close to zero. We discuss Bayesian decision tree algorithms in more detail in Chapter 3.

2.4 Ensembles of decision trees

In ensemble learning, many ‘weak’ predictors are combined to obtain a ‘powerful’

predictor (Dietterich, 2000) that is more accurate than the individual predictors. In

the simplest case, the predictions from the ensemble are just a weighted additive

combination of the predictions from the individual predictors. While ensemble learning

can be combined with any learning algorithm, ensembles of decision trees are very

popular since decision trees are computationally fast to train and test. Ensembles of
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decision trees often achieve state-of-the-art performance in many supervised learning

problems (Caruana and Niculescu-Mizil, 2006). Let {Tm,θm}Mm=1 denote an ensemble

of trees, where M denotes the number of trees in the ensemble. Let g(x; Tm,θm) denote

the prediction from the mth decision tree for a test data point x. (We slightly abuse

the notation to allow the prediction to either be a point estimate or a probability

distribution or density.) The prediction from an ensemble can be written as

g(x; {Tm,θm}Mm=1) =
M∑
m=1

wm g(x; Tm,θm). (2.2)

Ensembles of decision trees can be broadly classified into two families: additive/boosted

decision trees, wherein each tree fits the residual not explained by the remainder of the

trees, and random forests, wherein randomized independent decision trees are grown

independently and predictions are averaged to reduce variance. We briefly review these

variants below.

2.4.1 Additive decision trees

Boosting is an ensemble learning framework where each predictor is trained to focus on

the mistakes of the other predictors. Early boosting algorithms include the AdaBoost

algorithm for binary classification proposed by Freund and Schapire (1997) and the

gradient boosted regression trees (GBRT) algorithm proposed by Friedman (2001) for

regression problems. An high-level pseudocode for fitting an ensemble of boosted

regression trees is described in Algorithm 2.4. (Note that this is just a high-level

pseudocode; it is important to prevent individual trees from overfitting cf. (Friedman,

2002).)

Algorithm 2.4 Pseudocode for learning boosted regression trees

1: Inputs: Training data (X, Y )
2: for m = 1 : M do
3: Compute residual Rm = Y −∑m−1

m′=1 g(X; Tm′ ,θm′).
4: Learn mth decision tree Tm,θm using Rm as the targets for X . Algorithm 2.1

Note that the decision trees are fit in a serial fashion in Algorithm 2.4. Specifically, we

compute the residual, which equals the difference between the targets and the sum of

predictions of all previous trees, and use this residual as the target for the mth tree.

This depth-first expansion can lead to over-fitting. An alternative is to fit the trees in an

iterative breadthwise-expansion scheme, where we fit the root of the M trees first, and

subsequently fit the individual trees by expanding them, one node at a time. Examples

of iteratively fitted additive regression trees include additive groves (Sorokina et al.,

2007), Bayesian additive regression trees (BART) (Chipman et al., 2010) and greedy

regularized forest (Johnson and Zhang, 2013). While the term boosted decision trees
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usually refers to serial-fitting, the term additive decision trees includes both serial-fitting

and iterative-fitting.

Chipman et al. (2010) introduced Bayesian additive regression trees (BART), which

reduce over-fitting in gradient boosted regression trees using a Bayesian approach.

Similar to Bayesian decision trees discussed in Section 2.3, BART introduces priors on

the decision trees and leaf node parameters and approximates the posterior over the

ensemble {Tm,θm}Mm=1 using an MCMC sampler. We discuss BART in more detail in

Chapter 4.

Caruana and Niculescu-Mizil (2006) found that boosted decision trees were slightly more

accurate than random forests. However, boosted decision trees are more sensitive to

label noise. Unlike random forests, the computation across trees cannot be parallelized.

Another disadvantage is that additive regression trees do not readily extend to multi-class

classification problems.

2.4.2 Random forests

Classic decision tree induction procedures choose the best split dimension and location

from all candidate splits at each node by optimizing some suitable quality criterion

(e.g. information gain) in a greedy manner. In a random forest, the individual trees are

randomized to de-correlate their predictions. The most common strategies for injecting

randomness are:

• bootstrap aggregation, more commonly referred to as bagging (Breiman, 1996)

where each decision tree is trained on a slightly different training dataset, and

• randomly subsampling the set of candidate splits within each node.

The prediction from a random forest is usually an (unweighted) average of the predictions

of individual trees:

g(x; {Tm,θm}Mm=1) =

M∑
m=1

1

M
g(x; Tm,θm).

For classification, it is also possible to use majority voting if the individual trees output

discrete class labels instead of probability distributions. While it is common to use

uniform weights wm = M−1, the weights can also be optimized, e.g. using stacking

(Wolpert, 1992).

Geurts et al. (2006) discuss the advantage of random forests over decision trees using the

bias-variance tradeoff. Individual decision trees have low bias, but exhibit high variance

(as tree induction algorithms produce different trees on slightly different versions of

the dataset.) In a random forest, the individual trees are randomized in order to

decorrelate their predictions. The randomization scheme may slightly increase the bias
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of individual trees in the forest. (For instance, if each tree of the forest is trained on a

random subset of the training dataset, the individual trees may have lower accuracy

than the best possible decision tree.) However, the variance of the forest is much lower

than the variance of the individual trees,1 which more than compensates for the slight

increase in bias, thereby leading to a better predictor. Dietterich (2000) discusses three

fundamental reasons why an ensemble might outperform a single classifier. The first

reason is statistical: given finite training data, many hypotheses may be equally good on

the training data. By combining predictions from multiple good predictors, an ensemble

reduces the risk of choosing the wrong hypothesis. The second reason is computational:

in cases where the training algorithm is prone to local optima, the ensemble combines

the results from multiple random searches and may provide a better approximation

to the true unknown function. The third reason is representational: while decision

trees can represent any function in principle, the effective hypothesis space is limited

by the greedy training algorithm. An ensemble is capable of representing weighted

combinations of trees, which increases its effective representational power while training

on finite data using a greedy local search.

Two popular random forest variants are Breiman-RF (Breiman, 2001) and Extremely

randomized trees (ERT) (Geurts et al., 2006). Breiman-RF uses bagging and furthermore,

at each node, a random k-dimensional subset of the original D features is sampled.

ERT chooses a k dimensional subset of the features and then chooses one split location

each for the k features randomly (unlike Breiman-RF which considers all possible split

locations along a dimension). Unlike Breiman-RF, ERT does not use bagging.

As we will see later, random forests are better-suited than boosted decision trees for

different settings such as binary classification, multi-class classification, regression, etc.

Random forests are very easy to implement as they only involve a minor change of the

decision tree pseudocode. For instance, bagging just requires setting Nε in Algorithm 2.1

to a bootstrap sample instead of the full dataset. Similarly, random split sampling just

requires setting CandidateSplitsj to a subset of the valid splits in Algorithm 2.2. Another

advantage is that the individual trees can be trained in parallel since they do not

interact with each other. Fernández-Delgado et al. (2014) compared a suite of machine

learning algorithms on a variety of datasets and found that random forests consistently

rank among the top-performing algorithms. Due to these advantages, random forests

remain one of the most popular black-box prediction algorithms. We refer the reader to

(Criminisi et al., 2012) for an excellent review of random forests and other extensions

such as density estimation, manifold learning and semi-supervised learning.

While the random forest framework is very powerful, it has a couple of disadvantages.

First, random forests do not quantify predictive uncertainty in a principled way. Specifi-

cally, methods such as Gaussian processes have the appealing property that uncertainty

1Specifically, the variance of a forest with M trees is M times lower than the variance of individual
trees.
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increases as we move farther away from the training data. However, predictions from a

random forest can be over-confident even in regions where training data has not been

observed. The main reason for this difference is that Gaussian processes are probabilistic

whereas random forests are not. In a probabilistic framework, we first posit a prior that

represents our uncertainty about the parameters of the underlying function, and next

posit a likelihood function that measures how well the parameters explain the observed

training data. Finally, we compute the predictive posterior using Bayes theorem. The

observed data constrains the function by down-weighting unlikely parameters; hence

the predictive posterior is less uncertain in regions close to the observed training data.

However, the observed training data does not constrain the function in regions far away

from the training data, hence the predictive posterior reduces to the prior distribution

and exhibits higher uncertainty (as expected) in regions far from the observed training

data.

Another disadvantage of random forests is that they are not well suited for incremental

or online learning setting where we observe new data points on-the-fly (unlike the

batch learning setting where the training dataset does not grow with time.) Large-scale

machine learning systems for streaming data are often trained using stochastic gradient

algorithms. However, random forests with hard splits are not amenable to gradient

based updates. Since it is difficult to undo splits in decision trees, current online random

forests wait until they have seen sufficient amount of data to confidently decide the

split. Hence, they are very data inefficient compared to the corresponding batch random

forest. We propose a novel variant of random forests that addresses both of these issues

in Chapters 5 and 6.

2.5 Bayesian model averaging vs model combination

We have discussed several algorithms so far. In this section, we discuss the connections

between the different algorithms and clarify the differences between seemingly similar

approaches. The connections between the algorithms are summarized in Figure 2.2.

We start with decision trees on the top left corner of Figure 2.2. Red lines indicate

additive combination (or boosting), where the components are fit jointly in a serial

fashion; for instance additive trees combine decision trees. Green lines indicate ran-

domized averaging where multiple randomized versions of the underlying predictor

are trained in parallel and their predictions are averaged; for instance random forests

average predictions from multiple randomized decision trees. It is possible to apply

combine bagging and boosting; Pavlov et al. (2010) proposed BagBoo, where multiple

randomized versions of boosted decision trees are fit in parallel and averaged. Blue lines

indicate Bayesian treatment of the decision tree structures and the leaf node parameters.

As the name suggests, Bayesian decision trees perform BMA over decision trees, whereas

BART performs Bayesian inference over additive combination of decision trees.
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Decision trees Bayesian decision trees

Random forests ?

Additive trees BART

BagBoo ?

Figure 2.2: Comparison of different approaches: blue horizontal lines denote Bayesian version,
red vertical lines denote additive combination, and green lines denote an ensemble combination
of randomized predictors. The top-down particle filtering algorithm described in Chapter 3 is a
novel Bayesian decision tree variant (top right node). The PG-BART algorithm described in
Chapter 4 is a novel variant of BART (and Bayesian decision trees). Mondrian forests, described
in Chapters 5 and 6, are a novel hybrid variant of random forests, where we perform Bayesian
inference over node parameters in each tree but combine the trees in a non-Bayesian fashion.
Furthermore, in Mondrian forests, we restrict splits to the range of observed training data, which
allows us to represent uncertainty about the partition structure beyond the range of training
data.

Equation (2.1) describing BMA in Bayesian decision trees and equation (2.2) describing

the prediction of an ensemble appear to be strikingly similar. It seems tempting to

interpret BMA as an ensemble algorithm, however the goals of BMA are quite different.

Domingos (2000) interpreted BMA as an ensemble method and claimed that BMA is

prone to over-fitting, however Minka (2000) showed that the ensemble interpretation of

BMA is incorrect. Ensembles perform model combination and hence their hypothesis

class is bigger. On the other hand, BMA in Bayesian decision trees assumes that the

data was generated by a decision tree and accounts for the uncertainty over trees due

to the fact that we observe only finite training data. On finite data, BMA performs

soft model selection instead of model combination. In fact, in the limit of infinite

data, the Bayesian posterior over decision trees would converge to a single tree and

only one of the weights in (2.1) would be non-zero. If the data was generated by an

ensemble of trees instead of a single decision trees, Bayesian decision trees would not

be appropriate as the assumptions of BMA are violated. (We refer to (Minka, 2000)

for a simple illustration of the difference between model combination and BMA. Clarke

(2003) provides a comparison between BMA and ensemble weighting when the model

approximation error cannot be ignored.) The correct solution is to assume that the

data was generated by an additive combination of trees and perform BMA over additive

combinations of trees instead of BMA over decision trees. In fact, this is the approach

taken in BART (Chipman et al., 2010), as we will see in Chapter 4. It is possible

to interpolate between BMA over decision trees (where each tree is weighted by its

posterior probability) and random forests (where the trees are weighted uniformly).
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Quadrianto and Ghahramani (2015) propose to use power likelihood which enables

interpolation between Bayesian model averaging and model combination.

It is important to note that the term ‘Bayesian’ in Bayesian decision trees refers to

Bayesian inference over both the decision tree structures and the leaf node parameters.

In Chapters 5 and 6, we discuss Mondrian forests, where we perform Bayesian inference

over leaf node parameters but combine the decision trees in a non-Bayesian fashion

using model combination instead of BMA. Furthermore, in Mondrian forests, we restrict

splits to the range of observed training data, which allows us to represent uncertainty

about the partition structure beyond the range of training data. Mondrian forests

use a hierarchy over the node parameters, conditional on the tree structure, and use

Bayesian inference within each tree independently to obtain probabilistic predictions.

Since splits are confined to bounding boxes, we can represent uncertainty in the tree

structure in regions far away from training data; hierarchical Bayesian inference over

node parameters ensures that we efficiently make use of observed training data. Hence,

Mondrian forests can produce principled uncertainty estimates. Taddy et al. (2015)

propose Bayesian and empirical Bayesian forests, where the bootstrap in random forest

is replaced by the Bayesian bootstrap (Rubin et al., 1981); however, they do not perform

Bayesian inference over the decision trees and leaf node parameters. The real challenge

of Bayesian inference in trees and ensembles is Bayesian inference over (exponentially

many) decision trees, hence we do not refer to a decision tree (or forest) algorithm as

‘Bayesian’ unless it learns the posterior over decision trees. Bayesian inference over tree

structures is computationally challenging the in incremental/online learning setting;

Mondrian forests do not perform Bayesian inference over tree structures, which is part

of the reason why they are computationally attractive in this setting.

Decision trees are also reminiscent of so-called mixture of experts (Jacobs et al., 1991),

which learn multiple predictors (experts) and additionally learn to use a different

predictor for different subsets of data. Decision trees with hard splits learn both the

partitioning tree structure as well as the predictors at the leaf nodes, which are the

experts in this case. It is also possible to replace the hard splits in a decision tree

with soft routing functions that route each data point to the left or right stochastically.

Hierarchical mixture of experts (HMEs) (Jordan and Jacobs, 1994) parametrize the

routing function using sigmoid functions, and learn the parameters using expectation-

maximization algorithm. One issue with the soft routing operation is that a data point

needs to be propagated to every leaf, which destroys the computational advantage for

deep trees. However, the sigmoid is differentiable which makes it amenable to gradient

based end-to-end training. It would be interesting to develop efficient Bayesian versions

of HMEs; however, we restrict our attention to decision trees with hard axis-aligned

splits in the rest of the thesis.

25



Chapter 3

SMC for Bayesian decision trees

3.1 Introduction

Decision tree learning algorithms are widely used across statistics and machine learning,

and often deliver near state-of-the-art performance despite their simplicity. Decision

trees represent predictive models from an input space, typically RD, to an output space

of labels, and work by specifying a hierarchical partition of the input space into blocks.

Within each block of the input space, a simple model predicts labels.

In classical decision tree learning, a decision tree (or collection thereof) is learned

in a greedy, top-down manner from the examples. Examples of classical approaches

that learn single trees include ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993) and CART

(Breiman et al., 1984), while methods that learn combinations of decisions trees include

boosted decision trees (Friedman, 2001), random forests (Breiman, 2001), and many

others.

Bayesian decision tree methods, like those first proposed by Buntine (1992), Chipman

et al. (1998), Denison et al. (1998), and Chipman and McCulloch (2000), and more

recently revisited by Wu et al. (2007), Taddy et al. (2011) and Anagnostopoulos and

Gramacy (2012), cast the problem of decision tree learning into the framework of Bayesian

inference. In particular, Bayesian approaches start by placing a prior distribution on the

decision tree itself. To complete the specification of the model, it is common to associate

each leaf node with a parameter indexing a family of likelihoods, e.g., the means of

Gaussians or Bernoullis. The labels are then assumed to be conditionally independent

draws from their respective likelihoods. The Bayesian approach has a number of useful

properties: e.g., the posterior distribution on the decision tree can be interpreted as

reflecting residual uncertainty and can be used to produce point and interval estimates.

On the other hand, exact posterior computation is typically infeasible and so existing

approaches use approximate methods such as Markov chain Monte Carlo (MCMC) in

the batch setting. Roughly speaking, these algorithms iteratively improve a complete
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decision tree by making a long sequence of random, local modifications, each biased

towards tree structures with higher posterior probability. These algorithms stand in

marked contrast with classical decision tree learning algorithms like ID3 and C4.5, which

rapidly build a decision tree for a data set in a top-down greedy fashion guided by

heuristics. Given the success of these methods, one might ask whether they could be

adapted to work in the Bayesian framework.

We present such an adaptation, proposing a sequential Monte Carlo (SMC) method for

approximate inference in Bayesian decision trees that works by sampling a collection

of trees in a top-down manner like ID3 and C4.5. Unlike classical methods, there

is no pruning stage after the top-down learning stage to prevent over-fitting, as the

prior combines with the likelihood to automatically cut short the growth of the trees,

and resampling focuses attention on those trees that better fit the data. In the end,

the algorithm produces a collection of sampled trees that approximate the posterior

distribution. While both existing MCMC algorithms and our novel SMC algorithm

produce approximations to the posterior that are exact in the limit, we show empirically

that our algorithms run more than an order of magnitude faster than existing methods

while delivering the same predictive performance.

The chapter is organized as follows: we begin by describing the Bayesian decision

tree model precisely in Section 3.2, and then describe the SMC algorithm in detail in

Section 3.3. Through a series of empirical tests, we demonstrate in Section 3.4 that this

approach is fast and produces good approximations. We conclude in Section 3.5 with

a discussion comparing this approach with existing ones in the Bayesian setting, and

point towards future avenues.

3.2 Model

3.2.1 Problem setup

We assume that the training data consist of N i.i.d. samples X = {xn}Nn=1, where

xn ∈ RD, along with corresponding labels Y = {yn}Nn=1, where yn ∈ {1, . . . ,K}. We

focus only on the multi-class classification task here, although the extension to regression

is fairly straightforward. We refer to Section 2.2 and Figure 2.1 for a review of decision

trees and our notation.
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3.2.2 Likelihood model

Conditioned on the examples X, we assume that the joint density p(Y, T |X) of the

labels Y and the latent decision tree T factorizes as follows:

p(Y, T |X) = p(T |X) p(Y | T ,X)

= p(T |X)
∏
j∈leaves(T) `(YNj |XNj ) (3.1)

where ` denotes a likelihood, defined below.

In this chapter, we focus on the case of categorical labels taking values in the set

{1, . . . ,K}. It is natural to take ` to be the Dirichlet-Multinomial likelihood, corre-

sponding to the data being conditionally i.i.d. draws from a multinomial distribution on

{1, . . . ,K} with a Dirichlet prior. In particular,

`(YNj |XNj ) =
Γ(α)

Γ( αK )K

∏K
k=1 Γ(cjk + α

K )

Γ(
∑K

k=1 cjk + α)
, (3.2)

where cjk denotes the number of labels yn = k among those n ∈ Nj and α is the

concentration parameter of the symmetric Dirichlet prior. Generalizations to other

likelihood functions based on conjugate pairs of exponential families are straightforward.

3.2.3 Sequential generative process for trees

The final piece of the model is the prior density p(T |X) over decision trees. In order

to make straightforward comparisons with existing algorithms, we adopt the model

proposed by Chipman et al. (1998). In this model, the prior distribution of the latent

tree is defined conditionally on the given input vectors X (see Section 3.5 for a discussion

of this dependence on X and its effect on the exchangeability of the labels). Informally,

the tree is grown starting at the root, and each new node either splits and grows two

children (turning the node into an internal node) or stops (leaving it a leaf) stochastically

and independently.

We now describe the generative process more precisely in terms of a Markov chain

capturing the construction of a decision tree in stages, beginning with the trivial tree

T(0) = {ε} containing only the root node, and sampling a sequence of partial trees. Let

E(t) denotes the ordered set containing the list of nodes eligible for expansion at stage t

(These are the leaf nodes from T(t−1) that have not been expanded yet.) At each stage

t, T(t) is produced from T(t−1) by choosing one eligible node in E(t) and either growing

two children nodes or stopping the leaf. Once stopped, a leaf is ineligible for future

growth. The identity of the chosen leaf is deterministic, while the choice to grow or

stop is stochastic. The process proceeds until all leaves are stopped, and so each node

is considered for expansion exactly once throughout the process. This will be seen to

give rise to a finite sequence of decision trees T(t) = (T(t), δ(t), ξ(t)) once we define the
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associated cut functions δ(t) and ξ(t). We will use this Markov chain in Section 3.3 as

scaffolding for a sequential Monte Carlo algorithm. A similar approach was employed by

Taddy et al. (2011) in the setting of online Bayesian decision trees. There are similarities

also with the bottom-up SMC algorithms by Teh et al. (2008) and Bouchard-Côté et al.

(2012).

We next describe the rule for stopping or growing nodes, and the distribution of cuts.

Let j be the node chosen at some stage of the generative process. If the input vectors

XNj are all identical, then the node stops and becomes a leaf. (Chipman et al. (1998)

chose this rule because no choice of cut to the block Bj would result in both children

containing at least one input vector.) Otherwise, let Vj be the set of dimensions along

which XNj varies, and let exj,d = [`xj,d, u
x
j,d] be the extent of the input vectors along

dimension d ∈ Vj . (See last subfigure of Figure 2.1.) Under the Chipman et al. model,

the probability that node j is split is

αs
(1 + depth(j))βs

, αs ∈ (0, 1), βs ∈ [0,∞), (3.3)

where depth(j) is the depth of the node, and αs and βs are parameters governing the

shape of the resulting tree. For larger αs and smaller βs the typical trees are larger, while

the deeper j is in the tree the less likely it will be cut. If j is cut, the dimension δj and

then location ξj of the cut are sampled uniformly from Vj and exj,δj , respectively. Note

that the choice for the support of the distribution over cut dimensions and locations

are such that both children of j will, with probability one, contain at least one input

vector. Finally, the choices of whether to grow or stop, as well the cut dimensions and

locations, are conditionally independent across different subtrees. Figure 3.1 presents a

cartoon of the sequential generative process.

To complete the generative model, we define T = Tη, δ = δη and ξ = ξη, where η is the

first stage such that all nodes are stopped. We note that η < 2N with probability one

because each cut of a node j produces a non-trivial partition of the data in the block,

and a node with one data point will be stopped instead of cut. The conditional density

of the decision tree T = (T, δ, ξ) can now be expressed as

p(T, δ, ξ|X) =
∏

j∈leaves(T)

(
1− αs

(1 + depth(j))βs

)1(|Vj |>0)

×
∏

j∈T\leaves(T)

αs
(1 + depth(j))βs

1

|Vj |
1

|exj,δj |
. (3.4)

Note that the prior distribution of T does not depend on the deterministic rule for

choosing a leaf at each stage. However this choice will have an effect on the bias and

variance of the corresponding SMC algorithm.
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ε

(a) T(0): E(0) = {ε}

ε : x1 > 0.5

0 1

(b) T(1): E(1) = {0, 1}

ε : x1 > 0.5

0 1

(c) T(2): E(2) = {1}

ε : x1 > 0.5

0 1 : x2 > 0.3

10 11

(d) T(3): E(3) = {10, 11}

ε : x1 > 0.5

0 1 : x2 > 0.3

10 11

(e) T(6): E(6) = {}

Figure 3.1: Sequential generative process for decision trees: Nodes eligible for expansion are
denoted by the ordered set E and shaded in gray. In every iteration, the first element of E, say
j, is popped and is stochastically assigned to be an internal node or a leaf node with probability
given by (3.3) At iteration 0, we start with the empty tree and E = {ε}. At iteration 1, we pop
ε from E and assign it to be an internal node with split dimension δε = 1 and split location
ξε = 0.5 and append the child nodes 0 and 1 to E. At iteration 2, we pop 0 from E and set it
to a leaf node. At iteration 3, we pop 1 from E and set it to an internal node, split dimension
δ1 = 2 and threshold ξ1 = 0.3 and append the child nodes 10 and 11 to E. At iterations 4
and 5 (not shown), we pop nodes 10 and 11 respectively and assign them to be leaf nodes. At
iteration 6, E = {} and the process terminates. By arranging the random variables ρ and δ, ξ
(if applicable) for each node in the order of expansion, the tree can be encoded as a sequence.
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3.3 Sequential Monte Carlo (SMC) for Bayesian decision

trees

In this section we describe an SMC algorithm for approximating the posterior distribution

over the decision tree (T, δ, ξ) given the labeled training data (X, Y ). (We refer the

reader to (Cappé et al., 2007) for an excellent overview of SMC techniques.) The

approach we will take is to perform particle filtering following the sequential description

of the prior. In particular, at stage t, the particles approximate a modified posterior

distribution where the prior on (T, δ, ξ) is replaced by the distribution of (T(t), δ(t), ξ(t)),

i.e., the process truncated at stage t.

Recall that E(t) denotes the ordered set of unstopped leaves at stage t, all of which

are eligible for expansion. We refer to these nodes as candidates as they are eligible

for expansion. An important freedom we have in our SMC algorithm is the choice of

which candidate leaf, or set C(t) ⊆ E(t) of candidate leaves, to consider expanding. In

order to avoid “multipath” issues (Del Moral et al., 2006, §3.5) which lead to high

variance, we fix a deterministic rule for choosing C(t) ⊆ E(t). (Multiple candidates are

expanded or stopped in turn, independently.) This rule can be a function of (X, Y )

and the state of the current particle, as the correctness of resulting approximation is

unaffected. We evaluate two choices in experiments: first, the rule C(t) = E(t) where we

consider expanding all eligible nodes; and second, the rule where C(t) contains a single

node chosen in a breadth-first (i.e., oldest first) manner from E(t). (We consider only

breadth-first expansion as it closely resembles top-down tree induction algorithms and

allows us to interpret (t) as a surrogate for complexity of the tree.)

We may now define the sequence (PY(t)) of target distributions. Recall the sequential

process defined in Section 3.2. If the generative process for the decision tree has not

completed by stage t, the process has generated (T(t), δ(t), ξ(t)) along with E(t), capturing

which leaves in T(t) have been considered for expansion in previous stages already and

which have not. Let T(t) = (T(t), δ(t), ξ(t), E(t)) be the variables generated on stage

t, and write P for the prior distribution on the sequence (T(t)). We construct the

target distribution PY(t) as follows: Given T(t), we generate labels Y ′ with likelihood

p(Y ′|T(t),X), i.e., as if (T(t), δ(t), ξ(t)) were the complete decision tree. We then define

PY(t) to be the conditional distribution of T(t) given Y ′ = Y . That is, PY(t) is the posterior

with a truncated prior.

In order to complete the description of our SMC method, we must define proposal

kernels (Q(t)) that sample approximations for the tth stage given values for the (t−1)th

stage. As with our choice of C(t), we have quite a bit of freedom. In particular, the

proposals can depend on the training data (X, Y ). An obvious choice is to take Q(t)

to be the conditional distribution of T(t) given T(t−1) under the prior, i.e., setting

Q(t)(T(t) | T(t−1)) = P(T(t) | T(t−1)).
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Informally, this choice would lead us to propose extensions to trees at each stage of the

algorithm by sampling from the prior, so we will refer to this as the prior proposal

kernel (aka the Bayesian bootstrap filter (Gordon et al., 1993)).

We consider two additional proposal kernels: The first,

Q(t)(T(t) | T(t−1)) = PY(t)(T(t) | T(t−1)), (3.5)

is called the (one-step) optimal proposal kernel because it would be the optimal

kernel assuming that the tth stage were the final stage. We return to discuss this

kernel in Section 3.3.1. The second alternative, which we will refer to as the empirical

proposal kernel, is a small modification to the prior proposal, differing only in the

choice of the split point ξ. Recall that, in the prior, ξ(t),j is chosen uniformly from the

interval exj,δj . This ignores the empirical distribution given by the input data XNj in

the partition. We can account for this by first choosing, uniformly at random, a pair

of adjacent data points along feature dimension δ(t),j , and then sampling a cut ξ(t),j

uniformly from the interval between these two data points.

The pseudocode for our proposed SMC algorithm is given in Algorithm 3.1. Note that

the SMC framework only requires us to compute the density of T(t) under the target

distribution up to a normalization constant. In fact, the SMC algorithm produces an

estimate of the normalization constant, which, at the end of the algorithm, is equal

to the marginal probability of the labels Y given X, with the latent decision tree

T marginalized out. In general, the joint density of a Markov chain can be hard to

compute, but because the set of nodes C(t) considered at each stage is a deterministic

function of T(t), the path (T0, T1, . . . , T(t−1)) taken is a deterministic function of T(t).

As a result, the joint density is simply a product of probabilities for each stage. The

same property holds for the proposal kernels defined above because they use the same

candidate set C(t), and have the same support as P. These properties justify equations

(3.6) and (3.7) in Algorithm 3.1.

3.3.1 The one-step optimal proposal kernel

In this section we revisit the definition of the one-step optimal proposal kernel. While

the prior and empirical proposal kernels are relatively straightforward, the one-step

optimal proposal kernel is defined in terms of an additional conditioning on the labels

Y , which we now study in greater detail.

Recall that the one-step optimal proposal kernel Q(t) is given by Q(t)(T(t) | T(t−1)) =

PY(t)(T(t) | T(t−1)). To begin, we note that, conditionally on T(t−1) and Y , the subtrees

rooted at each node j ∈ C(t−1) are independent. This follows from the fact that the

likelihood of Y given T(t) factorizes over the leaves. Thus, the proposal’s probability

32



Algorithm 3.1 SMC for Bayesian decision tree learning

1: Inputs: Training data (X, Y ), Number of particles C
2: Initialize: T(0)(c) = E(0)(c) = {ε}
3: δ(0)(c) = ξ(0)(c) = ∅
4: w(0)(c) = p(Y |T(0)(c))
5: W(0) =

∑
cw(0)(c)

6: for t = 1 : MAX-STAGES do
7: for c = 1 : C do
8: Sample T(t)(c) from Q(t)(· | T(t−1)(c))
9: where T(t)(c) := (T(t)(c), δ(t)(c), ξ(t)(c), E(t)(c))

10: Update weights: (Here P,Q(t) denote their densities.)

w(t)(c) =
P(T(t)(c)) p(Y | T(t)(c),X)

Q(t)(T(t)(c) | T(t−1)(c))P(T(t−1)(c))
(3.6)

= w(t−1)(c)
P(T(t)(c) | T(t−1)(c))

Q(t)(T(t)(c) | T(t−1)(c))

p(Y | T(t)(c),X)

p(Y | T(t−1)(c),X)
(3.7)

11: Compute normalization: W(t) =
∑

cw(t)(c)
12: Normalize weights: (∀c)w(t)(c) = w(t)(c)/W(t)

13: if
(∑

c(w(t)(c))
2
)−1

< ESS-THRESHOLD then
14: (∀c) Resample indices ac from

∑
c′ w(t)(c

′)δc′
15: (∀c) T(t)(c)← T(t)(ac); w(t)(c)←W(t)/C

16: if (∀c)E(t)(c) = ∅ then
17: exit for loop

return Estimated marginal probability W(t)/C and weighted samples

{w(t)(c),T(t)(c), δ(t)(c), ξ(t)(c)}Cc=1.

density is

Q(t)(T(t)|T(t−1)) =
∏

j∈C(t−1)

Q(t)(ρ(t),j , δ(t),j , ξ(t),j), (3.8)

where Q(t) is the probability density of the cuts at node j under Q(t), and ρ(t),j denotes

whether the node was split or not. On the event we split a node j ∈ C(t−1), if we

condition further on δ(t),j and ρ(t),j , we note that the conditional likelihood of YNj ,

when viewed as a function of the split ξ(t),j , is piecewise constant, and in particular,

only changes when the split crosses an example.1 It follows that we can sample from

this proposal by first considering the discrete choice of an interval, and then sampling

uniformly at random from within the interval, as with the empirical proposal. Some

1We implement this sampling step efficiently as follows: first we sort the data points a node along
each dimension independently. Note that the conditional likelihood YNj changes only when the split
crosses an example since the label counts are equal otherwise. Hence, we can compute the likelihood for
all valid split points along a dimension, with a linear scan of the data points in sorted (e.g. ascending)
order, updating counts only when we cross a data point.
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algebra shows that

Q(t)(ρ(t),j = stop) ∝
(

1− αs
(1 + depth(j))βs

)
`(YNj |XNj ) ,

Q(t)(ρ(t),j = split, δ(t),j , ξ(t),j) ∝
αs

(1 + depth(j))βs
1

|Vj |
1

|exj,δ(t),j |
×

∏
j′=j0,j1

`(YNj′ |XNj′ ).

3.3.2 Computational complexity

Let Ud denote the number of unique values in dimension d, Nj denote the number of

training data points at node j and η(c) denote the number of nodes in particle c. For all

the SMC algorithms, the space complexity isO(CN)+O(
∑

d Ud)+O(
∑

c η(c)). The time

complexity for prior and empirical proposals is O(DN logN)+C
∑

j O(2D logNj+Nj),

where O(DN logN) corresponds to pre-computation time to sort entire dataset along

each dimension independently and C
∑

j O(2D logNj +Nj) corresponds to logarithmic

time to find the min and max along each dimension, and time for a linear scan along the

data in a node to compute the label counts and assign data points to left or right child.

The time complexity for the optimal proposal C
∑

j

(
DO(Nj logNj) +Nj

)
, where the

first term corresponds to the time to sort the data in each node independently along

every dimension and the last term corresponds to time for linear scan to assign data

points to left or right child (once a split has been sampled). The optimal proposal

typically requires higher computational cost per particle, but fewer number of particles

than the prior and empirical proposals.

3.4 Experiments

In this section, we experimentally evaluate the design choices of the SMC algorithm

(proposal, expansion strategy, number of particles and “islands”) on real world datasets.

In addition, we compare the performance of SMC to the most popular MCMC method

for Bayesian decision tree learning (Chipman et al., 1998), as well as CART, a popular

(non-Bayesian) tree induction algorithm. We evaluate all the algorithms on the following

datasets from the UCI ML repository (Asuncion and Newman, 2007):

• MAGIC gamma telescope data 2004 (magic-04 ): N = 19020, D = 10, K = 2.

• Pen-based recognition of handwritten digits (pen-digits): N = 10992, D = 16,

K = 10.

Previous work has focused mainly on small datasets (e.g., the Wisconsin breast cancer

database used by Chipman et al. (1998) has 683 data points). We chose the above

datasets to illustrate the scalability of our approach. For the pen-digits dataset, we used

the predefined training/test splits, while for the other datasets, we split the datasets

randomly into a training set and a test set containing approximately 70% and 30% of
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the data points respectively.

We implemented our scripts in Python and applied similar software optimization

techniques to SMC and MCMC scripts.2 Our experiments were run on a cluster with

machines of similar processing power.

3.4.1 Design choices in the SMC algorithm

In these set of experiments, we fix the hyperparameters to α = 5.0, αs = 0.95, βs = 0.5

and compare the predictive performance of different configurations of the SMC algorithm

for this fixed model. Under the prior, these values of αs, βs produce trees whose mean

depth and number of nodes are 5.1 and 18.5, respectively. Given C particles, we use

an effective sample size (ESS) threshold of C/10 for resampling, and set the maximum

number of stages to 5000 (although the algorithms never reached this number).

3.4.1.1 Proposal choice and node expansion

We consider the SMC algorithm proposed in Section 3.3 under two proposals: optimal

and prior. (The empirical proposal performed similar to the prior proposal and hence

we do not report those results here.) We consider two strategies for choosing C(t), i.e., the

list of nodes considered for expansion at stage t: (i) node-wise expansion, where a single

node is considered for expansion per stage (i.e., C(t) is a singleton chosen deterministically

from eligible nodes E(t)), and (ii) layer-wise expansion, where all nodes at a particular

depth are considered for expansion simultaneously (i.e., C(t) = E(t)). For node-wise

expansion, we evaluate two strategies for selecting the node deterministically from C(t):

(i) breadth-first priority, where the oldest node is picked first, and (ii) marginal-likelihood

based priority, where we expand the node with the lowest marginal likelihood. Both

of these priority schemes performed similarly; hence we report only the results for

breadth-first priority. We use multinomial resampling in our experiments. We also

evaluated systematic resampling (Douc et al., 2005) but found that the performance

was not significantly different.

We report the log predictive probability and accuracy on test data as a function

of runtime and of the number of particles. The times reported do not account for

prediction time. We average the numbers over 10 random initializations and report

standard deviations. The results for test log predictive probability and test accuracy

are shown in Figures 3.2 and 3.3 respectively. For concreteness, we analyze the trends

with respect to test predictive probability, however test accuracy exhibits similar trends.

In summary, we observe the following:

Node-wise expansion outperforms layer-wise expansion for prior proposal. The prior

proposal does not account for likelihood; one could think of the resampling steps as

2The scripts can be downloaded from http://www.gatsby.ucl.ac.uk/~balaji/treesmc/.
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‘correction steps’ for the sub-optimal decisions sampled from the prior proposal. Because

node-wise expansion can potentially resample at every stage, it can correct individual

bad decisions immediately, whereas layer-wise expansion cannot. In particular, we

have observed that layer-wise expansion tends to produce shallower trees compared

to node-wise expansion, leading to poorer performance. This phenomenon can be

explained as follows: as the depth of the node increases, the prior probability of stopping

increases whereas the posterior probability of stopping might be quite low. In node-wise

expansion, the resampling step can potentially retain the particles where the node

has not been stopped. However, in layer-wise expansion, too many nodes might have

stopped prematurely and the resampling step cannot ‘correct’ all these bad decisions

easily (i.e., it would require many more particles to sample trees where all the nodes

in a layer have not been stopped). Another interesting observation is that layer-wise

expansion exhibits higher variance: this can be explained by the fact that layer-wise

expansion samples a greater number of random variables (on average) than node-wise

before resampling, and so suffers for the same reason that importance sampling can

suffer from high variance. Note that both expansion strategies perform similarly for

the optimal proposal due to the fact that the proposal accounts for the likelihood and

resampling does not affect the results significantly. Due to its superior performance, we

consider only node-wise expansion in the rest of the chapter.

The plots on the right side of Figure 3.2 suggest that the optimal proposal requires

fewer particles than the prior proposal (as expected). However, the per-stage cost of

optimal proposal is much higher than the prior, leading to significant increase in the

overall runtime (see Section 3.3.2 for a related discussion). Hence, the prior proposal

offers a better predictive performance vs computation time tradeoff than the optimal

proposal.

The performance of optimal proposal saturates very quickly and is near-optimal even

when the number of particles is small (C = 10).

3.4.1.2 Effect of irrelevant features

In the next experiment, we test the effect of irrelevant features on the performance of

the various proposals. We use the madelon dataset3 for this experiment, in which the

data points belong to one of 2 classes and lie in a 500-dimensional space, out of which

only 20 dimensions are deemed relevant. The training dataset contains 2000 data points

and the test dataset contains 600 data points. We use the validation dataset in the UCI

ML repository as our test set because labels are not available for the test dataset.

The setup is identical to the previous section. The results are shown in Figure 3.4. Here,

the optimal proposal outperforms the prior proposal in both the columns, requiring

fewer particles as well as outperforming the prior proposal for a given computational

3http://archive.ics.uci.edu/ml/datasets/Madelon
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Figure 3.2: Results on pen-digits (top), and magic-04 (bottom). Left column plots test
log p(y|x) vs runtime, while right column plots test log p(y|x) vs number of particles. The blue
circles and red squares represent optimal and prior proposals respectively. The solid and dashed
lines represent node-wise and layer-wise proposals respectively.

budget. While this dataset is atypical (only 4% of the features are relevant), it illustrates

a potential vulnerability of the prior proposal to irrelevant features.

3.4.1.3 Effect of the number of islands

Averaging the results of several independent particle filters (aka islands) is a way to

reduce variance at the cost of bias, compared with running a single, larger filter. In

the asymptotic regime, this would not make sense, but as we will see, performance is

improved with multiple islands, suggesting we are not yet in the asymptotic regime. In

this experiment, we evaluate the effect of the number of islands on the test performance

of the prior proposal. We fix the total number of particles to 2000 and vary I, the

number of islands (and hence, the number of particles per island). The results on

pen-digits and magic-04 datasets are shown in Figure 3.5. We observe that (i) the

test performance drops sharply if we use fewer than 100 particles per island and (ii)

when C/I ≥ 100, the choices of I ∈ [5, 100] outperform I = 1. Since the islands are

independent, the computation across islands is embarrassingly parallelizable. The island

approach also bears similarities to random forests (Breiman, 2001), where multiple

randomized trees are averaged to reduce variance. However, note that all the islands

operate on the entire dataset unlike random forests, where each tree is trained on a

bootstrap sample of the original dataset. Averaging over multiple islands also improves

robustness to model misspecification; see Section 3.4.2 for a related discussion.
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Figure 3.3: Results on pen-digits (top), and magic-04 (bottom). Left column plots test
accuracy vs runtime, while right column plots test accuracy vs number of particles. The blue
circles and red squares represent optimal and prior proposals respectively. The solid and dashed
lines represent node-wise and layer-wise proposals respectively.
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Figure 3.5: Results on pen-digits dataset (top row) and magic-04 dataset (bottom row): Test
log p(y|x) (left) and accuracy (right) vs I and C/I for fixed C = 2000.
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Figure 3.4: Results on madelon dataset: The top and bottom rows display log p(y|x) and
accuracy on the test data against runtime (left) and the number of particles (right) respectively.
The blue circles and red squares represent optimal and prior proposals respectively.

3.4.2 SMC vs MCMC

In this experiment, we compare the SMC algorithms to the MCMC algorithm proposed

by Chipman et al. (1998), which employs four types of Metropolis-Hastings proposals:

grow (split a leaf node into child nodes), prune (prune a pair of leaf nodes belonging

to the same parent), change (change the decision rule at a node) and swap (swap the

decision rule of a parent with the decision rule of the child). In our experiments, we

average the MCMC predictions over the trees from all previous iterations.

The experimental setup is identical to Section 3.4.1, except that we fix the number

of islands, I = 5. We vary the number of particles for SMC4 and the number of

iterations for MCMC and plot the log predictive probability and accuracy on the test

data as a function of runtime. In Figure 3.6, we observe that SMC (prior, node-wise) is

roughly two orders of magnitude faster than MCMC while achieving similar predictive

performance on pen-digits and magic-04 datasets. Although the exact speedup factor

depends on the dataset in general, we have observed that SMC (prior, node-wise)

is at least an order of magnitude faster than MCMC. The SMC runtimes in

Figure 3.6 are recorded by running the I islands in a serial fashion. As discussed in

Section 3.4.1.3, one could parallelize the computation leading to an additional speedup

by a factor of I.

4We fix I = 5 so that the minimum value of C (= 100) corresponds to C/I = 20 particles per island.
Further improvements could be obtained by ‘adapting’ I to C as discussed in Section 3.4.1.3.
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Figure 3.6: Results on pen-digits (top row), and magic-04 (bottom row). Left column plots
test log p(y|x) vs runtime, while right column plots test accuracy vs runtime. The blue cirlces,
red squares and black diamonds represent optimal, prior proposals and MCMC respectively.

In the pen-digits dataset, the performance of prior proposal seems to drop as we increase

C beyond 2000. However, we observed that the marginal likelihood on the training

data increases with C. The log marginal likelihood of the training data for different

proposals is shown in Figure 3.7. As the number of particles increases, the log marginal

likelihood of prior and optimal proposals converge to the same value (as expected). We

believe that the deteriorating performance is due to model misspecification (axis-aligned

decision trees are hardly the ‘right’ model for handwritten digits) rather than the

inference algorithm itself: ‘better’ Bayesian inference in a misspecified model might lead

to a poorer solution (see (Minka, 2000) for a related discussion).
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Figure 3.7: Results on pen-digits (left), and magic-04 (right). Mean log marginal likelihood
(i.e., mean log p(Y |X) for training data averaged across 10 runs) vs number of particles. The
blue circles and red squares represent optimal and prior proposals respectively.
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3.4.3 Sensitivity of results to choice of hyperparameters

In this experiment, we evaluate the sensitivity of the runtime vs predictive performance

comparison between SMC (prior and optimal proposals), MCMC and CART to the

choice of hyper parameters α (Dirichlet concentration parameter) and αs, βs (tree priors).

We consider only node-wise expansion since it consistently outperformed layer-wise

expansion in our previous experiments. In the first variant, we fix α = 5.0 (since we

do not expect it to affect the timing results) and vary the hyper parameters from

αs = 0.95, βs = 0.5 to αs = 0.8, βs = 0.2 (bold reflects changes) and also consider

intermediate configurations αs = 0.95,βs = 0.2 and αs = 0.8, βs = 0.5. In the second

variant, we fix αs = 0.95, βs = 0.5 and set α = 1.0. Figures 3.8, 3.9, 3.10 and 3.11

display the results on pen-digits (top row), and magic-04 (bottom row). The left column

plots test log p(y|x) vs runtime, while the right column plots test accuracy vs runtime.

The blue circles and red squares represent optimal and prior proposals respectively.

Comparing the results to Figure 3.6, we observe that the trends are qualitatively similar

to those observed for α = 5.0, αs = 0.95, βs = 0.5 in Section 3.4.2: (i) SMC consistently

offers a better runtime vs predictive performance tradeoff than MCMC, (ii) the prior

proposal offers a better runtime vs predictive performance tradeoff than the optimal

proposal, (iii) α = 1.0 leads to similar test accuracies as α = 5.0 (the predictive

probabilities are obviously not comparable).
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Figure 3.8: Results for the following hyperparameters: α = 5.0,αs = 0.8, βs = 0.5

(see main text for additional information).
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Figure 3.9: Results for the following hyperparameters: α = 5.0, αs = 0.95,βs = 0.2

(see main text for additional information).
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Figure 3.10: Results for the following hyperparameters: α = 5.0,αs = 0.8, βs = 0.2

(see main text for additional information).
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Figure 3.11: Results for the following hyperparameters: α = 1.0, αs = 0.95, βs = 0.5

(see main text for additional information).

3.4.4 SMC vs other existing approaches

The goal of these experiments was to verify that our SMC approximation performed as

well as the “gold standard” MCMC algorithms most commonly used in the Bayesian

decision tree learning setting. Indeed, our results suggest that, for a fraction of the

computational budget, we can achieve a comparable level of accuracy. In this final

experiment, we re-affirm that the Bayesian algorithms are competitive in accuracy with

the classic CART algorithm. (There are many other comparisons that one could pursue

and other authors have already performed such comparisons. E.g., Taddy et al. (2011)

demonstrated that their tree structured models yield similar performance as Gaussian

processes and random forests.) We used the CART implementation provided by scikit-

learn (Pedregosa et al., 2011) with two criteria: gini purity and information gain and set

min samples leaf = 10 (minimum number of data points at a leaf node).5 In addition,

we performed Laplacian smoothing on the probability estimates from CART using

the same α as for the Bayesian methods. Our Python implementation of SMC takes

about 50× to 100× longer to achieve the same test accuracy as the highly-optimized

implementation of CART. For this reason, we plot CART accuracy as a horizontal bar.

The accuracy and log predictive probability on test data are shown in Figure 3.6. The

Bayesian decision tree frameworks achieve similar (or better) test accuracy to CART,

and outperform CART significantly in terms of the predictive likelihood. SMC delivers

5Lower values (min samples leaf = 1, 5) tend to yield slightly higher test accuracies (comparable to
SMC and MCMC) but much lower predictive probabilities.
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the benefits of having an approximation to the posterior, but in a fraction of the time

required by existing MCMC methods.

3.5 Discussion and Future work

We have proposed a novel class of Bayesian inference algorithms for decision trees,

based on the sequential Monte Carlo framework. The algorithms mimic classic top-

down algorithms for learning decision trees, but use “local” likelihoods along with

resampling steps to guide tree growth. We have shown good computational and

statistical performances, especially compared with a state-of-the-art MCMC inference

algorithm. Our algorithms are easier to implement than their MCMC counterparts,

whose efficient implementations require sophisticated book-keeping.

We have also explored various design choices leading to different SMC algorithms. We

have found that expanding too many nodes simultaneously degraded performance, and

more sophisticated ways of choosing nodes surprisingly did not improve performance.

Finally, while the one-step optimal proposal often required fewer particles to achieve

a given accuracy, it was significantly more computationally intensive than the prior

proposal, leading to a less efficient algorithm overall on datasets with few irrelevant

input dimensions. As the number of irrelevant dimensions increased the balance tipped

in favour of the optimal proposal. An interesting direction of exploration is to devise

some way to interpolate between the prior and optimal proposals, getting the best of

both worlds; for instance, one can choose a subset of input dimensions at random like

the prior proposal, then incorporate the local likelihoods for these dimensions like the

optimal proposal. Such an algorithm has a similar flavor as the bagging framework

exemplified by random forests. We have focused on posterior inference for a fixed set of

hyperparameters in this work. However, the SMC algorithm provides an estimate of

the marginal likelihood which can be used for learning the hyperparameters, e.g. via

Bayesian model selection.

The model underlying this work assumes that the data is explained by a single tree.

In contrast, many uses of decision trees, e.g., random forests, bagging, etc., can be

interpreted as working within a model class where the data is explained by a collection

of trees. Bayesian additive regression trees (BART) (Chipman et al., 2010) are such

a model class. Prior work has considered MCMC techniques for posterior inference

(Chipman et al., 2010). A significant but important extension of this work would be to

tackle additive combinations of trees; we discuss one such extension in Chapter 4.

Finally, in order to more closely match existing work in Bayesian decision trees, we

have used a prior over decision trees that depends on the input data X. This has the

undesirable side-effect of breaking exchangeability in the model, making it incoherent

with respect to changing dataset sizes and to working with online data streams. One
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solution is to use an alternative prior for decision trees, e.g., based on the Mondrian

process (Roy and Teh, 2009), whose projectivity would re-establish exchangeability while

allowing for efficient posterior computations that depend on data. Another interesting

direction would be to incorporate structured priors for the node parameters as opposed

to the independent prior for the leaf node parameters. It would be interesting to extend

the proposed SMC algorithm to decision trees with hierarchical priors for classification

(e.g. the hierarchy of normalized stable processes discussed in Chapter 5) and regression

(e.g. the prior proposed by Chipman and McCulloch (2000) or the hierarchical Gaussian

prior discussed in Chapter 6).
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Chapter 4

Particle Gibbs for Bayesian

additive regression trees

4.1 Introduction

Ensembles of regression trees are at the heart of many state-of-the-art approaches for

nonparametric regression (Caruana and Niculescu-Mizil, 2006), and can be broadly

classified into two families: randomized independent regression trees, wherein the trees

are grown independently and predictions are averaged to reduce variance, and additive

regression trees, wherein each tree fits the residual not explained by the remainder of

the trees. In the former category are bagged decision trees (Breiman, 1996), random

forests (Breiman, 2001), extremely randomized trees (Geurts et al., 2006), and many

others, while additive regression trees can be further categorized into those that are fit

in a serial fashion, like gradient boosted regression trees (Friedman, 2001), and those fit

in an iterative fashion, like Bayesian additive regression trees (BART) (Chipman et al.,

2010) and additive groves (Sorokina et al., 2007).

Among additive approaches, BART is extremely popular and has been successfully

applied to a wide variety of problems including protein-DNA binding, credit risk

modeling, automatic phishing/spam detection, and drug discovery (Chipman et al.,

2010). Additive regression trees must be regularized to avoid overfitting (Friedman,

2002): in BART, over-fitting is controlled by a prior distribution preferring simpler tree

structures and non-extreme predictions at leaves. The posterior distribution underlying

BART delivers a variety of inferential quantities beyond predictions, including credible

intervals for those predictions as well as a measure of variable importance. At the same

time, BART has been shown to achieve predictive performance comparable to random

forests, boosted regression trees, support vector machines, and neural networks (Chipman

et al., 2010).

The standard inference algorithm for BART is an iterative Bayesian backfitting Markov
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Chain Monte Carlo (MCMC) algorithm (Hastie et al., 2000). In particular, the MCMC

algorithm introduced by Chipman et al. (2010) proposes local changes to individual trees.

This sampler can be computationally expensive for large datasets, and so recent work

on scaling BART to large datasets (Pratola et al., 2013) considers using only a subset of

the moves proposed by Chipman et al. (2010). However, this smaller collection of moves

has been observed to lead to poor mixing (Pratola, 2013) which in turn produces an

inaccurate approximation to the posterior distribution. While a poorly mixing Markov

chain might produce a reasonable prediction in terms of mean squared error, BART is

often used in scenarios where its users rely on posterior quantities, and so there is a need

for computationally efficient samplers that mix well across a range of hyper-parameter

settings.

In this work, we describe a novel sampler for BART based on (1) the Particle Gibbs

(PG) framework proposed by Andrieu et al. (2010) and (2) the top-down sequential

Monte Carlo algorithm for Bayesian decision trees proposed in Chapter 3. Loosely

speaking, PG is the particle version of the Gibbs sampler where proposals from the exact

conditional distributions are replaced by conditional versions of a sequential Monte

Carlo (SMC) algorithm. The complete sampler follows the Bayesian backfitting MCMC

framework for BART proposed by Chipman et al. (2010); the key difference is that trees

are sampled using PG instead of the local proposals used by Chipman et al. (2010). Our

sampler, which we refer to as PG-BART, approximately samples complete trees from

the conditional distribution over a tree fitting the residual. As the experiments bear

out, the PG-BART sampler explores the posterior distribution more efficiently than

samplers based on local moves. Of course, one could easily consider non-local moves in

a Metropolis–Hastings (MH) scheme by proposing complete trees from the tree prior,

however these moves would be rejected, leading to slow mixing, in high-dimensional

and large data settings. The PG-BART sampler succeeds not only because non-local

moves are considered, but because those non-local moves have high posterior probability.

Another advantage of the PG sampler is that it only requires one to be able to sample

from the prior and does not require evaluation of tree prior in the acceptance ratio

unlike (local) MH1—hence PG can be computationally efficient in situations where the

tree prior is expensive (or impossible) to compute, but relatively easier to sample from.

The chapter is organized as follows: in Section 4.2, we review the BART model; in

Section 4.3, we review the MCMC framework proposed by Chipman et al. (2010) and

describe the PG sampler in detail. In Section 4.4, we present experiments that compare

the PG sampler to existing samplers for BART.

1The tree prior term cancels out in the MH acceptance ratio if complete trees are sampled. However,
sampling complete trees from the tree prior would lead to very low acceptance rates as discussed earlier.
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4.2 Model and notation

In this section, we briefly review decision trees and the BART model. We refer the

reader to the paper of Chipman et al. (2010) for further details about the model. Our

notation closely follows their’s.

4.2.1 Problem setup

We assume that the training data consist of N i.i.d. samples X = {xn}Nn=1, where

xn ∈ RD, along with corresponding labels Y = {yn}Nn=1, where yn ∈ R. We focus only

on the regression task in this chapter, although the PG sampler can also be used for

classification by combining our ideas with the work of Chipman et al. (2010) and Zhang

and Härdle (2010).

4.2.2 Regression trees

We refer to Section 2.2 and Figure 2.1 for a review of decision trees and our notation.

A decision tree used for regression is referred to as a regression tree. In a regression

tree, each leaf node j ∈ leaves(T) is associated with a real-valued parameter µj ∈ R.

Let µ = {µj}j∈leaves(T) denote the collection of all parameters. Given a tree T and a

data point x, let leaf(x) be the unique leaf node j ∈ leaves(T) such that x ∈ Bj , and

let g( · ; T ,µ) be the response function associated with T and µ, given by

g(x; T ,µ) := µleaf(x). (4.1)

4.2.3 Likelihood specification for BART

BART is a sum-of-trees model, i.e., BART assumes that the label y for an input x is

generated by an additive combination of M regression trees. More precisely,

y =

M∑
m=1

g(x; Tm,µm) + e, (4.2)

where e ∼ N (0, σ2) is an independent Gaussian noise term with zero mean and variance

σ2. Hence, the likelihood for a training instance is

`(y|{Tm,µm}Mm=1, σ
2,x) = N

(
y|

M∑
m=1

g(x; Tm,µm), σ2
)
,

and the likelihood for the entire training dataset is

`(Y |{Tm,µm}Mm=1, σ
2,X) =

∏
n

`(yn|{Tm,µm}Mm=1, σ
2,xn).
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4.2.4 Prior specification for BART

The parameters of the BART model are the noise variance σ2 and the regression trees

(Tm,µm) for m = 1, . . . ,M . The conditional independencies in the prior are captured

by the factorization

p({Tm,µm}Mm=1, σ
2|X) = p(σ2)

M∏
m=1

p(µm|Tm)p(Tm|X).

The prior over decision trees p(Tm = {Tm, δm, ξm}|X) can be described by the following

generative process (Chipman et al., 2010; Lakshminarayanan et al., 2013): Starting

with a tree comprised only of a root node ε, the tree is grown by deciding once for every

node j whether to 1) stop and make j a leaf, or 2) split, making j an internal node, and

add j0 and j1 as children. The same stop/split decision is made for the children, and

their children, and so on. Let ρj be a binary indicator variable for the event that j is

split. Then every node j is split independently with probability

p(ρj = 1) =
αs

(1 + depth(j))βs
1[valid split exists below j in X], (4.3)

where the indicator 1[...] forces the probability to be zero when every possible split of

j is invalid, i.e., one of the children nodes contains no training data.2 Informally, the

hyperparameters αs ∈ (0, 1) and βs ∈ [0,∞) control the depth and number of nodes

in the tree. Higher values of αs lead to deeper trees while higher values of βs lead to

shallower trees.

In the event that a node j is split, the dimension δj and location ξj of the split are

assumed to be drawn independently from a uniform distribution over the set of all valid

splits of j. The decision tree prior is thus

p(T |X) =
∏

j∈T\leaves(T)

p(ρj = 1)U(δj)U(ξj |δj)
∏

j∈leaves(T)

p(ρj = 0), (4.4)

where U(·) denotes the probability mass function of the uniform distribution over

dimensions that contain at least one valid split, and U(·|δj) denotes the probability

density function of the uniform distribution over valid split locations along dimension

δj in block Bj .

Given a decision tree T , the parameters associated with its leaves are independent and

identically distributed normal random variables, and so

p(µ|T ) =
∏

j∈leaves(T)

N (µj |mµ, σ
2
µ). (4.5)

2Note that p(ρj = 1) depends on X and the split dimensions and locations at the ancestors of j in
T due to the indicator function for valid splits. We elide this dependence to keep the notation simple.
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The mean mµ and variance σ2
µ hyperparameters are set indirectly: Chipman et al. (2010)

shift and rescale the labels Y such that ymin = −0.5 and ymax = 0.5, and set mµ = 0

and σµ = 0.5/k
√
M , where k > 0 is an hyperparameter. This adjustment has the effect

of keeping individual node parameters µj small; the higher the values of k and M , the

greater the shrinkage towards the mean mµ.

The prior p(σ2) over the noise variance is an inverse gamma distribution. The hyperpa-

rameters ν and q indirectly control the shape and rate of the inverse gamma prior over

σ2. Chipman et al. (2010) compute an overestimate of the noise variance σ̂2, e.g., using

the least-squares variance or the unconditional variance of Y , and, for a given shape

parameter ν, set the rate such that P(σ ≤ σ̂) = q, i.e., the qth quantile of the prior over

σ is located at σ̂.

Chipman et al. (2010) recommend the default values: ν = 3, q = 0.9, k = 2,M = 200

and αs = 0.95, βs = 2.0. Unless otherwise specified, we use this default hyperparameter

setting in our experiments.

In Section 3.2.3, we presented a sequential generative process for the tree prior p(T |X),

where a tree T is generated by starting from an empty tree T(0) and sampling a sequence

T(1), T(2), . . . of partial trees.3 We will leverage this sequential representation for our

PG sampler. We refer to Section 3.2.3 for the details and Figure 3.1 for a cartoon of

the sequential generative process. In Section 3.2.3, we discussed a more general version

where more than one node may be expanded in an iteration. Based on the experimental

results comparing different expansion strategies in Section 3.4.1, we restrict our attention

here to node-wise expansion: one node is expanded per iteration and the nodes are

expanded in a breadth-wise fashion.

Algorithm 4.1 Bayesian backfitting MCMC for posterior inference in BART

1: Inputs: Training data (X, Y ), BART hyperparameters (ν, q, k,M,αs, βs)

2: Initialization: For all m, set T (0)
m = {T(0)

m = {ε}, ξ(0)
m = δ

(0)
m = ∅} and sample µ

(0)
m

3: for i = 1 : max iter do
4: Sample σ2(i)|T (i−1)

1:M ,µ
(i−1)
1:M . sample from inverse gamma distribution

5: for m = 1 : M do
6: Compute residual R

(i)
m . using (4.7)

7: Sample T (i)
m |R(i)

m , σ2(i), T (i−1)
m . using CGM, GrowPrune or PG

8: Sample µ
(i)
m |R(i)

m , σ2(i), T (i)
m . sample from Gaussian distribution

4.3 Posterior inference for BART

In this section, we briefly review the MCMC framework proposed in (Chipman et al.,

2010), discuss limitations of existing samplers and then present our PG sampler.

3Note that T(t) denotes partial tree at stage t, whereas Tm denotes the mth tree in the ensemble.
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4.3.1 MCMC for BART

Given the likelihood and the prior, our goal is to compute the posterior distribution

p({Tm,µm}Mm=1, σ
2|Y,X) ∝ `(Y |{Tm,µm}Mm=1, σ

2,X) p({Tm,µm}Mm=1, σ
2|X). (4.6)

Chipman et al. (2010) proposed a Bayesian backfitting MCMC to sample from the BART

posterior. At a high level, the Bayesian backfitting MCMC is a Gibbs sampler that loops

through the trees, sampling each tree Tm and associated parameters µm conditioned on

σ2 and the remaining trees and their associated parameters {Tm′ ,µm′}m′ 6=m, and samples

σ2 conditioned on all the trees and parameters {Tm,µm}Mm=1. Let T (i)
m ,µ

(i)
m , and σ2(i)

respectively denote the values of Tm,µm and σ2 at the mth MCMC iteration. Sampling

σ2 conditioned on {Tm,µm}Mm=1 is straightforward due to conjugacy. To sample Tm,µm
conditioned on the other trees {Tm′ ,µm′}m′ 6=m, we first sample Tm|{Tm′ ,µm′}m′ 6=m, σ2

and then sample µm|Tm, {Tm′ ,µm′}m′ 6=m, σ2. (Note that µm is integrated out while

sampling Tm.) More precisely, we compute the residual

Rm = Y −∑M
m′=1,m′ 6=m g(X; Tm′ ,µm′). (4.7)

Using the residual R
(i)
m as the target, Chipman et al. (2010) sample T (i)

m by proposing

local changes to T (i−1)
m . Finally, µm is sampled from a Gaussian distribution conditioned

on Tm, {Tm′ ,µm′}m′ 6=m, σ2. The procedure is summarized in Algorithm 4.1.

4.3.2 Existing samplers for BART

To sample Tm, Chipman et al. (2010) use the MCMC algorithm proposed by Chipman

et al. (1998). This algorithm, which we refer to as CGM, is a Metropolis-within-Gibbs

sampler that randomly chooses one of the following four moves: grow (which randomly

chooses a leaf node and splits it further into left and right children), prune (which

randomly chooses an internal node where both the children are leaf nodes and prunes

the two leaf nodes, thereby making the internal node a leaf node), change (which

changes the decision rule at a randomly chosen internal node), swap (which swaps

the decision rules at a parent-child pair where both the parent and child are internal

nodes). There are two issues with the CGM sampler: (1) the CGM sampler makes local

changes to the tree, which is known to affect mixing when computing the posterior over

a single decision tree (Wu et al., 2007). Chipman et al. (2010) claim that the default

hyper-parameter values encourage shallower trees and hence mixing is not affected

significantly. However, if one wishes to use BART on large datasets where individual

trees are likely to be deeper, the CGM sampler might suffer from mixing issues. (2)

The change and swap moves in CGM sampler are computationally expensive for large

datasets that involve deep trees (since they involve re-computation of all likelihoods

in the subtree below the top-most node affected by the proposal). For computational
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efficiency, Pratola et al. (2013) propose using only the grow and prune moves; we

will call this the GrowPrune sampler. However, as we illustrate in Section 4.4, the

GrowPrune sampler can inefficiently explore the posterior in scenarios where there are

multiple possible trees that explain the observations equally well. In the next section,

we present a novel sampler that addresses both of these concerns.

4.3.3 PG sampler for BART

Recall that Chipman et al. (2010) sample T (i)
m using R

(i)
m as the target by proposing

local changes to T (i−1)
m . It is natural to ask if it is possible to sample a complete tree

T (i)
m rather than just local changes. Indeed, this is possible by marrying the sequential

representation of the tree proposed in Chapter 3 with the Particle Markov Chain

Monte Carlo (PMCMC) framework (Andrieu et al., 2010) where an SMC algorithm

(particle filter) is used as a high-dimensional proposal for MCMC. The PG sampler is

implemented using the so-called conditional SMC algorithm (instead of the Metropolis-

Hastings samplers described in Section 4.3.2) in line 7 of Algorithm 4.1. At a high level,

the conditional SMC algorithm is similar to the SMC algorithm proposed in Chapter 3,

except that one of the particles is clamped to the current tree T (i−1)
m .

Before describing the PG sampler, we derive the conditional posterior

Tm|{Tm′ ,µm′}m′ 6=m, σ2, Y,X. Let Nj denote the set of data point indices n ∈ {1, . . . , N}
such that xn ∈ Bj . Slightly abusing the notation, let RNj denote the vector containing

residuals of data points in node j. Given R := Y −∑m′ 6=m g(X; Tm′ ,µm′), it is easy to

see that the conditional posterior over Tm,µm is given by

p(Tm,µm|{Tm′ ,µm′}m′ 6=m, σ2, Y,X) ∝ p(Tm|X)
∏

j∈leaves(Tm)

∏
n∈Nj

N (Rn|µj , σ2)N (µj |mµ, σ
2
µ).

Let π(Tm) denote the conditional posterior over Tm. Integrating out µ and using (4.4)

for p(Tm|X), the conditional posterior π(Tm) is

π(Tm) = p(Tm|{Tm′ ,µm′}m′ 6=m, σ2, Y,X) ∝ p(Tm|X)
∏

j∈leaves(Tm)

p(RNj |σ2,mµ, σ
2
µ),

(4.8)

where p(RNj |σ2,mµ, σ
2
µ) denotes the marginal likelihood at a node j, given by

p(RNj |σ2,mµ, σ
2
µ) =

∫
µj

∏
n∈Nj

N (Rn|µj , σ2)N (µj |mµ, σ
2
µ)dµj . (4.9)

The goal is to sample from the (conditional) posterior distribution π(Tm). In Chapter 3,

we presented a top-down particle filtering algorithm that approximates the posterior

over decision trees. Since this SMC algorithm can sample complete trees, it is tempting
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to substitute an exact sample from π(Tm) with an approximate sample from the particle

filter. However, Andrieu et al. (2010) observed that this naive approximation does not

leave the joint posterior distribution (4.6) invariant, and so they proposed instead to

generate a sample using a modified version of the SMC algorithm, which they called

the conditional-SMC algorithm, and demonstrated that this leaves the joint distribution

(4.6) invariant. (We refer the reader to the paper by Andrieu et al. (2010) for further

details about the PMCMC framework.) By building off the top-down particle filter for

decision trees, we can define a conditional-SMC algorithm for sampling from π(Tm).

The conditional-SMC algorithm is an MH kernel with π(Tm) as its stationary distribution.

To reduce clutter, let T ∗ denote the old tree and T denote the tree we wish to sample.

The conditional-SMC algorithm samples T from a C-particle approximation of π(T ),

which can be written as
∑C

c=1w(c)δT (c) where T (c) denotes the cth tree (particle) and

the weights sum to 1, that is,
∑

cw(c) = 1.

SMC proposal: Each particle T (c) is the end product of a sequence of partial trees

T(0)(c), T(1)(c), T(2)(c), . . . , and the weight w(c) reflects how well the cth tree explains

the residual R. One of the particles, say the first particle, without loss of generality, is

clamped to the old tree T ∗ at all stages of the particle filter, i.e., T(t)(1) = T ∗(t). At stage

t, the remaining C − 1 particles are sampled from the sequential generative process

Pt(· | T(t−1)(c)) described in Section 3.2.3. Unlike state space models where the length

of the latent state sequence is fixed, the sampled decision tree sequences may be of

different length and could potentially be deeper than the old tree T ∗. Hence, whenever

E(t) = ∅, we set P(t)(T(t)|T(t−1)) = δT(t−1)
, i.e., T(t) = T(t−1).

SMC weight update: Since the prior is used as the proposal, the particle weight

w(t)(c) is multiplicatively updated with the ratio of the marginal likelihood of T(t)(c) to

the marginal likelihood of T(t−1)(c). The marginal likelihood associated with a (partial)

tree T is a product of the marginal likelihoods associated with the leaf nodes of T
defined in (4.9). As in Chapter 3, we treat the eligible nodes E(t) as leaf nodes while

computing the marginal likelihood for a partial tree T(t). Plugging in (4.9), the SMC

weight update is given by (4.10) in Algorithm 4.2.

Resampling: The resampling step in the conditional-SMC algorithm is slightly different

from the typical SMC resampling step. Recall that the first particle is always clamped

to the old tree. The remaining C−1 particles are resampled such that the probability of

choosing particle c is proportional to its weight w(t)(c). We used multinomial resampling

in our experiments, although other resampling strategies are possible.

When none of the trees contain eligible nodes, the conditional-SMC algorithm stops and

returns a sample from the particle approximation. Without loss of generality, we assume

that the Cth particle is returned. The PG sampler is summarized in Algorithm 4.2.

The computational complexity of the conditional-SMC algorithm in Algorithm 4.2

is similar to that of the top-down particle filtering algorithm in Section 3.3.2. Even
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though the PG sampler has a higher per-iteration complexity in general compared to

GrowPrune and CGM samplers, it can mix faster since it can propose a completely

different tree that explains the data. The GrowPrune sampler requires many iterations

to explore multiple modes (since a prune operation is likely to be rejected around a

mode). The CGM sampler can change the decisions at internal nodes; however, it is

inefficient since a change in an internal node that leaves any of the nodes in the subtree

below empty will be rejected. We demonstrate the competitive performance of PG in

the experimental section.

Algorithm 4.2 Conditional-SMC algorithm used in the PG-BART sampler

1: Inputs: Training data: features X, ‘target’ R . R denotes residual in BART
2: Number of particles C
3: Old tree T ∗ (along with the partial tree sequence T ∗(0), T ∗(1), T ∗(2), . . . )

4: Initialize: (∀c), set T(0)(c) = E(0)(c) = {ε} and ξ(0)(c) = δ(0)(c) = ∅
5: (∀c), set weights w(0)(c) = p(RNε |σ2,mµ, σ

2
µ) and W(0) =

∑
cw(0)(c)

6: for t = 1 : max-stages do
7: Set T(t)(1) = T ∗(t) . clamp the first particle to the partial tree of T ∗ at stage t
8: for c = 2 : C do
9: Sample T(t)(c) from P(t)(· | T(t−1)(c)) where

10: T(t)(c) := (T(t)(c), δ(t)(c), ξ(t)(c), E(t)(c)) . section 3.2.3

11: for c = 1 : C do
12: . If E(t−1)(c) is non-empty, let j denote the node popped from E(t−1)(c).

13: Update weights:

w(t)(c) =


w(t−1)(c) if E(t−1)(c) is empty or j is stopped,

w(t−1)(c)

∏
j′=j0,j1 p(RNj′ |σ2,mµ, σ

2
µ)

p(RNj |σ2,mµ, σ2
µ)

if j is split.
(4.10)

14: Compute normalization: W(t) =
∑

cw(t)(c)
15: Normalize weights: (∀c)w(t)(c) = w(t)(c)/W(t)

16: Set a1 = 1 and for c = 2 : C, resample indices ac from
∑

c′ w(t)(c
′)δc′ . resample

all particles except the first
17: (∀c) T(t)(c)← T(t)(ac); w(t)(c)←W(t)/C
18: if (∀c)E(t)(c) = ∅ then exit for loop

return T(t)(C) = (T(t)(C), δ(t)(C), ξ(t)(C)) . return a sample from the
approximation

∑
c′ w(t)(c

′)δT(t)(c′) to line 7 of Algorithm 4.1

4.4 Experimental evaluation

In this section, we present experimental comparisons between the PG sampler and

existing samplers for BART. Since the main contribution of this work is a different

inference algorithm for an existing model, we just compare the efficiency of the inference

algorithms and do not compare to other models. BART has been shown to demon-

strate excellent prediction performance compared to other popular black-box non-linear
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regression approaches; we refer the interested reader to Chipman et al. (2010).

We implemented all the samplers in Python and ran experiments on the same desktop

machine so that the timing results are comparable. The scripts can be downloaded

from the authors’ webpages.4 We set the number of particles C = 10 for computational

efficiency5 and max-stages = 5000, following Chapter 3, although the algorithm always

terminated much earlier.

4.4.1 Hypercube-D dataset

We investigate the performance of the samplers on a dataset where there are multiple

trees that explain the residual (conditioned on other trees). This problem is equivalent

to posterior inference over a decision tree where the labels are equal to the residual.

Hence, we generate a synthetic dataset where multiple trees are consistent with the

observed labels. Intuitively, a local sampler can be expected to mix reasonably well

when the true posterior consists of shallow trees; however, a local sampler will lead to

an inefficient exploration when the posterior consists of deep trees. Since the depth

of trees in the true posterior is at the heart of the mixing issue, we create synthetic

datasets where the depth of trees in the true posterior can be controlled.

We generate the hypercube-D dataset as follows: for each of the 2D vertices of [−1, 1]D,

we sample 10 data points. The x location of a data point is generated as x = v + ε

where v is the vertex location and ε is a random offset generated as ε ∼ N (0, 0.12ID).

Each vertex is associated with a different function value and the function values are

generated from N (0, 32). Finally the observed label is generated as y = f + e where

f denotes the true function value at the vertex and e ∼ N (0, 0.012). Figure 4.1 shows

a sample hypercube-2 dataset. As D increases, the number of trees that explains the

observations increases.

We fix M = 1, αs = 0.95 and set remaining BART hyperparameters to the default values.

Since the true tree has 2D leaves, we set6 βs such that the expected number of leaves is

roughly 2D. We run 2000 iterations of MCMC. Figures 4.2, 4.3 and 4.4 illustrates the

posterior trace plots for D = 2, D = 3 and D = 4 respectively. We observe that PG

converges much faster to the posterior in terms of number of leaves as well as the test

MSE. We observe that GrowPrune sampler tends to overestimate the number of leaves;

the low value of train MSE indicates that the GrowPrune sampler is stuck close to a

mode and is unable to explore the true posterior. Pratola (2013) has reported similar

behavior of GrowPrune sampler on a different dataset as well.

4http://www.gatsby.ucl.ac.uk/~balaji/pgbart/
5Higher values of C increase the computational complexity significantly, while lower values of C lead

to poor mixing. We found C = 10 to achieve a good tradeoff in our initial experiments and hence fixed
C = 10 for all of the experiments.

6The values of βs for D = 2, 3, 4, 5 and 7 are 1.0, 0.5, 0.4, 0.3 and 0.25 respectively.
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Figure 4.1: Hypercube-2 dataset: see main text for details.

4.4.2 Results on hypercube−D dataset
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Figure 4.2: Results on Hypercube-2 dataset.

We compare the algorithms by computing effective sample size (ESS). ESS is a measure

of how well the chain mixes and is frequently used to assess performance of MCMC

algorithms; we compute ESS using R-CODA (Plummer et al., 2006). We discard the

first 1000 iterations as burn-in and use the remaining 1000 iterations to compute ESS

(on the log-likelihood). Since the per iteration cost of generating a sample differs

across samplers, we additionally report ESS per unit time. The ESS (computed using

log-likelihood values) and ESS per second (ESS/s) values are shown in Tables 4.1 and
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Figure 4.3: Results on Hypercube-3 dataset.
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Figure 4.4: Results on Hypercube-4 dataset.

4.2 respectively. When the true tree is shallow (D = 2 and D = 3), we observe that

CGM sampler mixes well and is computationally efficient. However, as the depth of the

true tree increases (D = 4, 5, 7), PG achieves much higher ESS and ESS/s compared to

CGM and GrowPrune samplers.
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D CGM GrowPrune PG

2 751.66 473.57 259.11
3 762.96 285.2 666.71
4 14.01 11.76 686.79
5 2.92 1.35 667.27
7 1.16 1.78 422.96

Table 4.1: Comparison of ESS for CGM, GrowPrune and PG samplers on Hypercube-D
dataset.

D CGM GrowPrune PG

2 157.67 114.81 7.69
3 93.01 26.94 11.025
4 0.961 0.569 5.394
5 0.130 0.071 1.673
7 0.027 0.039 0.273

Table 4.2: Comparison of ESS/s (ESS per second) for CGM, GrowPrune and PG samplers on
Hypercube-D dataset.

4.4.3 Real world datasets

In this experiment, we study the effect of the data dimensionality on mixing. Even

when the trees are shallow, the number of trees consistent with the labels increases

as the data dimensionality increases. Using the default BART prior (which promotes

shallower trees), we compare the performance of the samplers on real world datasets of

varying dimensionality.

We consider the CaliforniaHouses, YearPredictionMSD and CTslices datasets used by

Johnson and Zhang (2013). For each dataset, there are three training sets, each of

which contains 2000 data points, and a single test set. The dataset characteristics are

summarized in Table 4.3.

Dataset Ntrain Ntest D

CaliforniaHouses 2000 5000 6
YearPredictionMSD 2000 51630 90

CTslices 2000 24564 384

Table 4.3: Characteristics of datasets.

We run each sampler using the three training datasets and report average ESS and

ESS/s. All three samplers achieve very similar MSE to those reported by Johnson and

Zhang (2013). The average number of leaves in the posterior trees was found to be

small and very similar for all the samplers. Tables 4.4 and 4.5 respectively present

results comparing ESS and ESS/s of the different samplers. As the data dimensionality

increases, we observe that PG outperforms existing samplers.
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Dataset CGM GrowPrune PG

CaliforniaHouses 18.956 34.849 76.819
YearPredictionMSD 29.215 21.656 76.766

CTslices 2.511 5.025 11.838

Table 4.4: Comparison of ESS for CGM, GrowPrune and PG samplers on real world datasets.

Dataset CGM GrowPrune PG
×10−3 ×10−3 ×10−3

CaliforniaHouses 1.967 48.799 16.743
YearPredictionMSD 2.018 7.029 14.070

CTslices 0.080 0.615 2.115

Table 4.5: Comparison of ESS/s for CGM, GrowPrune and PG samplers on real world datasets.

4.5 Discussion

We have presented a novel PG sampler for BART. Unlike existing samplers which make

local moves, PG can propose complete trees. Experimental results confirm that PG

dramatically increases mixing when the true posterior consists of deep trees or when

the data dimensionality is high. We have shown the benefits of improved mixing in

terms of effective sample size; a promising direction would be use the PG sampler in

problems such as variable selection (Bleich et al., 2014), where better mixing would lead

to more reliable variable importance measures. While we have presented PG only for

the BART model, it is applicable to extensions of BART that use a different likelihood

model as well. PG can also be used along with other priors for decision trees, e.g.,

those of Denison et al. (1998), Wu et al. (2007) and Lakshminarayanan et al. (2014).

Backward simulation (Lindsten and Schön, 2013) and ancestral sampling (Lindsten

et al., 2012) have been shown to significantly improve mixing of PG for state-space

models. Extending these ideas to PG-BART is a challenging and interesting future

direction.
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Chapter 5

Mondrian forests for classification

5.1 Introduction

Despite being introduced over a decade ago by Breiman (2001), random forests remain

one of the most popular machine learning tools due in part to their accuracy, scalability,

and robustness in real-world classification tasks (Caruana and Niculescu-Mizil, 2006).

(We refer to (Criminisi et al., 2012) for an excellent survey of random forests.) In this

chapter, we introduce a novel class of random forests—called Mondrian forests (MF),

due to the fact that the underlying tree structure of each classifier in the ensemble is a

so-called Mondrian process. Using the properties of Mondrian processes, we present an

efficient online algorithm that agrees with its batch counterpart at each iteration. Not

only are online Mondrian forests faster and more accurate than recent proposals for

online random forest methods, but they nearly match the accuracy of state-of-the-art

batch random forest methods trained on the same dataset.

The chapter is organized as follows: In Section 5.2, we describe our approach at a

high-level, and in Sections 5.3, 5.4, and 5.5, we describe the tree structures, label

model, and incremental updates/predictions in more detail. We discuss related work in

Section 5.6, demonstrate the excellent empirical performance of MF in Section 5.7, and

conclude in Section 5.8 with a discussion about future work.

5.2 Approach

Given N labeled examples (x1, y1), . . . , (xN , yN ) ∈ X × Y as training data, our task is

to predict labels y ∈ Y for unlabeled test points x ∈ X . We will focus on multi-class

classification where Y := {1, . . . ,K}, however, it is possible to extend the methodology

to other supervised learning tasks such as regression. Let X1:n := (x1, . . . ,xn), Y1:n :=

(y1, . . . , yn), and D1:n := (X1:n, Y1:n).
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A Mondrian forest classifier is constructed much like a random forest: Given training

data D1:N , we sample an independent collection T1, . . . , TM of so-called Mondrian trees,

which we will describe in the next section. The prediction made by each Mondrian

tree Tm is a distribution pTm(y|x,D1:N ) over the class label y for a test point x. The

prediction made by the Mondrian forest is the average 1
M

∑M
m=1 pTm(y|x,D1:N ) of the

individual tree predictions. As M →∞, the average converges at the standard rate to

the expectation ET ∼MT(λ,D1:N )[ pT (y|x,D1:N )], where MT (λ,D1:N ) is the distribution

of a Mondrian tree. As the limiting expectation does not depend on M , we would not

expect to see overfitting behavior as M increases. A similar observation was made by

Breiman in his seminal article (Breiman, 2001) introducing random forests. Note that

the averaging procedure above is ensemble model combination and not Bayesian model

averaging.

In the online learning setting, the training examples are presented one after another

in a sequence of trials. Mondrian forests excel in this setting: at iteration N + 1, each

Mondrian tree T ∼ MT (λ,D1:N ) is updated to incorporate the next labeled example

(xN+1, yN+1) by sampling an extended tree T ′ from a distribution MTx(λ, T ,DN+1).

Using properties of the Mondrian process, we can choose a probability distribution MTx

such that T ′ = T on D1:N and T ′ is distributed according to MT (λ,D1:N+1), i.e.,

T ∼ MT (λ,D1:N )

T ′ | T ,D1:N+1 ∼ MTx(λ, T ,DN+1)
implies T ′ ∼ MT (λ,D1:N+1) . (5.1)

Therefore, the distribution of Mondrian trees trained on a dataset in an incremental

fashion is the same as that of Mondrian trees trained on the same dataset in a batch

fashion, irrespective of the order in which the data points are observed. To the best of

our knowledge, none of the existing online random forests have this property. Moreover,

we can sample from MTx(λ, T ,DN+1) efficiently: the complexity scales with the depth

of the tree, which is typically logarithmic1 in N .

While treating the online setting as a sequence of larger and larger batch problems is

normally computationally prohibitive, this approach can be achieved efficiently with

Mondrian forests. In the following sections, we define the Mondrian tree distribu-

tion MT (λ,D1:N ), the label distribution pT (y|x,D1:N ), and the update distribution

MTx(λ, T ,DN+1).

5.3 Mondrian trees

We refer to Section 2.2 and Figure 2.1 for a review of decision trees and our notation.

1See Section 5.7.2 for empirical tree depth results.
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5.3.1 Mondrian process distribution over decision trees

Mondrian processes, introduced by Roy and Teh (2009), are families {Mt : t ∈ [0,∞)}
of random, hierarchical binary partitions of X such that Mt is a refinement of Ms

whenever t > s.2 Mondrian processes are natural candidates for the partition structure

of random decision trees, but Mondrian processes on X are, in general, infinite structures

that we cannot represent all at once. Because we only care about the partition on a

finite set of observed data, we introduce Mondrian trees, which are restrictions of

Mondrian processes to a finite set of points. A Mondrian tree T can be represented by

a tuple (T, δ, ξ, τ ), where (T, δ, ξ) is a decision tree and τ = {τj}j∈T associates a time

of split τj ≥ 0 with each node j. Split times increase with depth, i.e., τj > τparent(j). We

abuse notation and define τparent(ε) = 0.

Given a non-negative lifetime parameter λ and training data D1:n, the generative

process for sampling Mondrian trees from MT (λ,D1:n) is described in the following two

algorithms:

Algorithm 5.1 SampleMondrianTree
(
λ,D1:n

)
1: Initialize: T = ∅, leaves(T) = ∅, δ = ∅, ξ = ∅, τ = ∅, Nε = {1, 2, . . . , n}
2: SampleMondrianBlock

(
ε,DNε , λ

)
. Algorithm 5.2

Algorithm 5.2 SampleMondrianBlock
(
j,DNj , λ

)
1: Add j to T
2: For all d, set `xjd = min(XNj ,d), u

x
jd = max(XNj ,d) . dimension-wise min and max

3: Sample E from exponential distribution with rate
∑

d(u
x
jd − `xjd)

4: if τparent(j) + E < λ then . j is an internal node
5: Set τj = τparent(j) + E
6: Sample split dimension δj , choosing d with probability proportional to uxjd − `xjd
7: Sample split location ξj uniformly from interval [`xjδj , u

x
jδj

]

8: Set Nleft(j) = {n ∈ Nj : Xn,δj ≤ ξj} and Nright(j) = {n ∈ Nj : Xn,δj > ξj}
9: SampleMondrianBlock

(
left(j),DNleft(j)

, λ
)

10: SampleMondrianBlock
(
right(j),DNright(j)

, λ
)

11: else . j is a leaf node
12: Set τj = λ and add j to leaves(T)

The procedure starts with the root node ε and recurses down the tree. In Algorithm 5.2,

we first compute the `xε and uxε i.e. the lower and upper bounds of Bx
ε , the smallest

rectangle enclosing XNε . We sample E from an exponential distribution whose rate

is the so-called linear dimension of Bx
ε , given by

∑
d(u

x
εd − `xεd). Since τparent(ε) = 0,

E + τparent(ε) = E. If E ≥ λ, the time of split is not within the lifetime λ; hence, we

assign ε to be a leaf node and the procedure halts. (Since E[E] = 1/
(∑

d(u
x
jd − `xjd)

)
,

2Roy and Teh (Roy and Teh, 2009) studied the distribution of {Mt : t ≤ λ} and referred to λ as the
budget. See (Roy, Chp. 5) for more details. We will refer to t as time, not be confused with discrete
time in the online learning setting.
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Figure 5.1: Example of a decision tree in [0, 1]2 where x1 and x2 denote horizontal and vertical
axis respectively: Figure 5.1(a) shows tree structure and partition of a decision tree, while
Figure 5.1(b) shows a Mondrian tree. Note that the Mondrian tree is embedded on a vertical
time axis, with each node associated with a time of split and the splits are committed only
within the range of the training data in each block (denoted by gray rectangles). Let j denote
the left child of the root: Bj = (0, 0.37]× (0, 1] denotes the block associated with red circles and
Bxj ⊆ Bj is the smallest rectangle enclosing the two data points.

bigger rectangles are less likely to be leaf nodes.) Else, ε is an internal node and

we sample a split (δε, ξε) from the uniform split distribution on Bx
ε . More precisely,

we first sample the dimension δε, taking the value d with probability proportional to

uxεd − `xεd, and then sample the split location ξε uniformly from the interval [`xεδε , u
x
εδε

].

The procedure then recurses along the left and right children.

Mondrian trees differ from standard decision trees (e.g. CART, C4.5) in the following

ways: (i) the splits are sampled independent of the labels YNj ; (ii) every node j is

associated with a split time denoted by τj ; (iii) the lifetime parameter λ controls the

total number of splits (similar to the maximum depth parameter for standard decision

trees); (iv) the split represented by an internal node j holds only within Bx
j and not the

whole of Bj . No commitment is made in Bj \Bx
j . Figure 5.1 illustrates the difference

between decision trees and Mondrian trees.

Consider the family of distributions MT (λ, F ), where F ranges over all possible finite

sets of data points. Due to the fact that these distributions are derived from that of

a Mondrian process on X restricted to a set F of points, the family MT (λ, ·) will be

projective. Intuitively, projectivity implies that the tree distributions possess a type

of self-consistency. In words, if we sample a Mondrian tree T from MT (λ, F ) and

then restrict the tree T to a subset F ′ ⊆ F of points, then the restricted tree T ′ has

distribution MT (λ, F ′). Most importantly, projectivity gives us a consistent way to

extend a Mondrian tree on a data set D1:N to a larger data set D1:N+1. We exploit this

property to incrementally grow a Mondrian tree: we instantiate the Mondrian tree on

the observed training data points; upon observing a new data point DN+1, we extend

the Mondrian tree by sampling from the conditional distribution of a Mondrian tree

on D1:N+1 given its restriction to D1:N , denoted by MTx(λ, T ,DN+1) in (5.1). Thus, a

Mondrian process on X is represented only where we have observed training data.
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5.4 Label distribution: model, hierarchical prior, and pre-

dictive posterior

So far, our discussion has been focused on the tree structure. In this section, we focus

on the predictive label distribution, pT (y|x,D1:N ), for a tree T = (T, δ, ξ, τ ), dataset

D1:N , and test point x. Let leaf(x) denote the unique leaf node j ∈ leaves(T) such that

x ∈ Bj . Intuitively, we want the predictive label distribution at x to be a smoothed

version of the empirical distribution of labels for points in Bleaf(x) and in Bj′ for nearby

nodes j′. We achieve this smoothing via a hierarchical Bayesian approach: every node

is associated with a label distribution, and a prior is chosen under which the label

distribution of a node is similar to that of its parent’s. The predictive pT (y|x,D1:N ) is

then obtained via marginalization.

As is common in the decision tree literature, we assume the labels within each block

are independent of X given the tree structure. For every j ∈ T, let Gj denote the

distribution of labels at node j, and let G = {Gj : j ∈ T} be the set of label distributions

at all the nodes in the tree. Given T and G, the predictive label distribution at x is

p(y|x, T ,G) = Gleaf(x), i.e., the label distribution at the node leaf(x). In this chapter,

we focus on the case of categorical labels taking values in the set {1, . . . ,K}, and so we

abuse notation and write Gj,k for the probability that a point in Bj is labeled k.

We model the collection Gj , for j ∈ T, as a hierarchy of normalized stable processes

(NSP) (Wood et al., 2009). A NSP prior is a distribution over distributions and is a

special case of the Pitman-Yor process (PYP) prior where the concentration parameter

is taken to zero (Pitman, 2006).3 The discount parameter d ∈ (0, 1) controls the

variation around the base distribution; if Gj ∼ NSP(d,H), then E[Gjk] = Hk and

Var[Gjk] = (1 − d)Hk(1 −Hk). We use a hierarchical NSP (HNSP) prior over Gj as

follows:

Gε|H ∼ NSP(dε, H), and Gj |Gparent(j) ∼ NSP(dj , Gparent(j)). (5.2)

This hierarchical prior was first proposed by Wood et al. (2009). Here we take the

base distribution H to be the uniform distribution over the K labels, and set dj =

exp
(
−γ(τj − τparent(j))

)
.

Given training data D1:N , the predictive distribution pT (y|x,D1:N ) is obtained by

integrating over G, i.e.,

pT (y|x,D1:N ) = EG∼pT (G|D1:N )[Gleaf(x),y] = Gleaf(x),y, (5.3)

3Taking the discount parameter to zero leads to a Dirichlet process . Hierarchies of NSPs admit
more tractable approximations than hierarchies of Dirichlet processes (Wood et al., 2009), hence our
choice here.
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where the posterior over the label distributions is given by

pT (G|D1:N ) ∝ pT (G)

N∏
n=1

Gleaf(xn),yn . (5.4)

Posterior inference in the HNSP, i.e., computation of the posterior means Gleaf(x), is a

special case of posterior inference in the hierarchical PYP (HPYP). In particular, Teh

(2006) considers the HPYP with multinomial likelihood (in the context of language

modeling). The model considered here is a special case of (Teh, 2006). Exact inference

is intractable and hence we resort to approximations. In particular, we use a fast

approximation known as the interpolated Kneser-Ney (IKN) smoothing (Teh, 2006), a

popular technique for smoothing probabilities in language modeling (Goodman, 2001).

The IKN approximation in (Teh, 2006) can be extended in a straightforward fashion to

the online setting, and the computational complexity of adding a new training instance

is linear in the depth of the tree. We present a detailed description of the posterior

updates below for the interested reader.

5.4.1 Detailed description of posterior inference using the HNSP

Recall that we use a hierarchical Bayesian approach to specify a smooth label distribution

pT (y|x,D1:N ) for each tree T . The label prediction at a test point x will depend on

where x falls relative to the existing data in the tree T . In this section, we assume that

x lies within one of the leaf nodes in T , i.e., x ∈ Bx
leaf(x), where leaf(x) ∈ leaves(T).

If x does not lie within any of the leaf nodes in T , i.e., x /∈ ∪j∈leaves(T)B
x
j , one could

extend the tree by sampling T ′ from MTx(λ, T ,x), such that x lies within a leaf node

in T ′ and apply the procedure described below using the extended tree T ′. Section 5.5.3

describes this case in more detail.

Given training data D1:N , a Mondrian tree T and the hierarchical prior over G, the

predictive label distribution pT (y|x,D1:N ) is obtained by integrating over G, i.e.

pT (y|x,D1:N ) = EG∼pT (G|D1:N )[Gleaf(x),y] = Gleaf(x),y.

Hence, the prediction is given by Gleaf(x), the posterior mean at leaf(x). The posterior

mean Gleaf(x) can be computed using existing techniques, which we review in the rest

of this section.

Posterior inference in the HNSP is a special case of posterior inference in hierarchical

PYP (HPYP). Teh (2006) considers the HPYP with multinomial likelihood (in the

context of language modeling)—the model considered here (HNSP with multinomial

likelihood) is a special case of (Teh, 2006). Hence, we just sketch the high level picture

and refer the reader to (Teh, 2006) for further details. We first describe posterior

inference given N data points D1:N (batch setting), and later explain how to adapt
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inference to the online setting. Finally, we describe the computation of the predictive

posterior distribution.

Batch setting

Posterior inference is done using the Chinese restaurant process representation, wherein

every node of the decision tree is a restaurant; the training data points are the customers

seated in the tables associated with the leaf node restaurants; these tables are in turn

customers at the tables in their corresponding parent level restaurant; the dish served

at each table is the class label. Exact inference is intractable and hence we resort to

approximations. In particular, we use the approximation known as the interpolated

Kneser-Ney (IKN) smoothing, a popular smoothing technique for language modeling

(Goodman, 2001). The IKN smoothing can be interpreted as an approximate inference

scheme for the HPYP, where the number of tables serving a particular dish in a restaurant

is at most one (Teh, 2006). More precisely, if cj,k denotes the number of customers

at restaurant j eating dish k and tabj,k denotes the number of tables at restaurant

j serving dish k, the IKN approximation sets tabj,k = min(cj,k, 1). The counts cj,k

and tabj,k can be computed in a single bottom-up pass as follows: for every leaf node

j ∈ leaves(T), cj,k is simply the number of training data points with label k at node j;

for every internal node j ∈ T \ leaves(T), we set cj,k = tableft(j),k + tabright(j),k. For a

leaf node j, this procedure is summarized in Algorithm 5.3. (Note that this pseudocode

just serves as a reference; in practice, these counts are updated in an online fashion, as

described in Algorithm 5.7.)

Algorithm 5.3 InitializePosteriorCounts(j)

1: For all k, set cjk = #{n ∈ Nj : yn = k}
2: Initialize j′ = j
3: while True do
4: if j′ /∈ leaves(T) then
5: For all k, set cj′k = tableft(j′),k + tabright(j′),k

6: For all k, set tabj′k = min(cj′k, 1) . IKN approximation
7: if j′ = ε then
8: return
9: else

10: j′ ← parent(j′)
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Predictive posterior computation

Given the counts cj,k and table assignments tabj,k, the predictive probability (i.e.,

posterior mean) at node j can be computed recursively as follows:

Gjk =


cj,k − djtabj,k

cj,·
+
djtabj,·
cj,·

Gparent(j),k cj,· > 0,

Gparent(j),k cj,· = 0,

(5.5)

where cj,· =
∑

k cj,k, tabj,· =
∑

k tabj,k, and dj := exp
(
−γ(τj−τparent(j))

)
is the discount

for node j, defined in Section 5.4. Informally, the discount interpolates between the

counts c and the prior. If the discount dj ≈ 1, then Gj is more like its parent Gparent(j).

If dj ≈ 0, then Gj weights the counts more. These predictive probabilities can be

computed in a single top-down pass as shown in Algorithm 5.4.

Algorithm 5.4 ComputePosteriorPredictiveDistribution
(
T ,G

)
1: . Description of top-down pass to compute posterior predictive distribution given by

(5.5)
2: . Gjk denotes the posterior probability of y = k at node j
3: Initialize the ordered set J = {ε}
4: while J not empty do
5: Pop the first element of J
6: if j = ε then
7: Gparent(ε) = H

8: Set d = exp
(
−γ(τj − τparent(j))

)
9: For all k, set Gjk = c−1

j,·
(
cj,k − d tabj,k + d tabj,· Gparent(j),k

)
10: if j /∈ leaves(T) then
11: Append left(j) and right(j) to the end of the ordered set J

5.5 Online training and prediction

In this section, we describe the family of distributions MTx(λ, T ,DN+1), which are

used to incrementally add a data point, DN+1, to a tree T . These updates are based on

the conditional Mondrian algorithm (Roy and Teh, 2009), specialized to a finite set of

points. In general, one or more of the following three operations may be executed while

introducing a new data point: (i) introduction of a new split ‘above’ an existing split,

(ii) extension of an existing split to the updated extent of the block and (iii) splitting

an existing leaf node into two children. To the best of our knowledge, existing online

decision trees use just the third operation, and the first two operations are unique to

Mondrian trees. The complete pseudo-code for incrementally updating a Mondrian tree

T with a new data point D according to MTx(λ, T ,D) is described in the following two

algorithms. Figure 5.2 walks through the algorithms on a toy dataset.
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Algorithm 5.5 ExtendMondrianTree(T , λ,D)

1: Input: Tree T = (T, δ, ξ, τ ), new training instance D = (x, y)
2: ExtendMondrianBlock(T , λ, ε,D) . Algorithm 5.6

Algorithm 5.6 ExtendMondrianBlock(T , λ, j,D)

1: Set e` = max(`xj − x, 0) and eu = max(x− uxj , 0) . e` = eu = 0D if x ∈ Bx
j

2: Sample E from exponential distribution with rate
∑

d(e
`
d + eud)

3: if τparent(j) + E < τj then . introduce new parent for node j

4: Sample split dimension δ, choosing d with probability proportional to e`d + eud
5: Sample split location ξ uniformly from interval [uxj,δ, xδ] if xδ > uxj,δ else [xδ, `

x
j,δ].

6: Insert a new node ̃ just above node j in the tree, and a new leaf j′′, sibling to j,
where δ̃ = δ, ξ̃ = ξ, τ̃ = τparent(j) + E, `x̃ = min(`xj ,x), ux̃ = max(uxj ,x)

7: j′′ = left(̃) iff xδ̃ ≤ ξ̃
8: SampleMondrianBlock

(
j′′,D, λ

)
9: else

10: Update `xj ← min(`xj ,x),uxj ← max(uxj ,x) . update extent of node j
11: if j /∈ leaves(T) then . return if j is a leaf node, else recurse down the tree
12: if xδj ≤ ξj then child(j) = left(j) else child(j) = right(j)
13: ExtendMondrianBlock(T , λ, child(j),D) . recurse on child containing D

5.5.1 Controlling Mondrian tree complexity

The most common strategies for controlling tree complexity in random forests are

controlling the maximum depth or controlling the number of data points required to

split a node. The Mondrian tree complexity parameter λ is analogous to depth, however

it does not allow us to control the total number of nodes in the tree. Hence it is not

straightforward to specify λ, especially in the online setting. Hence, in this chapter as

well as Chapter 6, we focus on controlling the minimum number of data points before a

node is split. For classification problems, we set min samples split = 2 following (Geurts

et al., 2006). In practice, random forest implementations also stop splitting a node

when all the labels are identical and assign it to be a leaf node. In the online learning

setting, the label distributions can change with time. To make our MF implementation

comparable4 with the corresponding batch RF version, we ‘pause’ a Mondrian block

when all the labels are identical; if a new training instance lies within Bj of a paused

leaf node j and has the same label as the rest of the data points in Bj , we continue

pausing the Mondrian block. We ‘un-pause’ the Mondrian block when there is more

than one unique label in that block. Algorithms 5.9 and 5.10 in section 5.5.4 discuss

versions of SampleMondrianBlock and ExtendMondrianBlock for paused Mondrians.

4Specifically, pausing provides computational speedup for MFs. Controlling tree complexity is
important to prevent over-fitting in Breiman-RF and ERT; MFs use hierarchical smoothing and hence
are less prone to over-fitting compared to Breiman-RF and ERT. However, pausing ensures that that
MF and ERT-1 contain comparable number of leaves.
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Figure 5.2: Online learning with Mondrian trees on a toy dataset: We assume that λ =
∞, D = 2 and add one data point at each iteration. For simplicity, we ignore class labels and
denote location of training data with red circles. Figures 2(a), 2(c) and 2(f) show the partitions
after the first, second and third iterations, respectively, with the intermediate figures denoting
intermediate steps. Figures 2(g), 2(h) and 2(i) show the trees after the first, second and third
iterations, along with a shared vertical time axis.

At iteration 1, we have two training data points, labeled as a, b. Figures 2(a) and 2(g) show
the partition and tree structure of the Mondrian tree. Note that even though there is a split
x2 > 0.23 at time t = 2.42, we commit this split only within Bxj (shown by the gray rectangle).

At iteration 2, a new data point c is added. Algorithm 5.5 starts with the root node
and recurses down the tree. Algorithm 5.6 checks if the new data point lies within Bxε by
computing the additional extent e` and eu. In this case, c does not lie within Bxε . Let Rab
and Rabc respectively denote the small gray rectangle (enclosing a, b) and big gray rectangle
(enclosing a, b, c) in Figure 2(b). While extending the Mondrian from Rab to Rabc, we could
either introduce a new split in Rabc outside Rab or extend the split in Rab to the new range. To
choose between these two options, we sample the time of this new split: we first sample E from
an exponential distribution whose rate is the sum of the additional extent, i.e.,

∑
d(e

`
d + eud),

and set the time of the new split to E + τparent(ε). If E + τparent(ε) ≤ τε, this new split in Rabc
can precede the old split in Rab and a split is sampled in Rabc outside Rab. In Figures 2(c) and
2(h), E + τparent(ε) = 1.01 + 0 ≤ 2.42, hence a new split x1 > 0.75 is introduced. The farther a

new data point x is from Bxj , the higher the rate
∑
d(e

`
d + eud), and subsequently the higher the

probability of a new split being introduced, since E[E] = 1/
(∑

d(e
`
d + eud)

)
. A new split in Rabc

is sampled such that it is consistent with the existing partition structure in Rab (i.e., the new
split cannot slice through Rab).

In the final iteration, we add data point d. In Figure 2(d), the data point d lies within the
extent of the root node, hence we traverse to the left side of the root and update Bxj of the
internal node containing {a, b} to include d. We could either introduce a new split or extend the
split x2 > 0.23. In Figure 2(e), we extend the split x2 > 0.23 to the new extent, and traverse to
the leaf node in Figure 2(h) containing b. In Figures 2(f) and 2(i), we sample E = 1.55 and
since τparent(j) + E = 2.42 + 1.55 = 3.97 ≤ λ =∞, we introduce a new split x1 > 0.47.
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5.5.2 Posterior inference: online setting

It is straightforward to extend inference to the online setting. Adding a new data point

D = (x, y) affects only the counts along the path from the root to the leaf node of that

data point. We update the counts in a bottom-up fashion, starting at the leaf node

containing the data point, leaf(x). Due to the nature of the IKN approximation, we

can stop at the internal node j where cj,y = 1 and need not traverse up till the root.

This procedure is summarized in Algorithm 5.7.

Algorithm 5.7 UpdatePosteriorCounts(j, y)

1: cjy ← cjy + 1
2: Initialize j′ = j
3: while True do
4: if tabj′y = 1 then . none of the counts above need to be updated
5: return
6: else
7: if j′ /∈ leaves(T) then
8: cj′y = tableft(j′),y + tabright(j′),y

9: tabj′y = min(cj′y, 1) . IKN approximation
10: if j′ = ε then
11: return
12: else
13: j′ ← parent(j′)

5.5.3 Prediction using Mondrian tree

Let x denote a test data point. If x is already ‘contained’ in the tree T , i.e., if x ∈ Bx
j

for some leaf j ∈ leaves(T), then the prediction is taken to be Gleaf(x). Otherwise,

we somehow need to incorporate x. One choice is to extend T by sampling T ′ from

MTx(λ, T ,x) as described in Algorithm 5.5, and set the prediction to Gj , where

j ∈ leaves(T′) is the leaf node containing x. A particular extension T ′ might lead to an

overly confident prediction; hence, we average over every possible extension T ′. This

integration can be carried out analytically and the computational complexity is linear in

the depth of the tree. We provide a detailed description below for the interested reader.

Detailed description of prediction using Mondrian tree

Let x denote a test data point. We are interested in the predictive probability of

y at x, denoted by pT (y|x,D1:N ). As in typical decision trees, the process involves

a top-down tree traversal, starting from the root. If x is already ‘contained’ in the

tree T , i.e., if x ∈ Bx
j for some leaf j ∈ leaves(T), then the prediction is taken to be

Gleaf(x), which is computed as described in Section 5.4.1. Otherwise, we somehow need

to incorporate x. One choice is to extend T by sampling T ′ from MTx(λ, T ,x) as
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described in Algorithm 5.5, and set the prediction to Gj , where j ∈ leaves(T′) is the

leaf node containing x. A particular extension T ′ might lead to an overly confident

prediction; hence, we average over every possible extension T ′. This expectation can be

carried out analytically, using properties of the Mondrian process, as we show below.

Let ancestors(j) denote the set of all ancestors of node j. Let path(j) = {j}∪ancestors(j),
that is, the set of all nodes along the ancestral path from j to the root. Recall that

leaf(x) is the unique leaf node in T such that x ∈ Bleaf(x). If the test point x ∈ Bx
leaf(x)

(i.e., x lies within the ‘gray rectangle’ at the leaf node), it can never branch off; else,

it can branch off at one or more points along the path from the root to leaf(x). More

precisely, if x lies outside Bx
j at node j, the probability that x will branch off into its

own node at node j, denoted by5 psj(x), is equal to the probability that a split exists in

Bj outside Bx
j , which is

psj(x) = 1− exp
(
−∆jηj(x)

)
, where ηj(x) =

∑
d

(
max(xd − uxjd, 0) + max(`xjd − xd, 0)

)
,

and ∆j = τj − τparent(j). Note that psj(x) = 0 if x lies within Bx
j (i.e., if `xjd ≤ xd ≤ uxjd

for all d). The probability of x not branching off before reaching node j is given by∏
j′∈ancestors(j)(1− psj′(x)).

If x ∈ Bx
leaf(x), the prediction is given by Gleaf(x). If there is a split in Bj outside Bx

j ,

let ̃ denote the new parent of j and child(̃) denote the child node containing just the

test data point,; in this case, the prediction is Gchild(̃). Averaging over the location

where the test point branches off, we obtain

pT (y|x,D1:N ) =
∑

j∈path(leaf(x))

( ∏
j′∈ancestors(j)

(1− psj′(x))
)
Fj(x), (5.6)

where

Fj(x) = psj(x)E∆̃

[
Gchild(̃)

]
+ 1[j = leaf(x)](1− psj(x))Gleaf(x). (5.7)

The second term in Fj(x) needs to be computed only for the leaf node leaf(x) and is

simply the posterior mean of Gleaf(x) weighted by 1− psleaf(x)(x). The posterior mean

of Gleaf(x), given by Gleaf(x), can be computed using (5.5). The first term in Fj(x) is

simply the posterior mean of Gchild(̃), averaged over ∆̃, weighted by psj(x). Since no

labels are observed in child(̃), cchild(̃),· = 0, hence from (5.5), we have Gchild(̃) = G̃.

We compute G̃ using (5.5). We average over ∆̃ due to the fact that the discount in

(5.5) for the node ̃ depends on τ̃ − τparent(̃) = ∆̃. To average over all valid split times

τ̃, we compute expectation w.r.t. ∆̃ which is distributed according to a truncated

exponential with rate ηj(x), truncated to the interval [0,∆j ].

The procedure for computing pT (y|x,D1:N ) for any x ∈ RD is summarized in Algo-

5The superscript s in psj(x) is used to denote the fact that this split ‘separates’ the test data point x
into its own leaf node.
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rithm 5.8. The predictive probability assigned by a Mondrian forest is the average of

the predictive probability of the M trees, i.e., 1
M

∑
m pTm(y|x,D1:N ).

Algorithm 5.8 Predict
(
T ,x

)
(prediction using Mondrian classification tree)

1: . Description of prediction using a Mondrian tree, given by (5.6)
2: Initialize j = ε and pNotSeparatedYet = 1
3: Initialize s = 0K . s is K-dimensional vector where sk = pT (y = k|x,D1:N )
4: while True do
5: Set ∆j = τj − τparent(j) and ηj(x) =

∑
d

(
max(xd − uxjd, 0) + max(`xjd − xd, 0)

)
6: Set psj(x) = 1− exp

(
−∆jηj(x)

)
7: if psj(x) > 0 then
8: . Let x branch off into its own node child(̃), creating a new node ̃ which is

the parent of j and child(̃). Gchild(̃) = G̃ from (5.5) since cchild(̃),· = 0.
9: Compute expected discount d̄ = E∆[exp(−γ∆)] where ∆ is drawn from a

truncated exponential with rate ηj(x), truncated to the interval [0,∆j ].
10: For all k, set c̃,k = tab̃,k = min(cj,k, 1)

11: For all k, set G̃k = c−1
̃,·
(
c̃,k − d̄ tab̃,k + d̄ tab̃,· Gparent(̃),k

)
. Algorithm 5.4

12: For all k, update sk ← sk + pNotSeparatedYet p
s
j(x)G̃k

13: if j ∈ leaves(T) then
14: For all k, update sk ← sk + pNotSeparatedYet(1− psj(x))Gjk . Algorithm 5.4
15: return predictive probability s where sk = pT (y = k|x,D1:N )
16: else
17: pNotSeparatedYet ← pNotSeparatedYet(1− psj(x))
18: if xδj ≤ ξj then j ← left(j) else j ← right(j) . recurse to child where x lies

5.5.4 Pseudocode for paused Mondrians

In this section, we discuss versions of SampleMondrianBlock and ExtendMondrianBlock

for paused Mondrians in Algorithms 5.9 and 5.10 respectively. For completeness, we

also provide the updates necessary for the IKN approximation within Algorithms 5.9

and 5.10.

5.6 Related work

The literature on random forests is vast and we do not attempt to cover it compre-

hensively; we provide a brief review here and refer to (Criminisi et al., 2012) and

(Denil et al., 2013) for a recent review of random forests in batch and online settings

respectively. Classic decision tree induction procedures choose the best split dimension

and location from all candidate splits at each node by optimizing some suitable quality

criterion (e.g. information gain) in a greedy manner. In a random forest, the individual

trees are randomized to de-correlate their predictions. The most common strategies for

injecting randomness are (i) bagging (Breiman, 1996) and (ii) randomly subsampling

the set of candidate splits within each node.
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Algorithm 5.9 SampleMondrianBlock
(
j,DNj , λ

)
version that depends on labels

1: Add j to T
2: For all d, set `xjd = min(XNj ,d), u

x
jd = max(XNj ,d) . dim-wise min and max

3: if AllLabelsIdentical(YNj ) then
4: Set τj = λ . pause Mondrian
5: else
6: Sample E from exponential distribution with rate

∑
d(u

x
jd − `xjd)

7: Set τj = τparent(j) + E

8: if τj < λ then
9: Sample split dimension δj with probability of choosing d proportional to uxjd−`xjd

10: Sample split location ξj along dimension δj from an uniform distribution over
U [`xjd, u

x
jd]

11: Set Nleft(j) = {n ∈ Nj : Xn,δj ≤ ξj} and Nright(j) = {n ∈ Nj : Xn,δj > ξj}
12: SampleMondrianBlock

(
left(j),DNleft(j)

, λ
)

13: SampleMondrianBlock
(
right(j),DNright(j)

, λ
)

14: else
15: Set τj = λ and add j to leaves(T) . j is a leaf node
16: InitializePosteriorCounts(j) . Algorithm 5.3

Two popular random forest variants in the batch setting are Breiman-RF (Breiman,

2001) and Extremely randomized trees (ERT) (Geurts et al., 2006). Breiman-RF uses

bagging and furthermore, at each node, a random k-dimensional subset of the original

D features is sampled. ERT chooses a k dimensional subset of the features and then

chooses one split location each for the k features randomly (unlike Breiman-RF which

considers all possible split locations along a dimension). ERT does not use bagging.

When k = 1, the ERT trees are totally randomized and the splits are chosen independent

of the labels; hence the ERT-1 method is very similar to MF in the batch setting in

terms of tree induction. (Note that unlike ERT, MF uses HNSP to smooth predictive

estimates and allows a test point to branch off into its own node.) Perfect random

trees (PERT), proposed by Cutler and Zhao (2001) for classification problems, produce

totally randomized trees similar to ERT-1, although there are some slight differences

(Geurts et al., 2006).

Existing online random forests (ORF-Saffari (Saffari et al., 2009) and ORF-Denil (Denil

et al., 2013)) start with an empty tree and grow the tree incrementally. Every leaf of

every tree maintains a list of k candidate splits and associated quality scores. When a

new data point is added, the scores of the candidate splits at the corresponding leaf

node are updated. To reduce the risk of choosing a sub-optimal split based on noisy

quality scores, additional hyper parameters such as the minimum number of data points

at a leaf node before a decision is made and the minimum threshold for the quality

criterion of the best split, are used to assess ‘confidence’ associated with a split. Once

these criteria are satisfied at a leaf node, the best split is chosen (making this node an

internal node) and its two children are the new leaf nodes (with their own candidate

splits), and the process is repeated. These methods could be memory inefficient for
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Algorithm 5.10 ExtendMondrianBlock(T , λ, j,D) version that depends on labels

1: if AllLabelsIdentical(YNj ) then . paused Mondrian leaf
2: Update extent `xj ← min(`xj ,x),uxj ← max(uxj ,x)
3: Append D to DNj . append x to XNj and y to YNj
4: if y = unique(YNj ) then
5: UpdatePosteriorCounts(j, y) . Algorithm 5.7
6: return . continue pausing
7: else
8: Remove j from leaves(T)
9: SampleMondrianBlock

(
j,DNj , λ

)
. un-pause Mondrian; Algorithm 5.9

10: else
11: Set e` = max(`xj − x, 0) and eu = max(x− uxj , 0) . e` = eu = 0D if x ∈ Bx

j

12: Sample E from exponential distribution with rate
∑

d(e
`
d + eud)

13: if τparent(j) + E < τj then . introduce new parent for node j
14: Create new Mondrian block ̃ where `x̃ = min(`xj ,x) and ux̃ = max(uxj ,x)

15: Sample δ̃ with P(δ̃ = d) proportional to e`d + eud
16: if xδ̃ > uxj,δ̃ , then sample ξ̃ from U [uxj,δ̃ , xδ̃ ],

17: else sample ξ̃ from U([xδ̃ , `
x
j,δ̃

])
18: if j = ε then . set ̃ as the new root
19: ε← ̃
20: else . set ̃ as child of parent(j)
21: if j = left(parent(j)), then left(parent(j))← ̃, else right(parent(j))← ̃

22: if xδ̃ > ξ̃ then
23: Set left(̃) = j and SampleMondrianBlock

(
right(̃),D, λ

)
. create new leaf

24: else
25: Set right(̃) = j and SampleMondrianBlock

(
left(̃),D, λ

)
. create new leaf

26: else
27: Update `xj ← min(`xj ,x),uxj ← max(uxj ,x) . update extent of node j
28: if j /∈ leaves(T) then . return if j is a leaf node, else recurse down the tree
29: if xδj ≤ ξj then child(j) = left(j) else child(j) = right(j)
30: ExtendMondrianBlock(T , λ, child(j),D) . recurse on child containing x

deep trees due to the high cost associated with maintaining candidate quality scores for

the fringe of potential children (Denil et al., 2013).

There has been some work on incremental induction of decision trees, e.g. incremental

CART (Crawford, 1989), ITI (Utgoff, 1989), VFDT (Domingos and Hulten, 2000) and

dynamic trees (Taddy et al., 2011), but to the best of our knowledge, these are focused

on learning decision trees and have not been generalized to online random forests. We

do not compare MF to incremental decision trees, since random forests are known to

outperform single decision trees.

Bayesian models of decision trees (Chipman et al., 1998; Denison et al., 1998) typically

specify a distribution over decision trees; such distributions usually depend on X and

lack the projectivity property of the Mondrian process. More importantly, MF performs

ensemble model combination and not Bayesian model averaging over decision trees. (See
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(Dietterich, 2000) for a discussion on the advantages of ensembles over single models, and

(Minka, 2000) for a comparison of Bayesian model averaging and model combination.)

5.7 Empirical evaluation

The purpose of these experiments is to evaluate the predictive performance (test

accuracy) of MF as a function of (i) fraction of training data and (ii) training time.

We divide the training data into 100 mini-batches and we compare the performance of

online random forests (MF, ORF-Saffari (Saffari et al., 2009)) to batch random forests

(Breiman-RF, ERT-k, ERT-1) which are trained on the same fraction of the training

data. (We compare MF to dynamic trees as well; see Section 5.7.3 for more details.)

Our scripts are implemented in Python.6 We implemented the ORF-Saffari algorithm as

well as ERT in Python for timing comparisons. The scripts can be downloaded from the

authors’ webpages. We did not implement the ORF-Denil (Denil et al., 2013) algorithm

since the predictive performance reported in (Denil et al., 2013) is very similar to that

of ORF-Saffari and the computational complexity of the ORF-Denil algorithm is worse

than that of ORF-Saffari. We used the Breiman-RF implementation in scikit-learn

(Pedregosa et al., 2011).7

We evaluate on four of the five datasets used in (Saffari et al., 2009) — we excluded

the mushroom dataset as even very simple logical rules achieve > 99% accuracy on this

dataset.8 We re-scaled the datasets such that each feature takes on values in the range

[0, 1] (by subtracting the min value along that dimension and dividing by the range

along that dimension, where range = max−min).

As is common in the random forest literature (Breiman, 2001), we set the number

of trees M = 100. For Mondrian forests, we set the lifetime λ = ∞ and the HNSP

discount parameter γ = 10D. For ORF-Saffari, we set num epochs = 20 (number of

passes through the training data) and set the other hyper parameters to the values used

in (Saffari et al., 2009). For Breiman-RF and ERT, the hyper parameters are set to

default values. We repeat each algorithm with five random initializations and report

the mean performance. The results are shown in Figure 5.3. (The * in Breiman-RF*

indicates scikit-learn implementation.)

Comparing test accuracy vs fraction of training data on usps, satimages and letter

datasets, we observe that MF achieves accuracy very close to the batch RF

versions (Breiman-RF, ERT-k, ERT-1) trained on the same fraction of the data.

MF significantly outperforms ORF-Saffari trained on the same fraction of

6http://www.gatsby.ucl.ac.uk/~balaji/mondrianforest/
7The scikit-learn implementation uses highly optimized C code, hence we do not compare our

runtimes with the scikit-learn implementation. The ERT implementation in scikit-learn achieves very
similar test accuracy as our ERT implementation, hence we do not report those results here.

8https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.

names
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training data. In batch RF versions, the same training data can be used to evaluate

candidate splits at a node and its children. However, in the online RF versions (ORF-

Saffari and ORF-Denil), incoming training examples are used to evaluate candidate

splits just at a current leaf node and new training data are required to evaluate candidate

splits every time a new leaf node is created. Saffari et al. (2009) recommend multiple

passes through the training data to increase the effective number of training samples. In

a realistic streaming data setup, where training examples cannot be stored for multiple

passes, MF would require significantly fewer examples than ORF-Saffari to achieve the

same accuracy.

Comparing test accuracy vs training time on usps, satimages and letter datasets, we

observe that MF is at least an order of magnitude faster than re-trained batch

versions and ORF-Saffari. For ORF-Saffari, we plot test accuracy at the end of

every additional pass; hence it contains additional markers compared to the top row

which plots results after a single pass. Re-training batch RF using 100 mini-batches

is unfair to MF; in a streaming data setup where the model is updated when a new

training instance arrives, MF would be significantly faster than the re-trained batch

versions. Assuming trees are balanced after adding each data point, it can be shown

that computational cost of MF scales as O(N logN) whereas that of re-trained batch

RF scales as O(N2 logN) (Section 5.7.1). Section 5.7.2 shows that the average depth of

the forests trained on above datasets scales as O(logN).

It is remarkable that choosing splits independent of labels achieves competitive classifica-

tion performance. This phenomenon has been observed by others as well—for example,

Cutler and Zhao (2001) demonstrate that their PERT classifier (which is similar to

batch version of MF) achieves test accuracy comparable to Breiman-RF on many real

world datasets. However, in the presence of irrelevant features, methods which choose

splits independent of labels (MF, ERT-1) perform worse than Breiman-RF and ERT-k

(but still better than ORF-Saffari) as indicated by the results on the dna dataset. We

trained MF and ERT-1 using just the most relevant 60 attributes amongst the 180

attributes9—these results are indicated as MF† and ERT-1† in Figure 5.3. We observe

that, as expected, filtering out irrelevant features significantly improves performance of

MF and ERT-1.

5.7.1 Computational complexity

We discuss the computational complexity associated with a single Mondrian tree. The

complexity of a forest is simply M times that of a single tree; however, this computation

can be trivially parallelized since there is no interaction between the trees. Assume

that the N data points are processed one by one. Assuming the data points form a

9See the data description https://www.sgi.com/tech/mlc/db/DNA.names for the list of most relevant
60 attributes.
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Figure 5.3: Results on various datasets: y-axis is test accuracy in both rows. x-axis is fraction
of training data for the top row and training time (in seconds) for the bottom row. We used
the pre-defined train/test split. For usps dataset D = 256,K = 10, Ntrain = 7291, Ntest = 2007;
for satimages dataset D = 36,K = 6, Ntrain = 3104, Ntest = 2000; letter dataset D = 16,K =
26, Ntrain = 15000, Ntest = 5000; for dna dataset D = 180,K = 3, Ntrain = 1400, Ntest = 1186.

balanced binary tree after each update, the computational cost of processing the nth

data point is at most O(log n) (add the data point into its own leaf, update posterior

counts for HNSP in bottom-up pass from leaf to root). The overall cost to process

N data points is O(
∑N

n=1 log n) = O(logN !), which for large N tends to O(N logN)

(using Stirling approximation for the factorial function). For offline RF and ERT, the

expected complexity with n data points is O(n log n). The complexity of the re-trained

version is O(
∑N

n=1 n log n) = O(log
∏N
n=1 n

n), which for large N tends to O(N2 logN)

(using asymptotic expansion of the hyper factorial function).

5.7.2 Depth of trees

We computed the average depth of the trees in the forest, where depth of a leaf node is

weighted by fraction of data points at that leaf node. The hyper-parameter settings and

experimental setup are described in Section 5.7. Table 5.1 reports the average depth

(and standard deviations) for Mondrian forests trained on different datasets. The values

suggest that the depth of the forest scales as logN rather than N .

Dataset Ntrain log2Ntrain depth

usps 7291 12.8 19.1 ± 1.3
satimages 3104 11.6 17.4 ± 1.6

letter 15000 13.9 23.2 ± 1.8
dna 1400 10.5 12.0 ± 0.3

Table 5.1: Average depth of Mondrian forests trained on different datasets.
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5.7.3 Comparison to dynamic trees

Dynamic trees (Taddy et al., 2011) approximate the Bayesian posterior over decision

trees in an online fashion. Specifically, dynamic trees maintain a particle approximation

to the true posterior; the prediction at a test point is a weighted average of the predictions

made by the individual particles. While this averaging procedure appears similar to

online random forests at first sight, there is a key difference: MF (and other random

forests) performs ensemble model combination whereas dynamic trees use Bayesian

model averaging. In the limit of infinite data, the Bayesian posterior would converge to

a single tree (Minka, 2000), whereas MF would still average predictions over multiple

trees. Hence, we expect MF to outperform dynamic trees in scenarios where a single

decision tree is insufficient to explain the data.

To experimentally validate our hypothesis, we evaluate the empirical performance of

dynamic trees using the dynaTree10 R package provided by the authors of the paper.

Note that while dynamic trees can use ‘linear leaves’ (strong since prediction at a leaf

depends on X) or ‘constant leaves’ for regression tasks, they use ‘multinomial leaves’

for classification tasks which corresponds to a ‘weak learner’. We set the number of

particles to 100 (equals the number of trees used in MF) and the number of passes,

R = 2 (their code does not support R = 1) and set the remaining parameters to their

default values. Fig. 5.4 compares the performance of dynamic trees to MF and other

random forest variants. (The performance of all methods other than dynamic trees is

identical to that of Fig. 5.3.)
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Figure 5.4: Results on various datasets: y-axis is test accuracy in both rows. x-axis is fraction
of training data. The setup is identical to that of Fig. 5.3. MF achieves significantly higher test
accuracies than dynamic trees on usps, satimages and letter datasets and MF† achieves similar
test accuracy as dynamic trees on the dna dataset.

We observe that MF achieves significantly higher test accuracies than dynamic trees

on usps, satimages and letter datasets. On dna dataset, dynamic trees outperform MF

(indicating the usefulness of using labels to guide splits) — however, MF with feature

selection (MF†) achieves similar performance as dynamic trees. All the batch random

forest methods are superior to dynamic trees which suggests that decision trees are not

sufficient to explain these real world datasets and that model combination is helpful.

10http://cran.r-project.org/web/packages/dynaTree/index.html
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5.8 Discussion

We have introduced Mondrian forests, a novel class of random forests, which can be

trained incrementally in an efficient manner. MF significantly outperforms existing

online random forests in terms of training time as well as number of training instances

required to achieve a particular test accuracy. Remarkably, MF achieves competitive

test accuracy to batch random forests trained on the same fraction of the data. MF

is unable to handle lots of irrelevant features (since splits are chosen independent of

the labels)—one way to use labels to guide splits is via the Sequential Monte Carlo

algorithm for decision trees described in Chapter 3. The computational complexity of

MF is linear in the number of dimensions (since rectangles are represented explicitly)

which could be expensive for high dimensional data; we will address this limitation in

future work. Random forests have been tremendously influential in machine learning

for a variety of tasks; hence lots of other interesting extensions of this work are possible,

e.g. MF for regression (see Chapter 6), theoretical bias-variance analysis of MF, and

extensions of MF that use hyperplane splits instead of axis-aligned splits.
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Chapter 6

Mondrian forests for regression

6.1 Introduction

Gaussian process (GP) regression is popular due to its ability to deliver both accurate

non-parametric predictions and estimates of uncertainty for those predictions. The

dominance of GP regression in applications such as Bayesian optimization, where

uncertainty estimates are key to balance exploration and exploitation, is a testament to

the quality of GP uncertainty estimates.

Unfortunately, the computational cost of GPs is cubic in the number of data points,

making them computationally very expensive for large scale non-parametric regression

tasks. (Specifically, we focus on the scenario where the number of data points N is

large, but the number of dimensions D is modest.) Steady progress has been made over

the past decade on scaling GP inference to big data, including some impressive recent

work such as (Deisenroth and Ng, 2015; Gal et al., 2014; Hensman et al., 2013).

Ensembles of randomized decision trees, also known as decision forests, are popular

for (non-probabilistic) non-parametric regression tasks, often achieving state-of-the-art

predictive performance (Caruana and Niculescu-Mizil, 2006). The most popular decision

forest variants are random forests (Breiman-RF) introduced by Breiman (2001) and

extremely randomized trees (ERT) introduced by Geurts et al. (2006). The computational

cost of learning decision forests is typically O(N logN) and the computation across the

trees in the forest can be parallelized trivially, making them attractive for large scale

regression tasks. While decision forests usually yield good predictions (as measured by,

e.g., mean squared error or classification accuracy), the uncertainty estimates of decision

forests are not as good as those produced by GPs. For instance, Jitkrittum et al. (2015)

compare the uncertainty estimates of decision forests and GPs on a simple regression

problem where the test distributions are different from the training distribution. As we

move away from the training distribution, GP predictions smoothly return to the prior

and exhibit higher uncertainty. However, the uncertainty estimates of decision forests
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are less smooth and do not exhibit this desirable property.

Our goal is to combine the desirable properties of GPs (good uncertainty estimates,

probabilistic setup) with those of decision forests (computational speed). To this end, we

extend Mondrian forests (MFs), introduced in Chapter 5 for classification tasks, to non-

parametric regression tasks. Unlike usual decision forests, we use a probabilistic model

within each tree to model the labels. Specifically, we use a hierarchical Gaussian prior

over the leaf node parameters and compute the posterior parameters efficiently using

Gaussian belief propagation (Murphy, 2012). Due to special properties of Mondrian

processes, their use as the underlying randomization mechanism results in a desirable

uncertainty property: the prediction at a test point shrinks to the prior as the test point

moves further away from the observed training data points. We demonstrate that, as a

result, Mondrian forests yields better uncertainty estimates.

The chapter is organized as follows: in Section 6.2, we briefly review Mondrian forests.

We present Mondrian forests for regression in Section 6.3 and discuss inference and

prediction in detail. We present experiments in Section 6.5 that demonstrate that (i)

Mondrian forests produce better uncertainty estimates than Breiman-RF and ERT

when test distribution is different from training distribution, (ii) Mondrian forests

outperform or achieve comparable performance to large scale approximate GPs in

terms of mean squared error (MSE) or negative log predictive density (NLPD), thus

making them well suited for large scale regression tasks where uncertainty estimates

are important, and (iii) Mondrian forests outperform (or perform as well as) decision

forests on Bayesian optimization tasks, where predictive uncertainty is important (since

it guides the exploration-exploitation tradeoff). Finally, we discuss avenues for future

work in Section 6.6.

6.2 Mondrian forests

In Chapter 5, we introduced Mondrian forests (MFs) for classification tasks. For

completeness, we briefly review Mondrian trees before describing how MFs can be

applied to regression. The main difference from Chapter 5 is the stopping criterion.

Specifically, in Chapter 5, we set λ = ∞ and stopped splitting a node if all the class

labels of the data points within the node were identical. We follow a similar approach

for regression: we do not split a node which has less than min samples split number of

data points. (See also the discussion in Section 5.5.1.) Since this is a relatively minor

modification, readers familiar with Chapter 5 can safely skip the rest of Section 6.2.

Our problem setup is the following: given N labeled examples (x1, y1), . . . , (xN , yN ) ∈
X×R as training data, our task is to predict labels1 y ∈ R for unlabeled test points x ∈ X
as well as provide corresponding estimates of uncertainty. Let X1:n := (x1, . . . ,xn),

1We refer to y ∈ R as label even though it is common in statistics to refer to y ∈ R as response
instead of label.
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Y1:n := (y1, . . . , yn), and D1:n := (X1:n, Y1:n). We refer to Section 2.2 and Figure 2.1 a

review of decision trees and our notation.

6.2.1 Mondrian trees and Mondrian forests

We briefly review Mondrian trees here and refer to Section 5.3 for further details. A

Mondrian process (Roy and Teh, 2009) is a continuous-time Markov process (Mt : t ≥ 0),

where, for every t ≥ s ≥ 0, Mt is a hierarchical binary partition of X and a refinement

ofMs. Mondrian trees are restrictions of Mondrian processes to a finite set of points.

Figure 5.1 illustrates the difference between decision trees and Mondrian trees. In

particular, a Mondrian tree T is a tuple (T, δ, ξ, τ ), where (T, δ, ξ) is a decision tree

and τ = {τj}j∈T specifies a split time τj ≥ 0 with each node j. Split times increase

with depth, i.e., τj > τparent(j) and play an important role in online updates.

The expected depth of a Mondrian tree is parametrized by a non-negative lifetime

parameter λ > 0. Since it is difficult to specify λ, in Chapter 5, we set λ = ∞ and

stopped splitting a node if all the class labels of the data points within the node were

identical. We follow a similar approach for regression: we do not split a node which has

less than min samples split number of data points.2 Given a bound min samples split

and training data D1:n, the generative process for sampling Mondrian trees is described

in Algorithms 6.1 and 6.2.

Algorithm 6.1 SampleMondrianTree
(
D1:n,min samples split

)
1: Initialize: T = ∅, leaves(T) = ∅, δ = ∅, ξ = ∅, τ = ∅, Nε = {1, 2, . . . , n} . initialize

empty tree
2: SampleMondrianBlock

(
ε,DNε ,min samples split

)
. Algorithm 6.2

Algorithm 6.2 SampleMondrianBlock
(
j,DNj ,min samples split

)
1: Add j to T and for all d, set `xjd = min(XNj ,d), u

x
jd = max(XNj ,d) . dimension-wise

min and max
2: if |Nj | ≥ min samples split then . j is an internal node. |Nj | denotes # data

points.
3: Sample E from exponential distribution with rate

∑
d(u

x
jd − `xjd)

4: Set τj = τparent(j) + E
5: Sample split dimension δj , choosing d with probability proportional to uxjd − `xjd
6: Sample split location ξj uniformly from interval [`xjδj , u

x
jδj

]

7: Set Nleft(j) = {n ∈ Nj : Xn,δj ≤ ξj} and Nright(j) = {n ∈ Nj : Xn,δj > ξj}
8: SampleMondrianBlock

(
left(j),DNleft(j)

,min samples split
)

9: SampleMondrianBlock
(
right(j),DNright(j)

,min samples split
)

10: else . j is a leaf node
11: Set τj =∞ and add j to leaves(T)

2Specifying min samples split instead of max-depth is common in decision forests, cf. (Geurts et al.,
2006).
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The process is similar to top-down induction of decision trees except for the following

key differences: (i) splits in a Mondrian tree are committed only within the range of

training data (see Figure 5.1), and (ii) the split dimensions and locations are chosen

independent of the labels and uniformly within Bx
j (see lines 5, 6 of Algorithm 6.2).

A Mondrian forest consists of M i.i.d. Mondrian trees Tm = (Tm, δm, ξm, τm) for

m = 1, . . . ,M . See Chapter 5 for further details.

Mondrian trees can be updated online in an efficient manner and remarkably, the

distribution of trees sampled from the online algorithm is identical to the corresponding

batch counterpart. We use the batch version of Mondrian forests (Algorithms 6.1 and 6.2)

in all of our experiments except the Bayesian optimization experiment in Section 6.5.3.

Since we do not evaluate the computational advantages of online Mondrian forest, using

a batch Mondrian forest in the Bayesian optimization experiment would not affect the

reported results. For completeness, we describe the online updates in Algorithms 6.3

and 6.4.

Pseudocode for online learning of Mondrian trees

The online updates are shown in Algorithms 6.3 and 6.4. The prediction step is detailed

in Algorithm 6.5.

Algorithm 6.3 ExtendMondrianTree(T ,D,min samples split)

1: Input: Tree T = (T, δ, ξ, τ ), new training instance D = (x, y)
2: ExtendMondrianBlock(T , ε,D,min samples split) . Algorithm 6.4

Algorithm 6.4 ExtendMondrianBlock(T , j,D,min samples split)

1: Set e` = max(`xj − x, 0) and eu = max(x− uxj , 0) . e` = eu = 0D if x ∈ Bx
j

2: Sample E from exponential distribution with rate
∑

d(e
`
d + eud)

3: if τparent(j) + E < τj then . introduce new parent for node j

4: Sample split dimension δ, choosing d with probability proportional to e`d + eud
5: Sample split location ξ uniformly from interval [uxj,δ, xδ] if xδ > uxj,δ else [xδ, `

x
j,δ].

6: Insert a new node ̃ just above node j in the tree, and a new leaf j′′, sibling to j,
where

7: δ̃ = δ, ξ̃ = ξ, τ̃ = τparent(j) + E, `x̃ = min(`xj ,x), ux̃ = max(uxj ,x)
8: j′′ = left(̃) iff xδ̃ ≤ ξ̃
9: SampleMondrianBlock

(
j′′,D,min samples split

)
10: else
11: Update `xj ← min(`xj ,x),uxj ← max(uxj ,x) . update extent of node j
12: if j /∈ leaves(T) then . return if j is a leaf node, else recurse down the tree
13: if xδj ≤ ξj then child(j) = left(j) else child(j) = right(j)
14: ExtendMondrianBlock(T , child(j),D,min samples split) . recurse on child

containing D
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6.3 Model, hierarchical prior, and predictive posterior for

labels

In this section, we describe a probabilistic model that will determine the predictive label

distribution, pT (y|x,D1:N ), for a tree T = (T, δ, ξ, τ ), dataset D1:N , and test point x.

Let leaf(x) denote the unique leaf node j ∈ leaves(T) such that x ∈ Bj . Like with

Mondrian forests for classification, we want the predictive label distribution at x to be

a smoothed version of the empirical distribution of labels for points in Bleaf(x) and in

Bj′ for nearby nodes j′. We will also achieve this smoothing via a hierarchical Bayesian

approach: every node is associated with a label distribution, and a prior is chosen under

which the label distribution of a node is similar to that of its parent’s. The predictive

pT (y|x,D1:N ) is then obtained via marginalization.

As is common in the decision tree literature, we assume the labels within each block are

independent of X given the tree structure. In Chapter 5, used a hierarchy of normalized

stable processes (HNSP) prior for classification problems. In this chapter, we focus on

the case of real-valued labels. Let N (µ, v) denote a Gaussian distribution with mean µ

and variance v. For every j ∈ T, let µj be a mean parameter (of a Gaussian distribution

over the labels) at node j, and let µ = {µj : j ∈ T}. We assume the labels within a leaf

node are Gaussian distributed:

yn|T ,µ ∼ N (µleaf(xn), σ
2
y) (6.1)

where σ2
y is a parameter specifying the variance of the (measurement) noise.

We use the following hierarchical Gaussian prior for µ: For hyperparameters µH , γ1, γ2,

let

µε|µH ∼ N (µH , φε), and µj |µparent(j) ∼ N (µparent(j), φj),

where φj = γ1σ(γ2τj) − γ1σ(γ2τparent(j)) with the convention that τparent(ε) = 0, and

σ(t) = (1 + e−t)−1 denotes the sigmoid function.

Before discussing the details of posterior inference, we provide some justification for

the details of this model: Recall that τj increases as we go down the tree, and so the

use of the sigmoid σ(·) encodes the prior assumption that children are expected to be

more similar to their parents as depth increases. The Gaussian hierarchy is closed under

marginalization, i.e.,

µε|µH ∼ N (µH , φε)

µ0|µε, µH ∼ N (µε, φ0)
implies µ0|µH ∼ N (µH , φε + φ0),

where φε + φ0 = γ1σ(γ2τε)− γ1σ(γ20) + γ1σ(γ2τ0)− γ1σ(γ2τε) = γ1σ(γ2τ0)− γ1σ(γ20).

Therefore, we can introduce intermediate nodes without changing the predictive dis-
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tribution. In Section 6.3.4, we show that a test data point can branch off into its own

node: the hierarchical prior is critical for smoothing predictions.

Given training data D1:N , our goal is to compute the posterior density over µ:

pT (µ|D1:N ) ∝ pT (µ)
N∏
n=1

N (yn|µleaf(xn), σ
2
y). (6.2)

The posterior over µ will be used during the prediction step described in Section 6.3.4.

Note that the posterior over µ is computed independently for each tree, and so can be

parallelized trivially.

6.3.1 Gaussian belief propagation

We perform posterior inference using belief propagation (Pearl, 1988). Since the prior

and likelihood are Gaussian, all the messages can be computed analytically and the

posterior over µ is also Gaussian. Since the hierarchy has a tree structure, the posterior

can be computed in time that scales linearly with the number of nodes in the tree, which

is typically O(N), hence posterior inference is efficient compared to non-tree-structured

Gaussian processes whose computational cost is typically O(N3). Message passing in

trees is a well-studied problem, and so we refer the reader to (Murphy, 2012, Chapter 20)

for details.

6.3.2 Hyperparameter heuristic

In Chapter 5, we stopped splitting a Mondrian block whenever all the class labels were

identical.3 We adopt a similar strategy here and stop splitting a Mondrian block if the

number of samples is fewer than a parameter min samples split. It is common in decision

forests to require a minimum number of samples in each leaf, for instance Breiman

(2001) and Geurts et al. (2006) recommend setting min samples leaf = 5 for regression

problems. We set min samples split = 10.

Next, we describe how we choose the hyperparameters θ = {µH , γ1, γ2, σ
2
y}. For

simplicity, we use the same values of these hyperparameters for all the trees; it is possible

to optimize these parameters for each tree independently, and would be interesting to

evaluate this extra flexibility empirically. Ideally, one might choose hyperparameters by

optimizing the marginal likelihood (computed as a byproduct of belief propagation) by,

e.g., gradient descent. We use a simpler approach here: we optimize the product of label

3Technically, the Mondrian tree is paused in the online setting and splitting resumes once a block
contains more than one distinct label. However, since we only deal with the batch setting, we stop
splitting homogeneous blocks.
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marginals, integrating out µ for each label individually, i.e.,

q(Y |θ, T ) =
∏

j∈leaves(T)

∏
n∈Nj

N (yn|µH , φj − φparent(ε) + σ2
y).

Since τj =∞ at the leaf nodes, we have

φj − φparent(ε) = γ1σ(γ2τj)− γ1σ(γ20)

= γ1(σ(∞)− σ(0))

=
γ1

2
.

If the noise variance is known, σ2
y can be set to the appropriate value. In our case, the

noise variance is unknown; hence, we parametrize σ2
y as γ1/K and set K = min(2000, 2N)

to ensure that the noise variance σ2
y is a non-zero fraction of the total variance γ1/2 +

γ1/K.

We maximize q(Y |θ, T ) over µH , γ1, and K, leading to

µH =
1

N

∑
n

yn,

γ1(
1

2
+

1

K
) =

1

N

∑
n

(yn − µH)2.

Note that we could have instead performed gradient descent on the actual marginal

likelihood produced as a byproduct of belief propagation. It would be interesting to

investigate this.

The likelihood q(Y |θ, T ) does not depend on γ2, and so we cannot choose γ2 by

optimizing it. We know, however, that τ increases with N . Moreover, in Section 5.7.1,

we observed that the average tree depths were 2-3 times log2(N) in practice. We

therefore pre-process the training data to lie in [0, 1]D and set γ2 = D
20 log2N

since (i) τ

increases with tree depth and the tree depth is O(log2N) assuming balanced trees and

(ii) τ is inversely proportional to D. In Section 6.3.3, we describe a fast approximation

which does not involve estimation of γ1, γ2.

6.3.3 Fast approximation to message passing and hyperparameter es-

timation

So far, we have focused on batch learning setting. Another advantage of Mondrian

forests is that the trees can be efficiently updated online with computational complexity∑N
n=1O(log n) = O(N logN). Note that the cost of updating the Mondrian tree

structure is O(log n), however exact message passing and hyperparameter estimation

cost O(n) (since addition of a single point affects the predictive posterior at all the

nodes). To maintain the O(log n) cost, we suggest a fast O(log n) approximation to
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exact message passing which costs O(n). We use these fast online updates in our

Bayesian optimization experiments in Section 6.5.3.

Under this approximation, the Gaussian posterior at each node is approximated by a

Gaussian distribution whose mean and variance are given by the empirical mean and

variance of the data points at that node. This approximation is better suited for online

applications since adding a new data point involves just updating mean and variance

for all the nodes along the path from root to a leaf, hence the overall cost is linear in

the depth of the tree. Another advantage of this approximation is that we only need to

set the noise variance σ2
y and do not need to set the hyper-parameters {µH , γ1, γ2}.

Since our initial publication, we have learnt that this Gaussian posterior approximation

is similar to a random forest modification independently proposed in Hutter et al. (2014,

§4.3.2). In (Hutter et al., 2014), each tree outputs a predictive mean and variance equal

to the empirical mean and variance of the labels at the leaf node of the decision tree.

However, there is an additional level of smoothing in MFs that is not present in (Hutter

et al., 2014). Specifically, the prediction from a Mondrian tree, described in (6.3), is a

weighted mixture of predictions from nodes along the path from the root to the leaf.

Moreover, the weights account for the distance between the test point from the training

data, thereby ensuring that the predictions shrink to the prior as we move farther away

from the training data.

6.3.4 Predictive variance computation

The prediction step in a Mondrian regression tree is similar to that in a Mondrian

classification tree described in Section 5.5.3, except that at each node of the tree, we

predict a Gaussian posterior over y rather than predict a posterior over class probabilities.

Recall that a prediction from a vanilla decision tree is just the average of the training

labels in leaf(x). Unlike decision trees, in a Mondrian tree, a test point x can potentially

‘branch off’ the existing Mondrian tree at any point along the path from root to leaf(x).

Hence, the predictive posterior over y from a given tree T is a mixture of Gaussians of

the form

pT (y|x,D1:N ) =
∑

j∈path(leaf(x))

wjN (y|mj , vj), (6.3)

where wj denotes the weight of each component, given by the probability of branching

off just before reaching node j, and mj , vj respectively denote the predictive mean and

variance.4 The probability of branching off increases as the test point moves further

away from the training data at that particular node; hence, the predictions of MFs

exhibit higher uncertainty as we move farther from the training data. For completeness,

4Strictly speaking, we need another component to include the possibility of data point lying within
the extent of the leaf node, however we ignore this for simplicity.
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we provide pseudocode for computing (6.3) in Algorithm 6.5.

If a test data point branches off to create a new node, the predictive mean at that node

is the posterior of the parent of the new node; if we did not have a hierarchy and instead

assumed the predictions at leaves were i.i.d, then branching would result in a prediction

from the prior, which would lead to suboptimal predictions in most applications. The

predictive mean and variance for the mixture of Gaussians are

ET [y] =
∑
j

wjmj and

VarT [y] =
∑
j

wj(vj +m2
j )−

(
ET [y]

)2
, (6.4)

and the prediction of the ensemble is then

p(y|x,D1:N ) =
1

M

∑
m

pTm(y|x,D1:N ). (6.5)

The prediction of the ensemble can be thought of as being drawn from a mixture model

over M trees where the trees are weighted equally. The predictive mean and variance of

the ensemble can be computed using the formula for mixture of Gaussians (similar to

(6.4)). Similar strategy has been used in (Criminisi et al., 2012; Hutter et al., 2014) as

well.

Algorithm 6.5 Predict
(
T ,x

)
(prediction using Mondrian regression tree)

1: . Description of prediction using a Mondrian tree given by (6.3).
2: . The predictive mean, predictive variance and NLPD computation are not shown,

but they can be computed easily during the top-down pass using the weights wj and
posterior moments mj , vj at node j.

3: Initialize j = ε and pNotSeparatedYet = 1
4: while True do
5: Set ∆j = τj − τparent(j) and ηj(x) =

∑
d

(
max(xd − uxjd, 0) + max(`xjd − xd, 0)

)
6: Set psj(x) = 1− exp

(
−∆jηj(x)

)
7: if psj(x) > 0 then
8: wj = pNotSeparatedYet p

s
j(x)

9: if j ∈ leaves(T) then
10: wj = pNotSeparatedYet(1− psj(x))
11: return
12: else
13: pNotSeparatedYet ← pNotSeparatedYet(1− psj(x))
14: if xδj ≤ ξj then j ← left(j) else j ← right(j) . recurse to child where x lies
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6.4 Related work

The work on large scale Gaussian processes can be broadly split into approaches that

optimize inducing variables using variational approximations and approaches that

distribute computation by using experts that operate on subsets of the data. We refer

to (Deisenroth and Ng, 2015) for a recent summary of large scale Gaussian processes.

Hensman et al. (2013) and Gal et al. (2014) use stochastic variational inference to speed

up GPs, building on the variational bound developed by Titsias (2009). Deisenroth and

Ng (2015) present the robust Bayesian committee machine (rBCM), which combines

predictions from experts that operate on subsets of data.

Hutter (2009) investigated the use of Breiman-RF for Bayesian optimization and used

the empirical variance between trees in the forest as a measure of uncertainty. (Hutter

et al. (2014) proposed a further modification, see Section 6.3.3.) Eslami et al. (2014) used

a non-standard decision forest implementation where a quadratic regressor is fit at each

leaf node, rather than a constant regressor as in popular decision forest implementations.

Their uncertainty measure—a sum of the Kullback-Leibler (KL) divergence—is highly

specific to their application of accelerating expectation propagation, and so it seems their

method is unlikely to be immediately applicable to general non-parametric regression

tasks. Indeed, Jitkrittum et al. (2015) demonstrate that the uncertainty estimates

proposed by (Eslami et al., 2014) are not as good as kernel methods in their application

domain when the test distribution is different from the training distribution. As originally

defined, Mondrian forests produce uncertainty estimates for categorical labels, but in

Chapter 5, we evaluated the performance on (online) prediction (classification accuracy)

without any assessment of the uncertainty estimates.

6.5 Experiments

6.5.1 Comparison of uncertainty estimates of MFs to decision forests

In this experiment, we compare uncertainty estimates of MFs to those of popular

decision forests. The prediction of MFs is given by (6.5), from which we can compute

the predictive mean and predictive variance.5 For decision forests, we compute the

predictive mean as the average of the predictions from the individual trees and, following

Hutter (2009, §11.1.3), compute the predictive variance as the variance of the predictions

from the individual trees. We use 25 trees and set min samples leaf = 5 for decision

forests to make them comparable to MFs with min samples split = 10. We used the

ERT and Breiman-RF implementation in scikit-learn (Pedregosa et al., 2011) and set

the remaining hyperparameters to their default values.

5Code available at http://www.gatsby.ucl.ac.uk/~balaji/mondrianforest/.
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We use a simplified version of the dataset described in (Jitkrittum et al., 2015), where

the goal is to predict the outgoing message in expectation propagation (EP) from a set

of incoming messages. When the predictions are uncertain, the outgoing message will

be re-computed (either numerically or using a sampler), hence predictive uncertainty is

crucial in this application. Our dataset consists of two-dimensional features (which are

derived from the incoming message) and a single target (corresponding to mean of the

outgoing message). The scatter plot of the training data features is shown in Fig. 6.1(a).

We evaluate predictive uncertainty on two test distributions, shown in red and blue in

Fig. 6.1(a), which contain data points in unobserved regions of the training data.

The mean squared error of all the methods are comparable, so we focus just on

the predictive uncertainty. Figures 6.1(b), 6.1(c), and 6.1(d) display the predictive

uncertainty of MF, ERT and Breiman-RF as a function of x1. We notice that Breiman-

RF’s predictions are over-confident compared to MF and ERT. The predictive variance

is quite low even in regions where training data has not been observed. The predictive

variance of MF is low in regions where training data has been observed (−5 < x1 < 5)

and goes up smoothly as we move farther away from the training data; the red test

dataset is more similar to the training data than the blue test data and the predictive

uncertainty of MF on the blue dataset is higher than that of the red dataset, as one

would expect. ERT is less overconfident than Breiman-RF, however its predictive

uncertainty is less smooth compared to that of MF.

6.5.2 Comparison to GPs and decision forests on flight delay dataset

In this experiment, we compare decision forest variants to large scale Gaussian processes.

Deisenroth and Ng (2015) evaluated a variety of large scale Gaussian processes on the

flight delay dataset, processed by Hensman et al. (2013), and demonstrate that their

method achieves state-of-the-art predictive performance; we evaluate decision forests on

the same dataset so that our predictive performance can be directly compared to large

scale GPs. The goal is to predict the flight delay from eight attributes, namely, the age

of the aircraft (number of years since deployment), distance that needs to be covered,

airtime, departure time, arrival time, day of the week, day of the month and month.

Deisenroth and Ng (2015) employed the following strategy: train using the first N data

points and use the following 100,000 as test data points. Deisenroth and Ng (2015)

created three datasets, setting N to 700K, 2M (million) and 5M respectively. We

use the same data splits and train MF, Breiman-RF, ERT on these datasets so that

our results are directly comparable.6 We used 10 trees for each forest to reduce the

computational burden.

6 Gal et al. (2014) report the performance of Breiman-RF on these datasets, but they restricted
the maximum depth of the trees to 2, which hurts the performance of Breiman-RF significantly. They
also use a random train/test split, hence our results are not directly comparable to theirs due to the
non-stationarity in the dataset.
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(c) ERT uncertainty
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Figure 6.1: (a) Scatter distribution of training distribution and test distributions. (b-d)
Typical uncertainty estimates from a single run of MF, ERT-k and Breiman-RF, respectively, as
a function of x1. (Averaging over multiple runs would create smooth curves while obscuring
interesting internal structure to the estimates which an application would potentially suffer
from.) As desired, MF becomes less certain away from training inputs, while the other methods
report high confidence spuriously.
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700K/100K 2M/100K 5M/100K
RMSE NLPD RMSE NLPD RMSE NLPD

SVI-GP 33.0 - - - - -
Dist-VGP 33.0 - - - - -

rBCM 27.1 9.1 34.4 8.4 35.5 8.8
RF 24.07 ± 0.02 5.06 ± 0.02* 27.3 ± 0.01 5.19 ± 0.02* 39.47 ± 0.02 6.90 ± 0.05*

ERT 24.32 ± 0.02 6.22 ± 0.03* 27.95 ± 0.02 6.16 ± 0.01* 38.38 ± 0.02 8.41 ± 0.09*
MF 26.57 ± 0.04 4.89 ± 0.02 29.46 ± 0.02 4.97 ± 0.01 40.13 ± 0.05 6.91 ± 0.06

Table 6.1: Comparison of MFs to popular decision forests and large scale GPs on the flight
delay dataset. We report average results over 3 runs (with random initializations), along with
standard errors. MF achieves significantly better NLPD than rBCM. RF and ERT do not offer
a principled way to compute NLPD, hence they are marked with an asterix. Note that SVI-GP,
Dist-VGP and rBCM were taken from Deisenroth and Ng (2015).

We evaluate performance by measuring the root mean squared error (RMSE) and

negative log predictive density (NLPD). NLPD, defined as the negative logarithm of

(6.5), is a popular measure for measuring predictive uncertainty (cf. (Quinonero-Candela

et al., 2006, section 4.2)). NLPD penalizes over-confident as well as under-confident

predictions since it not only accounts for predictive mean but also the predictive

variance. RF and ERT do not offer a principled way to compute NLPD. But, as a simple

approximation, we computed NLPD for RF and ERT assuming a Gaussian distribution

with mean equal to the average of trees’ predictions, variance equal to the variance of

trees’ predictions.

Table 6.1 presents the results. The RMSE and NLPD results for SVI-GP, Dist-VGP

and rBCM results were taken from (Deisenroth and Ng, 2015), who report a standard

error lower than 0.3 for all of their results. Table 1 in (Deisenroth and Ng, 2015)

shows that rBCM achieves significantly better performance than other large scale GP

approximations; hence we only report the performance of rBCM here. It is important to

note that the dataset exhibits non-stationarity: as a result, the performance of decision

forests as well as GPs is worse on the larger datasets. (This phenomenon was observed

by Gal et al. (2014) and Deisenroth and Ng (2015) as well.) On the 700K and 2M

dataset, we observe that decision forests achieve significantly lower RMSE than rBCM.

MF achieves significantly lower NLPD compared to rBCM, which suggests that its

uncertainty estimates are useful for large scale regression tasks. However, all the decision

forests, including MFs, achieve poorer RMSE performance than rBCM on the larger

5M dataset. We believe that this is due to the non-stationary nature of the data. To

test this hypothesis, we shuffled the 5,100,000 data points to create three new training

(test) data sets with 5M (100K) points; all the decision forests achieved a RMSE in the

range 31-34 on these shuffled datasets.

MF outperforms rBCM in terms of NLPD on all three datasets. On the 5M dataset,

the NLPD of Breiman-RF is similar to that of MF, however Breiman-RF’s uncertainty

is not computed in a principled fashion. As an additional measure of uncertainty, we

report probability calibration measures (akin to those for binary classification cf. http:

//scikit-learn.org/stable/modules/calibration.html), also known as reliability
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Dataset Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

700K Breiman-RF -0.02 -0.04 -0.05 -0.06 -0.06 -0.06 -0.05 -0.06 -0.07
700K ERT -0.04 -0.07 -0.11 -0.14 -0.16 -0.18 -0.19 -0.19 -0.18
700K MF -0.01 -0.02 -0.01 0 0.02 0.03 0.03 0.02 0

2M Breiman-RF -0.02 -0.04 -0.05 -0.06 -0.05 -0.04 -0.03 -0.03 -0.04
2M ERT -0.04 -0.08 -0.12 -0.15 -0.17 -0.18 -0.19 -0.18 -0.16
2M MF -0.02 -0.04 -0.05 -0.05 -0.03 0 0.02 0.03 0.01

5M Breiman-RF -0.03 -0.06 -0.08 -0.09 -0.1 -0.1 -0.11 -0.1 -0.1
5M ERT -0.04 -0.07 -0.11 -0.14 -0.16 -0.18 -0.19 -0.19 -0.18
5M MF -0.02 -0.04 -0.05 -0.06 -0.06 -0.05 -0.05 -0.05 -0.07

Table 6.2: Comparison of MFs to popular decision forests on the flight delay dataset. Each
entry denotes the difference between the observed fraction minus the ideal fraction (which is
shown at the top of the column). Hence, a value of zero implies perfect calibration, a negative
value implies overconfidence and a positive value implies under-confident predictor. MF is better
calibrated than Breiman-RF and ERT, which are consistently over-confident.

diagrams (DeGroot and Fienberg, 1983), for MF, Breiman-RF and ERT. First, we

compute the z% (e.g. 90%) prediction interval for each test data point based on Gaussian

quantiles using predictive mean and variance. Next, we measure what fraction of test

observations fall within this prediction interval. For a well-calibrated regressor, the

observed fraction should be close to z%. We compute observed fraction for z = 10%

to z = 90% in increments of 10. We report observed fraction minus ideal fraction

since it is easier to interpret—a value of zero implies perfect calibration, a negative

value implies over-confidence (a lot more observations lie outside the prediction interval

than expected) and a positive value implies under-confidence. The results are shown in

Table 6.2. MF is clearly better calibrated than Breiman-RF and ERT, which seem to

be consistently over-confident. Since 5M dataset exhibits non-stationarity, MF appears

to be over-confident but still outperforms RF and ERT. Deisenroth and Ng (2015) do

not report calibration measures and their code is not available publicly, hence we do

not report calibration measures for GPs.

6.5.3 Scalable Bayesian optimization

Next, we showcase the usefulness of MFs in a Bayesian optimization (BayesOpt) task.

We briefly review the Bayesian optimization setup for completeness and refer the

interested reader to (Brochu et al., 2010; Snoek et al., 2012) for further details. Bayesian

optimization deals with the problem of identifying the global maximizer (or minimizer)

of an unknown (a.k.a. black-box) objective function which is computationally expensive

to evaluate.7 Our goal is to identify the maximizer in as few evaluations as possible.

Bayesian optimization is a model-based sequential search approach to solve this problem.

Specifically, given n noisy observations, we fit a surrogate model such as a Gaussian

process or a decision forest and choose the next location based on an acquisition

function such as upper confidence bound (UCB) (Srinivas et al., 2010) or expected

7For a concrete example, consider the task of optimizing the hyperparameters of a deep neural
network to maximize validation accuracy.
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improvement (EI) (Mockus et al., 1978). The acquisition function trades off exploration

versus exploitation by choosing input locations where the predictive mean from the

surrogate model is high (exploitation) or the predictive uncertainty of the surrogate

model is high (exploration). Hence, a surrogate model with well-calibrated predictive

uncertainty is highly desirable. Moreover, the surrogate model has to be re-fit after every

new observation is added; while this is not a significant limitation for a few (e.g. 50)

observations and scenarios where the evaluation of the objective function is significantly

more expensive than re-fitting the surrogate model, the re-fitting can be computationally

expensive if one is interested in scalable Bayesian optimization (Snoek et al., 2015).

Hutter (2009) proposed sequential model-based algorithm configuration (SMAC), which

uses Breiman-RF as the surrogate model and the uncertainty between the trees as

a heuristic measure of uncertainty.8 Nickson et al. (2014) discuss a scenario where

this heuristic produces misleading uncertainty estimates that hinders exploration. It

is worth noting that SMAC uses EI as the acquisition function only 50% of the time

and uses random search the remaining 50% of the time (which is likely due to the fact

that the heuristic predictive uncertainty can collapse to 0). Moreover, SMAC re-fits

the surrogate model by running a batch algorithm; the computational complexity of

running the batch version N times is
∑N

n=1O(n log n) = O(N2 logN) (Section 5.7.1).

MFs are desirable for such an application since they can produce principled uncer-

tainty estimates and can be efficiently updated online with computational complexity∑N
n=1O(log n) = O(N logN). Note that the cost of updating the Mondrian tree struc-

ture is O(log n), however exact message passing costs O(n). To maintain the O(log n)

cost, we use the fast approximation discussed in Section 6.3.3.

We report results on four Bayesian optimization benchmarks used in (Eggensperger

et al., 2013; Snoek et al., 2015), consisting of two synthetic functions namely the Branin

and Hartmann functions, and two real-world problems, namely optimizing the hyper-

parameters of online latent Dirichlet allocation (LDA) and structured support vector

machine (SVM). LDA and SVM datasets consist of 288 and 1400 grid points respectively;

we sampled Branin and Hartmann functions at 250,000 grid points (to avoid implement-

ing a separate optimizer for optimizing over the acquisition function). For SVM and

LDA, some dimensions of the grid vary on a non-linear scale (e.g. 100, 10−1, 10−2); we

log-transformed such dimensions and scaled all dimensions to [0, 1] so that all features

are on the same scale. We used 10 trees, set min samples split = 2 and use UCB as

the acquisition function9 for MFs. We repeat our results 15 times (5 times each with

3 different random grids for Branin and Hartmann) and report mean and standard

deviation.

Following Eggensperger et al. (2013), we evaluate a fixed number of evaluations for

8Hutter et al. (2014, §4.3.2) proposed a further modification to the variance estimation procedure,
where each tree outputs a predictive mean and variance, in the spirit of quantile regression forests
(Meinshausen, 2006). See Section 6.3.3 for a discussion on how this relates to MFs.

9Specifically, we set acquisition function = predictive mean + predictive standard deviation.
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Dataset (D, #evals) Oracle MF SMAC (Eggensperger et al., 2013)

Branin (2, 200) -0.398 -0.400 ± 0.005 -0.655 ± 0.27
Hartmann (6, 200) 3.322 3.247 ± 0.109 2.977 ± 0.11
SVM-grid (3, 100) -1266.2 -1266.36 ± 0.52 -1269.6 ± 2.9
LDA-grid (3, 50) -24.1 -24.1 ± 0 -24.1± 0.1

Table 6.3: Results on BayesOpt benchmarks: Oracle reports the maximum value on the grid.
MF, SMAC (which uses a variant of Breiman-RF) report the maximum value obtained by the
respective methods.

each benchmark and measure the maximum value observed. The results are shown

in Table 6.3. The SMAC results (using Breiman-RF) were taken from Table 2 of

(Eggensperger et al., 2013). Both MF and SMAC identify the optimum for LDA-grid.

SMAC does not identify the optimum for Branin and Hartmann functions. We observe

that MF finds maxima very close to the true maximum on the grid, thereby suggesting

that better uncertainty estimates are useful for better exploration-exploitation tradeoff.

The computational advantage of MFs might not be significant with few evaluations, but

we expect MFs to be computationally advantageous with thousands of observations,

e.g., applications such as scalable Bayesian optimization (Snoek et al., 2015) and

reinforcement learning (Ernst et al., 2005).

6.5.4 Failure modes of our approach

No method is a panacea: here we discuss two failure modes of our approach that would

be important to address in future work.

First, we expect GPs to perform better than decision forests on extrapolation tasks; a GP

with an appropriate kernel (and well-estimated hyperparameter values) can extrapolate

beyond the observed range of training data; however, the predictions of decision forests

with constant predictors at leaf nodes are confined to the range of minimum and

maximum observed y. If extrapolation is desired, we need complex regressors (that are

capable of extrapolation) at leaf nodes of the decision forest. However, this will increase

the cost of posterior inference.

Second, Mondrian forests choose splits independent of the labels; hence irrelevant

features can hurt predictive performance (Section 5.7); in the batch setting, one can

apply feature selection to filter or down weight the irrelevant features.

6.6 Discussion

We developed a novel and scalable methodology for regression based on Mondrian

forests that provides both good predictive accuracy as well as sensible estimates of

uncertainty. These uncertainty estimates are important in a range of application areas
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including probabilistic numerics, Bayesian optimization and planning. We demonstrate

that Mondrian forests deliver better-calibrated uncertainty estimates than existing

decision forests, especially in regions far away from the training data. Using a large-scale

regression application on flight delay data, we demonstrate that our proposed regression

framework can provide both state-of-the-art RMSE and estimates of uncertainty as

compared to recent scalable GP approximations. We demonstrated the usefulness

of MFs for Bayesian optimization. Since Mondrian forests deliver good uncertainty

estimates and can be trained online efficiently, they seem promising for applications

such as Bayesian optimization and reinforcement learning. Mondrian forests are also

applicable in other statistical inference and decision making applications.
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Chapter 7

Summary and future work

This thesis proposes several computationally efficient tree-based algorithms that produce

probabilistic predictions.

In Chapters 3 and 4, we proposed a novel class of Bayesian inference algorithms for

decision trees and additive trees, based on the sequential Monte Carlo framework. The

proposed algorithms mimic classic top-down tree induction algorithms, but replace

greedy optimal split selection with a soft version that resamples splits according to

the probability of being optimal. The proposed framework not only achieves better

computation-vs-performance tradeoff compared to existing MCMC counterparts, but

also sheds light on the relationship to their non-Bayesian counterparts.

Bayesian inference over decision tree structures is computationally challenging for big

datasets and hard to adapt to the online learning setting. Furthermore, BMA might

be suboptimal if there is model misspecification. In Chapters 5 and 6, we propose

Mondrian forests which use model combination unlike the previous algorithms which

perform BMA. Mondrian forests restrict splits to the bounding box of the data and

use hierarchical Bayesian smoothing of the leaf node parameters, both of which leads

to better uncertainty estimates compared to existing random forests. Moreover, the

distribution of online Mondrian forests is equal to the distribution of batch Mondrian

forests, making them well-suited for data-efficient online learning compared to existing

online random forests. Mondrian forests are computationally much cheaper than the

Bayesian algorithms proposed earlier, making them well-suited for large-scale online

learning problems.

Of all the algorithms proposed above, Mondrian forests are the most promising due

to their computational efficiency as well as nice theoretical properties. It would be

interesting to extend Mondrian forests to problems such as semi-supervised learning

(cf. (Jagannathan et al., 2013)), density estimation and outlier detection (cf. (Liu et al.,

2008)). Mondrian forests cannot handle lots of irrelevant features and their space

complexity scales linearly with the number of dimensions; it would be interesting to
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develop extensions that do not suffer from these drawbacks. For instance, the memory

requirement can be reduced by using random patches as suggested by Louppe and

Geurts (2012). Mondrian forests produce better uncertainty estimates than existing

decision forests and are hence promising for applications such as active learning (see

(Narr et al., 2016) for a recent paper using Mondrian forests for active learning), scalable

Bayesian optimization and reinforcement learning. More generally, Mondrian forests are

useful for other statistical decision making applications as well. It would be interesting

to study the theoretical properties of Mondrian forests; see Biau and Scornet (2015) for

a recent review of theoretical and methodological improvements to random forests. The

randomization mechanism of Mondrian forests resembles the randomization scheme of

purely uniform random forests, studied by (Genuer, 2010). However, the hierarchical

smoothing in Mondrian forests presents new theoretical challenges and opportunities for

improvement. Mondrian forests focus only on axis-aligned splits; it would be interesting

to extend these ideas to non-axis-aligned trees using extensions of the Mondrian process,

such as the Ostomachion process (Fan et al., 2016) and tools from stochastic geometry

such as iterated stable tessellations (Schreiber et al., 2013).
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Y. W. Teh, H. Daumé III, and D. M. Roy. Bayesian agglomerative clustering with

coalescents. In Adv. Neural Information Proc. Systems (NIPS), volume 20, 2008.

(page 29)

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes.

In Int. Conf. Artificial Intelligence Stat. (AISTATS), pages 567–574, 2009. (page 89)

P. E. Utgoff. Incremental induction of decision trees. Machine learning, 4(2):161–186,

1989. (page 74)

D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992. (page 21)

105



F. Wood, C. Archambeau, J. Gasthaus, L. James, and Y. W. Teh. A stochastic memoizer

for sequence data. In Proc. Int. Conf. Mach. Learn. (ICML), 2009. (page 64)

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,

A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge and

Information Systems, 14(1):1–37, 2008. (page 11)

Y. Wu, H. Tjelmeland, and M. West. Bayesian CART: Prior specification and posterior

simulation. J. Comput. Graph. Stat., 16(1):44–66, 2007. (pages 26, 51, and 59)

J. L. Zhang and W. K. Härdle. The Bayesian additive classification tree applied to

credit risk modelling. Computational Statistics & Data Analysis, 54(5):1197–1205,

2010. (page 48)

106


	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	List of algorithms
	Outline
	Review of decision trees and ensembles of trees
	Problem setup
	Decision trees
	Learning decision trees
	Prediction with a decision tree

	Bayesian decision trees
	Ensembles of decision trees
	Additive decision trees
	Random forests

	Bayesian model averaging vs model combination

	SMC for Bayesian decision trees
	Introduction
	Model
	Problem setup
	Likelihood model
	Sequential generative process for trees

	Sequential Monte Carlo (SMC) for Bayesian decision trees
	The one-step optimal proposal kernel
	Computational complexity

	Experiments
	Design choices in the SMC algorithm
	Proposal choice and node expansion
	Effect of irrelevant features
	Effect of the number of islands

	SMC vs MCMC
	Sensitivity of results to choice of hyperparameters
	SMC vs other existing approaches

	Discussion and Future work

	Particle Gibbs for Bayesian additive regression trees
	Introduction
	Model and notation
	Problem setup
	Regression trees
	Likelihood specification for BART
	Prior specification for BART

	Posterior inference for BART
	MCMC for BART
	Existing samplers for BART
	PG sampler for BART

	Experimental evaluation
	Hypercube-D dataset
	Results on hypercube-D dataset
	Real world datasets

	Discussion

	Mondrian forests for classification
	Introduction
	Approach
	Mondrian trees
	Mondrian process distribution over decision trees

	Label distribution: model, hierarchical prior, and predictive posterior
	Detailed description of posterior inference using the HNSP

	Online training and prediction
	Controlling Mondrian tree complexity
	Posterior inference: online setting
	Prediction using Mondrian tree
	Pseudocode for paused Mondrians

	Related work
	Empirical evaluation
	Computational complexity
	Depth of trees
	Comparison to dynamic trees

	Discussion

	Mondrian forests for regression
	Introduction
	Mondrian forests
	Mondrian trees and Mondrian forests

	Model, hierarchical prior, and predictive posterior for labels
	Gaussian belief propagation
	Hyperparameter heuristic
	Fast approximation to message passing and hyperparameter estimation
	Predictive variance computation

	Related work
	Experiments
	Comparison of uncertainty estimates of MFs to decision forests
	Comparison to GPs and decision forests on flight delay dataset
	Scalable Bayesian optimization
	Failure modes of our approach

	Discussion

	Summary and future work
	References

