
Introduction to 
Uncertainty in Deep Learning

Balaji Lakshminarayanan
balajiln@

Based on NeurIPS tutorial with Dustin Tran & Jasper Snoek

https://docs.google.com/presentation/d/1savivnNqKtYgPzxrqQU8w_sObx1t0Ahq76gZFNTo960/edit


Motivation



What do we mean by Uncertainty?

Return a distribution over predictions 

rather than a single prediction.

● Classification: Output label along with 

its confidence.

● Regression: Output mean along with 

its variance.

Good uncertainty estimates quantify when we 

can trust the model’s predictions.
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What do we mean by Out-of-Distribution Robustness?

I.I.D. pTEST(y,x) = pTRAIN(y,x)

O.O.D. pTEST(y,x) ≠ pTRAIN(y,x) 
Examples of dataset shift:

● Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.

● Open-set recognition. New classes may appear at test time.

● Subpopulation shift. Frequencies of data subpopulations changes.

● Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.

(Independent and Identically Distributed)



ImageNet-C: Varying Intensity for Dataset Shift

Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

I.I.D test set

Increasing “OODness”

“Distance” between pTEST(y,x) and pTRAIN(y,x) increases

https://arxiv.org/abs/1903.12261


● Accuracy drops with 
increasing shift on 
Imagenet-C

● But do the models 
know that they are 
less accurate?

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019

Neural networks do not generalize under covariate shift

https://arxiv.org/abs/1906.02530


● Accuracy drops with 
increasing shift on 
Imagenet-C

● Quality of uncertainty 
degrades with shift
-> “overconfident  
mistakes”

Neural networks do not know when they don’t know



Models assign high confidence predictions to OOD inputs

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020
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Low uncertainty
(high confidence)

Deep neural networks

https://arxiv.org/abs/2006.10108


Models assign high confidence predictions to OOD inputs

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020

High uncertainty
(low confidence)

Low uncertainty
(high confidence)

Ideal behavior

Trust model when x*  is close to pTRAIN(x,y)

Deep neural networks

https://arxiv.org/abs/2006.10108


Applications



Healthcare

● Use model uncertainty to decide when to trust the model or to defer to a human. 

● Cost-sensitive decision making

Diabetic retinopathy detection from fundus images 
Gulshan et al, 2016 
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https://jamanetwork.com/journals/jama/fullarticle/2588763
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Dataset shift:

● Time of day / Lighting
● Geographical location (City vs suburban)
● Changing conditions (Weather / Construction)

Self-driving cars

Image credit: Sun et al, Waymo Open Dataset
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https://waymo.com/open/about/


Open Set Recognition

Image source: https://blog.google/technology/health/ai-dermatology-preview-io-2021/

Test input may not belong to one of the K training classes.

Need to be able to say “none-of-the-above”.

https://blog.google/technology/health/ai-dermatology-preview-io-2021/


Open Set Recognition

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

● Example: Classification of 

genomic sequences

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Open Set Recognition

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

● Example: Classification of 
genomic sequences

● High i.i.d. accuracy on known 
classes is not sufficient

● Need to be able to detect 
inputs that do not belong to 
one of the known classes

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Active Learning

Image source: Active Learning Literature Survey, Settles 2010

● Use model uncertainty to improve data efficiency and model performance in blindspots

http://burrsettles.com/pub/settles.activelearning.pdf


Bayesian Optimization and Experimental Design

● Hyperparameter optimization and experimental design
○ Used across large organizations and the sciences

● Photovoltaics, chemistry experiments, AlphaGo, batteries, materials design

Image source: Attia et al. 2020 Closed-loop optimization of fast-charging protocols for batteries with machine learning

https://www.nature.com/articles/s41524-020-0277-x
https://www.nature.com/articles/s41586-020-2442-2?luicode=10000011&lfid=231522type%3D1%26t%3D10%26q%3D%23nature%23&featurecode=20000181&u=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-2442-2
https://arxiv.org/abs/1812.06855
https://www.nature.com/articles/s41586-020-1994-5
http://nature.com/articles/ncomms11241/bay
https://www.nature.com/articles/s41586-020-1994-5


● Decision making with asymmetric losses

● Modeling uncertainty is crucial for 
exploration vs exploitation trade-off

● Non-stationarity

Bandits and Reinforcement Learning

Image source: David Silver’s RL course 

https://www.davidsilver.uk/wp-content/uploads/2020/03/XX.pdf


Safety

Graceful 
failure

Decision making

Uncertainty &
Out-of-Distribution 
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Reinforcement 
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Bayesian 
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Open-set
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All models are wrong, but some models that know when they are wrong, are useful.



Primer on Uncertainty & 
Robustness



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data 

(subject to model identifiability)



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data (subject to 

model identifiability)

● Models can be from same hypotheses class (e.g. 

linear classifiers in top figure) or belong to different 

hypotheses classes (bottom figure).



Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

● Measurement noise (ex: imprecise tools)

● Missing data (ex: partially observed 

features, unobserved confounders)

● Also known as aleatoric uncertainty

● Data uncertainty is “irreducible*”

○ Persists even in the limit of infinite data

○ *Could be reduced with additional 

features/views
Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


How do we measure the quality of uncertainty?

Calibration Error = |Confidence  -  Accuracy|

predicted probability 
of correctness

observed frequency 
of correctness



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Intuition: For regression, calibration corresponds to coverage in a confidence interval.

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

● Bin the probabilities into B bins.

● Compute the within-bin accuracy and within-bin 

predicted confidence. 

● Average the calibration error across bins 

(weighted by number of points in each bin).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Image source: Guo+ 2017 “On calibration of modern neural networks”

Confidence > Accuracy

=> Overconfident
Confidence < Accuracy

=> Underconfident

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Note: Does not reflect accuracy. 

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True
label

0 0 0 0 0 0 0 1 1 1 Accurate? Calibrated?

Model 
prediction

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ❌ ✅

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Proper scoring rules [Gneiting & Raftery 2007]

● Negative Log-Likelihood (NLL)
○ Also known as cross-entropy
○ Can overemphasize tail probabilities

● Brier Score 
○ Quadratic penalty (bounded range [0,1] unlike log).

○ Can be numerically unstable to optimize.

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


How do we measure the quality of uncertainty?

Evaluate model on 
out-of-distribution 
(OOD) inputs which 
do not belong to any 
of the existing classes

● Max confidence
● Entropy of p(y|x) 

 

CIFAR-10 (IID test inputs)
CIFAR-10 
classifier

SVHN  (OOD test inputs)

Confidence on IID inputs > Confidence on OOD inputs ?



Downstream cost (unifying accuracy & OOD detection)

Abstaining is better than 
incorrect prediction, but 
it’s still worse than 
correctly predicting

Incorrect inlier 
predictions

mistake that erodes trust Image source: Roy*, Ren* et al. 2021 “Does Your 
Dermatology Classifier Know What It Doesn't Know? 
Detecting the Long-Tail of Unseen Conditions”

https://arxiv.org/abs/2104.03829


Fundamentals to Uncertainty 
& Robustness Methods



Neural Networks with SGD
Nearly all models find a single setting of parameters to maximize the probability 
conditioned on data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!
Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


Neural Networks with SGD

How do we get uncertainty?
● Probabilistic approach

○ Estimate a full distribution for 

● Intuitive approach: Ensembling
○ Obtain multiple good settings for 

Problem: results in just one prediction per example
*No model uncertainty*

Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


Model: A probabilistic model is a joint distribution of outputs y and parameters      given 
inputs x.

Training time: Calculate the Bayesian posterior, the conditional distribution of 
parameters given observations.

Prediction time: Compute the likelihood given parameters, each parameter configuration of 
which is weighted by the posterior.

Probabilistic Machine Learning

[Murphy 2012]

https://www.cs.ubc.ca/~murphyk/MLbook/


General Recipe 

Parametrize “base model” with desired 
inductive biases. 

Specify prior over functions. 

Capture model uncertainty by approximating 
the posterior.

Image source: Gal+ 2015, Dusenberry+ 2020



                       is multimodal and complex, so how do we estimate and represent it?

● Locally, covering one mode well 
e.g. with a simpler distribution

○ Variational inference 
○ Laplace approximation

Approximating the posterior

Local approximations Sampling



                       is multimodal and complex, so how do we estimate and represent it?

● Summarize using samples  
○ MCMC
○ Hamiltonian Monte Carlo
○ Stochastic Gradient Langevin 

Dynamics

Approximating the posterior

Local approximations Sampling



● A prior distribution often involves the complication of approximate inference.
● Ensemble learning offers an alternative strategy to aggregate the predictions over a 

collection of models.
● Often winner of competitions!
● There are two considerations: the collection of models to ensemble; and the 

aggregation strategy.

Popular approach is to average predictions of independently trained models, forming a 
mixture distribution.

Many approaches exist: bagging, boosting, decision trees, stacking.

[Dietterich 2000]

Ensemble Learning

https://scholar.google.com/scholar?q=Dietterich+2000+ensembles&hl=en&as_sdt=0&as_vis=1&oi=scholart


Overview of Methods



Compute (Inference time / Inference memory)
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Cartoon: Uncertainty/Robustness vs Compute frontier

Orthogonal ways of improving performance

● Improve the single model p(y|x,θ) 
● Average predictions over diverse set of functions 

θ1 , θ2  … θM
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Improving single model performance

Improve the “base” model p(y|x,θ) 
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Adding distance-awareness using 
Spectral-normalized Neural Gaussian Process (SNGP)

SNGP

High uncertainty
(low confidence)

Low uncertainty
(high confidence)

SNGP assigns lower confidence predictions to inputs far away from the training data



Imposing distance awareness

BERT on an intent detection benchmark

“Models should be distance aware: 
uncertainty increases farther from training data.”

Spectral-normalized Neural Gaussian process

1. Replace output layer with “GP layer”.
2. Apply spectral normalization to preserve input 

distances within internal layers.

See also [van Amersfoort+ 2020].

[Liu+ 2020]

https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2006.10108


Composing base operations and ‘mixing’ them can improve accuracy and calibration under shift.

Better representations via data augmentation, e.g. AugMix

[Hendrycks+ 2020]

https://arxiv.org/abs/1912.02781


AugMix improves accuracy & calibration under shift

Data augmentation can provide complementary benefits to ensembling.

[Hendrycks+ 2020]

https://arxiv.org/abs/1912.02781
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Improving the quality of model uncertainty

Average predictions over diverse set of functions θ1 , θ2  … θM

Depending on the details of the approximation (e.g. 
diagonal vs low-rank, independent ensembles vs efficient 
ensembles, number of samples/ensemble members), we 
will end up at different points along this curve.



Fit a simple distribution to the mode centered around the SGD solution 

● SWAG: Fit a Gaussian around averaged weight iterates near the mode

● Laplace: Fit a quadratic at the mode, using the Hessian or Fisher information

Simple Baseline: SWAG + Laplace

[Maddox+ 2019]

https://arxiv.org/pdf/1902.02476.pdf


Simple Baseline: Monte Carlo Dropout

 Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

[Gal+ 2015]

https://arxiv.org/abs/1506.02142


Simple Baseline: Deep Ensembles

Idea: Just re-run standard SGD training but with different random seeds and average the predictions.

Deep ensembles can capture different modes in function space.

[Lakshminarayanan+ 2016] [Fort+ 2019]

https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1912.02757


Deep Ensembles work surprisingly well in practice 

Deep Ensembles are consistently among the best performing methods, especially under dataset shift

Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [Ovadia+ 2019]

https://arxiv.org/abs/1906.02530
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 Efficient 
ensembles

Efficient ensembles lower inference memory and/or inference time 

[Training Independent Subnetworks for Robust Prediction. Havasi+ 2020]

https://arxiv.org/abs/2010.06610


High-quality implementations of baselines on a 
variety of tasks.

Ready for use:  7 settings, including:

● Wide ResNet 28-10 on CIFAR
● ResNet-50 and EfficientNet on ImageNet
● BERT on Clinc Intent Detection

14 different baseline methods.

Used across 10 projects at Google.

Collaboration with OATML @ Oxford, unifying 
github.com/oatml/bdl-benchmarks.

Uncertainty Baselines
github.com/google/uncertainty-baselines

http://google3/third_party/py/edward2/baselines/cifar
http://github.com/oatml/bdl-benchmarks
http://github.com/google/uncertainty-baselines


Lightweight modules to evaluate a model’s 
robustness and uncertainty predictions.

Ready for use:

● 10 OOD datasets
● Accuracy, uncertainty, and stability metrics
● Many SOTA models (TFHub support!)
● Multiple frameworks (JAX support!)

Enables large-scale studies of robustness 
[Djolonga+ 2020].

Collaboration lead by Google Research, Brain Team @  Zurich.

github.com/google-research/robustness_metrics

Robustness Metrics

https://arxiv.org/abs/2007.08558
http://github.com/google-research/robustness_metrics


● Uncertainty & robustness are critical problems in AI and machine learning.

● Benchmark models with calibration error and a large collection of OOD shifts.

● Probabilistic ML, ensemble learning, and optimization provide a foundation.

● The best methods advance two dimensions: combining multiple neural network 
predictions; and imposing priors and inductive biases.

Links to papers: http://www.gatsby.ucl.ac.uk/~balaji/

Check out recent ICML workshop on Uncertainty and Robustness in Deep Learning

Takeaways

http://www.gatsby.ucl.ac.uk/~balaji/
https://sites.google.com/corp/view/udlworkshop2021/home
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Appendix



Survey papers

● A Survey of Uncertainty in Deep Neural Networks. J. Gawlikowski et al., arXiv 2107.03342.
● A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. M. Abdar et al. arXiv 

2011.06225

Bayesian neural networks

● A practical Bayesian framework for backpropagation networks D. MacKay Neural Computation 1992
● Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. G. Hinton, D. Van Camp. COLT 1993.
● An Introduction to Variational Methods for Graphical Models. M. Jordan+. Machine Learning 1999.
● Bayesian Learning for Neural Networks. R. Neal. Technical Report 1994.
● Bayesian Learning via Stochastic Gradient Langevin Dynamics. M. Welling, Y. Teh. ICML 2011.
● Weight Uncertainty in Neural Networks. C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra. ICML 2015.
● Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning Y. Gal, Z. Ghahramani ICML 2016
● Automatic Differentiation Variational Inference. A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, D. M. Blei. JMLR 2017.
● A Scalable Laplace Approximation for Neural Networks  H. Ritter, A. Botev, D. Barber ICLR 2018 
● Noise Contrastive Priors for Functional Uncertainty. D. Hafner, D. Tran, T. Lillicrap, A. Irpan, J. Davidson. UAI 2019.
● A Simple Baseline for Bayesian Uncertainty in Deep Learning W. Maddox, T. Garipov, P. Izmailov, D. Vetrov, A. G. Wilson. NeurIPS 

2019.
● Practical Deep Learning with Bayesian Principles K. Osawa, S. Swaroop, A.Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. 

Khan. NeurIPS 2019.
● Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. M. W. Dusenberry, G. Jerfel, Y. Wen, Y. Ma, J. Snoek, K. Heller, B. 

Lakshminarayanan, D. Tran. ICML 2020.

References
This list is intended just as a starting point for exploring other related work using Google Scholar or Connected papers. 

Feel free to email me if you think there’s a reference that should be included here.
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Ensembles

● Simple and scalable predictive uncertainty estimation using deep ensembles B. Lakshminarayanan, A. Pritzel, C. Blundell. 
NeurIPS 2017.

● BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning. Y. Wen, D. Tran, J. Ba. ICLR 2020.
● Training independent subnetworks for robust prediction. M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshminarayanan, 

A. M. Dai, D. Tran ICLR 2021.

Understanding marginalization

● Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than 
Training Data. G. K. Dziugaite, D. M. Roy. UAI 2017.

● Deep ensembles: A loss landscape perspective. S. Fort, H. Hu, B. Lakshminarayanan. arXiv 1912.02757.
● Bayesian Deep Learning and a Probabilistic Perspective of Generalization A. G. Wilson and P. Izmailov arXiv 2002.08791
●

Gaussian processes and Neural Tangent Kernel

● Deep Neural Networks as Gaussian Processes. J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, J. Sohl-Dickstein, ICLR 2018.
● Neural Tangent Kernel: Convergence and Generalization in Neural Networks. A. Jacot, F. Gabriel, C. Hongler. NeurIPS 2018.
● Approximate Inference Turns Deep Networks into Gaussian Processes M. Emtiyaz Khan, Alexander Immer, Ehsan Abedi, M. 

Korzepa NeurIPS 2019
● Bayesian Deep Ensembles via the Neural Tangent Kernel B. He, B. Lakshminarayanan and Y.W. Teh NeurIPS 2020
● Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit. B. Adlam, J. Lee, L. Xiao, J. 

Pennington and J. Snoek link
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2019.

Data Augmentation and Invariances

● Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty D. Hendrycks, M. Mazeika, S. Kadavath, D. 
Song NeurIPS 2019

● AugMix: A simple data processing method to improve robustness and uncertainty. D. Hendrycks, N. Mu, E. D. Cubuk, B. 
Zoph, J. Gilmer, B. Lakshminarayanan. ICLR 2020 

● Improving Calibration of BatchEnsemble with Data Augmentation. Y. Wen, G. Jerfel, R. Muller, M. Dusenberry, J. Snoek, B. 
Lakshminarayanan and D. Tran. link

Calibration

● On calibration of modern neural networks C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger ICML 2017
● Revisiting the Calibration of Modern Neural Networks. M. Minderer, J. Djolonga, R. Romijnders, F. Hubis, X. Zhai, N. 

Houlsby, D. Tran, M. Lucic  arXiv 2106.07998.
● Measuring Calibration in Deep Learning. J. Nixon, M. Dusenberry, L. Zhang, G. Jerfel, D. Tran. arXiv 1904.01685
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