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Quantifying Uncertainty In Deep Learning

• Predict output distribution p(y|x) rather than point estimate
– Classification: output label y∗ along with confidence– Regression: output mean and variance

• What’s a “good” predictive uncertainty estimate?
– Calibration– Higher uncertainty on out-of-distribution (OOD) examples

• Popular solution: Bayesian deep learning (MCMC, VI)
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Why Bayesian deep learning?

• Bayesian Model Averaging (BMA) in a nutshell:
– Specify prior over parameters p(θ)– Compute posterior distribution of parameters p(θ|D)– Translate parameter uncertainty to predictive uncertainty

• BMA satisfies the axioms of probability and protectsagainst “Dutch books”. BMA is optimal if:
– “prior is correct” i.e. true model is within hypothesis class– true posterior can be computed exactly

Is there an alternative to BMA for quantifying predictive
uncertainty?
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Yes!

Spotlight slide: BDL workshop @ NeurIPS 2016
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Our contribution: simple yet powerful baseline

Probabilistic, but non-Bayesian, baseline

• Performs well on evaluation metrics
• Simple to implement (minimal changes to baseline)
• Scalable to large datasets (e.g. ImageNet)
• Robust:

– Works for different output types (classification/regression)– Works for different architectures
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A Simple Recipe for Uncertainty Estimation

1. Let neural network parametrize a distribution pθ(y|x).– Classification: softmax parametrizes discrete distribution– Regression: Gaussian with mean µθ(x) & var σ2
θ(x)

2. Use a proper scoring rule as training criterion.– Classification: cross entropy loss– Regression: Gaussian likelihood mean µθ(x) & var σ2
θ(x)3. (Optional) Augment with adversarial training

– Augment (x + ∆x, y) where ∆x = −ε sign(∇x log pθ(y|x)
)

– Encourages p(y|x) to be similar to p(y|x + ∆x)4. Train an ensemble ofM networkswith random initialization5. Combine predictions at test time
p(y|x) =

1
M

M∑
m=1

pθm(y|x,θm)

Model combination & not Bayesian Model Averaging
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Results on a toy regression task

• Left plot: non-probabilistic network, use empiricalvariance between 5 networks as uncertainty

• Middle plot: single probabilistic network
• Right plot: ensemble of 5 probabilistic networks.
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Results on UCI regression benchmark datasets

Datasets RMSE NLLPBP MC-dropout Deep Ensembles PBP MC-dropout Deep Ensembles
Boston housing 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02Naval propulsion plant 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05Power plant 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21Year Prediction MSD 8.88 ± NA 8.85 ± NA 8.89 ± NA 3.60 ± NA 3.59 ± NA 3.35 ± NA

• Our method achieves better NLL, but slightly worse RMSEin some cases
• Even though non-Bayesian, our method is competitive withprobabilistic backpropagation (PBP) and MC-Dropout
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Calibration results on Year Prediction MSD

Probabilistic networks (left) are much better calibrated thannon-probabilistic networks (right).
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Classification Results on MNIST using MLP
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• Ensembles lead to better predictive uncertainty

• Adversarial training leads to further improvements
• Similar results on SVHN using convolutional nets
• We also show results on ImageNet to illustrate scalability
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Evaluating predictive uncertainty on OOD

• Goal: check if the methods are more uncertain whiletesting on out-of-distribution (OOD) dataset.

• Setup:
– Train on MNIST– Evaluate on known test set (MNIST) and unknown test set(NotMNIST) (both 28 x 28 gray-scale images)

• Also trained / tested on different datasets:
– Train on SVHN / Test on CIFAR (both 32 x 32 x 3 images)– ImageNet: train on dog categories and test on non-dogcategories
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

Single network & MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are more robust.Similar results on SVHN-CIFAR and ImageNet (dogs vsno-dogs).
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Accuracy Vs Confidence
Model abstains from making prediction when confidence < τEvaluate test accuracy only on examples where maxy p(y|x) ≥ τ

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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• MC-dropout can produce overconfident wrong predictions,whereas deep ensembles are significantly more robust.• Similar results on ImageNet (dogs vs no-dogs)
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Qualitatively evaluating predictive uncertainty

• Top two rows: examples with lowest disagreement
• Bottom two rows: examples with highest disagreement
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Why would this work?

• Modeling distribution pθ(y|x) captures inherent ambiguity(aleatoric uncertainty).

• Ensemble approximates epistemic uncertainty
– Training on bootstrap samples has theoretical justification– In practice, using entire dataset works better.

• Interesting similarities to ensembles of decision trees
– Breiman’s random forests [1] used bagging– Later work on Extremely Randomized Trees found baggingto be unnecessary if there was sufficient randomization [3]– (Non-Bayesian) Ensembles of probabilistic decision treescan give good uncertainty estimates in practice [4]
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Triage Recommendation for Patients with Eye
Diseases using OCT scans

• Optical Coherence Tomography (OCT)– Creates a high-resolution 3D scan of the retina– OCT technique works like ultrasound but with light• Collaboration with Moorfields Eye Hospital
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Use case: Referral suggestion from OCT scan
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Two-Stage Architecture

• First: ensemble of segmentation networks to the OCT scan
• Second: ensemble of classification networks
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Two-Stage Architecture (continued)

• Segmentation map provides detailed, fully clinicallyinterpretable representation.
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Two-Stage Architecture (continued)

• Second stage classification network learns knowledge thatis independent of the used scanning device.
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Two-Stage Architecture (continued)

• Our framework reaches the performance of human experts
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• Ensemble 5 segmentation instances and 5 classificationinstances to get 25 predictions for each diagnosis.
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Receiver Operating Characteristic (ROC) Curve

• We achieve an area under the curve of 99.2
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Receiver Operating Characteristic (ROC) Curve

• Evaluated human performance on this task using 8 experts• Only two of the top experts from Moorfields with over 20years experience were on par with our network
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Full referral results

• Our method achieves similar results in the standard triagewith 4 referral decisions too
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Take home message

• Non-Bayesian, Probabilistic solutions can be surprisinglyeffective at estimating predictive uncertainty

• Strong non-Bayesian baselines are valuable to understandthe limitations
– Better ways to specify priors– Better ways to improve approximate posteriors

Papers available on my webpage (link)
– Simple and scalable predictive uncertainty estimation using

deep ensembles, NeurIPS, 2017 [5]– Clinically applicable deep learning for diagnosis and referral
in retinal disease, Nature medicine, 2018 [2]
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Thanks!
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