
Top-down particle filtering for Bayesian decision trees

Balaji Lakshminarayanan balaji@gatsby.ucl.ac.uk

Gatsby Unit, CSML, University College London

Daniel M. Roy d.roy@eng.cam.ac.uk

University of Cambridge

Yee Whye Teh y.w.teh@stats.ox.ac.uk

Department of Statistics, University of Oxford

Abstract

Decision tree learning is a popular ap-
proach for classification and regression in ma-
chine learning and statistics, and Bayesian
formulations—which introduce a prior dis-
tribution over decision trees, and formulate
learning as posterior inference given data—
have been shown to produce competitive per-
formance. Unlike classic decision tree learn-
ing algorithms like ID3, C4.5 and CART,
which work in a top-down manner, existing
Bayesian algorithms produce an approxima-
tion to the posterior distribution by evolving
a complete tree (or collection thereof) itera-
tively via local Monte Carlo modifications to
the structure of the tree, e.g., using Markov
chain Monte Carlo (MCMC). We present
a sequential Monte Carlo (SMC) algorithm
that instead works in a top-down manner,
mimicking the behavior and speed of clas-
sic algorithms. We demonstrate empirically
that our approach delivers accuracy compa-
rable to the most popular MCMC method,
but operates more than an order of mag-
nitude faster, and thus represents a better
computation-accuracy tradeoff.

1. Introduction

Decision tree learning algorithms are widely used
across statistics and machine learning, and often de-
liver near state-of-the-art performance despite their
simplicity. Decision trees represent predictive models
from an input space, typically RD, to an output space
of labels, and work by specifying a hierarchical parti-
tion of the input space into blocks. Within each block

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

of the input space, a simple model predicts labels.

In classical decision tree learning, a decision tree (or
collection thereof) is learned in a greedy, top-down
manner from the examples. Examples of classical ap-
proaches that learn single trees include ID3 (Quin-
lan, 1986), C4.5 (Quinlan, 1993) and CART (Breiman
et al., 1984), while methods that learn combinations of
decisions trees include boosted decision trees (Fried-
man, 2001), Random Forests (Breiman, 2001), and
many others.

Bayesian decision tree methods, like those first pro-
posed by Buntine (1992), Chipman et al. (1998), Deni-
son et al. (1998), and Chipman & McCulloch (2000),
and more recently revisited by Wu et al. (2007),
Taddy et al. (2011) and Anagnostopoulos & Gramacy
(2012), cast the problem of decision tree learning into
the framework of Bayesian inference. In particular,
Bayesian approaches start by placing a prior distri-
bution on the decision tree itself. To complete the
specification of the model, it is common to associate
each leaf node with a parameter indexing a family of
likelihoods, e.g., the means of Gaussians or Bernoullis.
The labels are then assumed to be conditionally inde-
pendent draws from their respective likelihoods. The
Bayesian approach has a number of useful properties:
e.g., the posterior distribution on the decision tree can
be interpreted as reflecting residual uncertainty and
can be used to produce point and interval estimates.

On the other hand, exact posterior computation is
typically infeasible and so existing approaches use ap-
proximate methods such as Markov chain Monte Carlo
(MCMC) in the batch setting. Roughly speaking,
these algorithms iteratively improve a complete deci-
sion tree by making a long sequence of random, local
modifications, each biased towards tree structures with
higher posterior probability. These algorithms stand
in marked contrast with classical decision tree learning
algorithms like ID3 and C4.5, which rapidly build a de-

Top-down particle filtering for Bayesian decision trees

cision tree for a data set in a top-down greedy fashion
guided by heuristics. Given the success of these meth-
ods, one might ask whether they could be adapted to
work in the Bayesian framework.

In this article, we present such an adaptation, propos-
ing a sequential Monte Carlo (SMC) method for ap-
proximate inference in Bayesian decision trees that
works by sampling a collection of trees in a top-down
manner like ID3 and C4.5. Unlike classical methods,
there is no pruning stage after the top-down learn-
ing stage to prevent over-fitting, as the prior com-
bines with the likelihood to automatically cut short the
growth of the trees, and resampling focuses attention
on those trees that better fit the data. In the end, the
algorithm produces a collection of sampled trees that
approximate the posterior distribution. While both
existing MCMC algorithms and our novel SMC algo-
rithm produce approximations to the posterior that
are exact in the limit, we show empirically that our al-
gorithms run more than an order of magnitude faster
than existing methods while delivering the same pre-
dictive performance.

The article is organized as follows: we begin by de-
scribing the Bayesian decision tree model precisely in
Section 2, and then describe the SMC algorithm in de-
tail in Section 3. Through a series of empirical tests,
we demonstrate in Section 4 that this approach is fast
and produces good approximations. We conclude in
Section 5 with a discussion comparing this approach
with existing ones in the Bayesian setting, and point
towards future avenues.

2. Model and notation

In this section, we present the decision tree model for
the distribution of the labels Y = {yn}Nn=1 correspond-
ing to input vectors X = {xn}Nn=1, xn ∈ RD. The as-
sumption is that the probabilistic mapping from input
vectors to their labels is mediated by a latent deci-
sion tree T that serves to partition the input space
into axis-aligned blocks. Each block is then associated
with a parameter that determines the distribution of
the labels of the input vectors falling in that block.

A rooted, strictly binary tree T is a finite tree with
a single root, denoted by the empty string ε, where
each internal node p except the root has exactly two
children, called the left child p0 and the right child p1.
Denote the leaves of T (those nodes without children)
by ∂T. Each node of the tree p ∈ T is associated
with a block B(p) ⊂ RD of the input space as follows:
At the root we have B(ε) = RD, while each internal
node p ∈ T \ ∂T “cuts” its block into two halves, with

κ(p) ∈ {1, . . . , D} denoting the dimension of the cut,
and τ(p) denoting the location of the cut, so that

B(p0) = B(p) ∩ {z ∈ RD : zκ(p) ≤ τ(p)} and

B(p1) = B(p) ∩ {z ∈ RD : zκ(p) > τ(p)}. (1)

We call the tuple T = (T, κ, τ) the decision tree. (See
Figure 1 for more intuition on the representation and
notation of decision trees.) Note that the blocks asso-
ciated with the leaves of the tree partition RD. It will
be convenient to write N(p) for the set of data point
indices n ∈ {1, . . . , N} such that xn ∈ B(p). For every
subset A ⊆ {1, . . . , N}, let YA := {yn : n ∈ A} and
similarly for XA, so that XN(p) are the input vectors in
block B(p) and YN(p) are their labels. Note that both
B(p) and N(p) depend on T , although we have chosen
to elide this dependence for notational simplicity.

Conditioned on the examples X, we assume that the
joint density f(Y, T |X) of the labels Y and the latent
decision tree T factorizes as follows:

f(Y, T |X) = h(T |X) g(Y | T , X)

= h(T |X)
∏
p∈∂T `(YN(p)|XN(p)) (2)

where ` denotes a likelihood, defined below.

In this paper, we focus on the case of categorical la-
bels taking values in the set {1, . . . ,K}. It is natural to
take ` to be the Dirichlet-Multinomial likelihood, cor-
responding to the data being conditionally i.i.d. draws
from a multinomial distribution on {1, . . . ,K} with a
Dirichlet prior. In particular,

`(YN(p)|XN(p)) =
Γ(α)

Γ(αK)K

∏K
k=1 Γ(mpk + α

K)

Γ(
∑K
k=1mpk + α)

, (3)

where mpk denotes the number of labels yn = k among
those n ∈ N(p) and α is the concentration parameter
of the symmetric Dirichlet prior. Generalisations to
other likelihood functions based on conjugate pairs of
exponential families are straightforward.

The final piece of the model is the prior density h(T |X)
over decision trees. In order to make straightforward
comparisons with existing algorithms, we adopt the
model proposed by Chipman et al. (1998). In this
model, the prior distribution of the latent tree is de-
fined conditionally on the given input vectors X (see
Section 5 for a discussion of this dependence on X and
its effect on the exchangeability of the labels). Infor-
mally, the tree is grown starting at the root, and each
new node either splits and grows two children (turning
the node into an internal node) or stops (leaving it a
leaf) stochastically.

We now describe the generative process more precisely
in terms of a Markov chain capturing the construction

Top-down particle filtering for Bayesian decision trees

ε : {x1 > 0.5}

0 1 : {x2 > 0.35}

10 11

B(ε) B(0) B(1) B(0)

B(10)

B(11) ?
?

?

?
I02

I01

?

?

◦
◦

◦

Figure 1. A decision tree T = (T, κ, τ) represents a hierarchical partitioning of a space. Here, the space is the unit square
and the tree T contains the nodes {ε, 0, 1, 10, 11}. The root node ε represents the whole space B(ε) = RD, while its two
children 0 and 1, represent the two halves of the cut (κ(ε), τ(ε)) = (1, 0.5), where κ(ε) = 1 represents the dimension of
the cut, and τ(ε) = 0.5 represents the location of the cut along that dimension. (The origin is at the bottom left of each
figure, and the x-axis is dimension 1. The red stars and blue circles represent observed data points.) The second cut,
(κ(1), τ(1)) = (2, 0.35), splits the block B(1) into the two halves B(11) and B(10). When defining the prior over decision
trees given by Chipman et al. (1998), it will be necessary to refer to the “extent” of the data in a block. E.g., I01 and I02
are the extent of the data in dimensions 1 and 2, respectively, in block B(0). For each node p, the set Dp contains those
dimensions with non-trivial extent. Here, D0 = {1, 2}, but D10 = {2}, because there is no variation in dimension 1.

of a decision tree in stages, beginning with the triv-
ial tree T0 = {ε} containing only the root node. At
each stage i, Ti is produced from Ti−1 by choosing one
leaf in Ti−1 and either growing two children nodes or
stopping the leaf. Once stopped, a leaf is ineligible for
future growth. The identity of the chosen leaf is deter-
ministic, while the choice to grow or stop is stochastic.
The process proceeds until all leaves are stopped, and
so each node is considered for expansion exactly once
throughout the process. This will be seen to give rise
to a finite sequence of decision trees Ti = (Ti, κi, τi)
once we define the associated cut functions κi and τi.
We will use this Markov chain in Section 3 as scaffold-
ing for a sequential Monte Carlo algorithm. A similar
approach was employed by Taddy et al. (2011) in the
setting of online Bayesian decision trees. There are
similarities also with the bottom-up SMC algorithms
by Teh et al. (2008) and Bouchard-Côté et al. (2012).

We next describe the rule for stopping or growing
nodes, and the distribution of cuts. Let p be the
node chosen at some stage of the generative pro-
cess. If the input vectors XN(p) are all identical,
then the node stops and becomes a leaf. (Chipman
et al. chose this rule because no choice of cut to the
block B(p) would result in both children containing
at least one input vector.) Otherwise, let Dp be the
set of dimensions along which XN(p) varies, and let
Ipd = [minn∈N(p) xnd,maxn∈N(p) xnd] be the range of
the input vectors along dimension d ∈ Dp. (See last
subfigure of Figure 1.) Under the Chipman et al.
model, the probability that node p is split is

αs
(1 + |p|)βs

, αs ∈ (0, 1), βs ∈ [0,∞), (4)

where |p| is the depth of the node, and αs and βs
are parameters governing the shape of the resulting

tree. For larger αs and smaller βs the typical trees are
larger, while the deeper p is in the tree the less likely it
will be cut. If p is cut, the dimension κ(p) and then lo-
cation τ(p) of the cut are sampled uniformly from Dp

and Ipκ(p), respectively. Note that the choice for the

support of the distribution over cut dimensions and
locations are such that both children of p will, with
probability one, contain at least one input vector. Fi-
nally, the choices of whether to grow or stop, as well
the cut dimensions and locations, are conditionally in-
dependent across different subtrees.

To complete the generative model, we define T = Tη,
κ = κη and τ = τη, where η is the first stage such
that all nodes are stopped. We note that η < 2N with
probability one because each cut of a node p produces
a non-trivial partition of the data in the block, and
a node with one data point will be stopped instead
of cut. The conditional density of the decision tree
T = (T, κ, τ) can now be expressed as

h(T, κ, τ |X) =
∏
p∈∂T

(
1− αs

(1 + |p|)βs

)1(|Dp|>0)

×
∏

p∈T\∂T

αs
(1 + |p|)βs

1

|Dp|
1

|Ipκ(p)|
. (5)

Note that the prior distribution of T does not depend
on the deterministic rule for choosing a leaf at each
stage. However this choice will have an effect on the
bias/variance of the corresponding SMC algorithm.

3. Sequential Monte Carlo (SMC) for
Bayesian decision trees

In this section we describe an SMC algorithm for ap-
proximating the posterior distribution over the de-
cision tree (T, κ, τ) given the labeled training data

Top-down particle filtering for Bayesian decision trees

(X,Y). (We refer the reader to (Cappé et al., 2007)
for an excellent overview of SMC techniques.) The
approach we will take is to perform particle filtering
following the sequential description of the prior. In
particular, at stage i, the particles approximate a mod-
ified posterior distribution where the prior on (T, κ, τ)
is replaced by the distribution of (Ti, κi, τi), i.e., the
process truncated at stage i.

Let Ei denote the set of unstopped leaves at stage i,
all of which are eligible for expansion. An important
freedom we have in our SMC algorithm is the choice
of which candidate leaf (or set Ci ⊆ Ei of candidate
leaves) to consider expanding. In order to avoid “mul-
tipath” issues (Del Moral et al., 2006, §3.5) which lead
to high variance, we fix a deterministic rule for choos-
ing Ci ⊆ Ei. (Multiple candidates are expanded or
stopped in turn, independently.) This rule can be a
function of (X,Y) and the state of the current par-
ticle, as the correctness of resulting approximation is
unaffected. We evaluate two choices in experiments:
first, the rule Ci = Ei where we consider expanding
all eligible nodes; and second, the rule where Ci con-
tains a single node chosen in a breadth-first (i.e., oldest
first) manner from Ei.

We may now define the sequence (PYi) of target dis-
tributions. Recall the sequential process defined in
Section 2. If the generative process for the decision
tree has not completed by stage i, the process has
generated (Ti, κi, τi) along with Ei, capturing which
leaves in Ti have been considered for expansion in
previous stages already and which have not. Let
Ti = (Ti, κi, τi, Ei) be the variables generated on stage
i, and write P for the prior distribution on the sequence
(Ti). We construct the target distribution PYi as fol-
lows: Given Ti, we generate labels Y ′ with likelihood
g(Y ′|Ti, X), i.e., as if (Ti, κi, τi) were the complete de-
cision tree. We then define PYi to be the conditional
distribution of Ti given Y ′ = Y . That is, PYi is the
posterior with a truncated prior.

In order to complete the description of our SMC
method, we must define proposal kernels (Qi) that
sample approximations for the ith stage given values
for the (i − 1)th stage. As with our choice of Ci, we
have quite a bit of freedom. In particular, the pro-
posals can depend on the training data (X,Y). An
obvious choice is to take Qi to be the conditional dis-
tribution of Ti given Ti−1 under the prior, i.e., set-
ting Qi(Ti | Ti−1) = P(Ti | Ti−1). Informally, this choice
would lead us to propose extensions to trees at each
stage of the algorithm by sampling from the prior, so
we will refer to this as the prior proposal kernel (aka
the Bayesian bootstrap filter (Gordon et al., 1993)).

We consider two additional proposal kernels: The first,

Qi(Ti | Ti−1) = PYi (Ti | Ti−1), (6)

is called the (one-step) optimal proposal kernel be-
cause it would be the optimal kernel assuming that the
ith stage were the final stage. We return to discuss this
kernel in Section 3.1. The second alternative, which
we will refer to as the empirical proposal kernel, is
a small modification to the prior proposal, differing
only in the choice of the split point τ . Recall that, in
the prior, τi(p) is chosen uniformly from the interval
Ipκi(p)

. This ignores the empirical distribution given

by the input data XN(p) in the partition. We can ac-
count for this by first choosing, uniformly at random,
a pair of adjacent data points along feature dimension
κi(p), and then sampling a cut τi(p) uniformly from
the interval between these two data points.

The pseudocode for our proposed SMC algorithm is
given in Algorithm 1 (Appendix A). Note that the
SMC framework only requires us to compute the den-
sity of Ti under the target distribution up to a normal-
ization constant. In fact, the SMC algorithm produces
an estimate of the normalization constant, which, at
the end of the algorithm, is equal to the marginal prob-
ability of the labels Y given X, with the latent decision
tree T marginalized out. In general, the joint density
of a Markov chain can be hard to compute, but be-
cause the set of nodes Ci considered at each stage is a
deterministic function of Ti, the path (T0, T1, . . . , Ti−1)
taken is a deterministic function of Ti. As a result, the
joint density is simply a product of probabilities for
each stage. The same property holds for the proposal
kernels defined above because they use the same can-
didate set Ci, and have the same support as P. These
properties justify the equations in Algorithm 1.

3.1. The one-step optimal proposal kernel

In this section we revisit the definition of the one-step
optimal proposal kernel. While the prior and empiri-
cal proposal kernels are relatively straightforward, the
one-step optimal proposal kernel is defined in terms of
an additional conditioning on the labels Y , which we
now study in greater detail.

Recall that the one-step optimal proposal kernel Qi is
given by Qi(Ti | Ti−1) = PYi (Ti | Ti−1). To begin, we
note that, conditionally on Ti−1 and Y , the subtrees
rooted at each node p ∈ Ci−1 are independent. This
follows from the fact that the likelihood of Y given Ti
factorizes over the leaves. Thus, the proposal’s proba-
bility density is

Qi(Ti|Ti−1) =
∏

p∈Ci−1

Qi(ρi,p, κi(p), τi(p)), (7)

Top-down particle filtering for Bayesian decision trees

where Qi is the probability density of the cuts at node
p under Qi, and ρi,p denotes whether the node was
split or not. On the event we split a node p ∈ Ci−1,
if we condition further on κi(p) and ρi,p, we note that
the conditional likelihood of YN(p), when viewed as a
function of the split τi(p), is piecewise constant, and
in particular, only changes when the split crosses an
example. It follows that we can sample from this pro-
posal by first considering the discrete choice of an in-
terval, and then sampling uniformly at random from
within the interval, as with the empirical proposal.
Some algebra shows that

Qi(ρi,p = stop) ∝
(

1− αs
(1 + |p|)βs

)
`(YN(p)|XN(p)) ,

Qi(ρi,p = split, κi(p), τi(p)) ∝
αs

(1 + |p|)βs

1

|Dp|
1

|Ipκi(p)
|

×
∏
j=0,1

`(YN(pj)|XN(pj)).

3.2. Computational complexity

Let Ud denote the number of unique values in di-
mension d, Np denote the number of training data
points at node p and η(m) denote the number
of nodes in particle m. For all the SMC algo-
rithms, the space complexity is O(MN)+O(

∑
d Ud)+

O(
∑
m η

(m)). The time complexity is O(DN logN) +
M
∑
pO(2DNp + Np) for prior and empirical pro-

posals and M
∑
p

(
DO(Np logNp) + Np

)
for the opti-

mal proposal. The optimal proposal typically requires
higher computational cost per particle, but fewer num-
ber of particles than the prior and empirical proposals.

4. Experiments

In this section, we experimentally evaluate the design
choices of the SMC algorithm (proposal, expansion
strategy, number of particles and “islands”) on real
world datasets. In addition, we compare the perfor-
mance of SMC to the most popular MCMC method
for Bayesian decision tree learning (Chipman et al.,
1998), as well as CART, a popular (non-Bayesian) tree
induction algorithm. We evaluate all the algorithms
on the following datasets from the UCI ML repository
(Asuncion & Newman, 2007):

• MAGIC gamma telescope data 2004 (magic-04):
N = 19020, D = 10, K = 2.

• Pen-based recognition of handwritten digits (pen-
digits): N = 10992, D = 16, K = 10.

Previous work has focused mainly on small datasets
(e.g., the Wisconsin breast cancer database used by
Chipman et al. (1998) has 683 data points). We

chose the above datasets to illustrate the scalability
of our approach. For the pen-digits dataset, we used
the predefined training/test splits, while for the other
datasets, we split the datasets randomly into a train-
ing set and a test set containing approximately 70%
and 30% of the data points respectively.

We implemented our scripts in Python and applied
similar software optimization techniques to SMC and
MCMC scripts.1 Our experiments were run on a clus-
ter with machines of similar processing power.

4.1. Design choices in the SMC algorithm

In these set of experiments, we fix the hyperparam-
eters to α = 5.0, αs = 0.95, βs = 0.5 and compare
the predictive performance of different configurations
of the SMC algorithm for this fixed model. Under the
prior, these values of αs, βs produce trees whose mean
depth and number of nodes are 5.1 and 18.5, respec-
tively. Given M particles, we use an effective sample
size (ESS) threshold of M/10 and set the maximum
number of stages to 5000 (although the algorithms
never reached this number).

4.1.1. Proposal choice and node expansion

We consider the SMC algorithm proposed in Section
3 under two proposals: optimal and prior. (The em-
pirical proposal performed similar to the prior pro-
posal and hence we do not report those results here.)
We consider two strategies for choosing Ci, i.e., the
list of nodes considered for expansion at stage i: (i)
node-wise expansion, where a single node is consid-
ered for expansion per stage (i.e., Ci is a singleton
chosen deterministically from eligible nodes Ei), and
(ii) layer-wise expansion, where all nodes at a particu-
lar depth are considered for expansion simultaneously
(i.e., Ci = Ei). For node-wise expansion, we evaluate
two strategies for selecting the node deterministically
from Ci: (i) breadth-first priority, where the oldest
node is picked first, and (ii) marginal-likelihood based
priority, where we expand the node with the lowest
marginal likelihood. Both of these priority schemes
performed similarly; hence we report only the results
for breadth-first priority. We use multinomial resam-
pling in our experiments. We also evaluated system-
atic resampling (Douc et al., 2005) but found that the
performance was not significantly different.

We report the log predictive probability on test data
as a function of runtime and of the number of par-
ticles (similar trends are observed for test accuracy;

1The scripts can be downloaded from the authors’ web-
pages.

Top-down particle filtering for Bayesian decision trees

see Appendix B). The times reported do not account
for prediction time. We average the numbers over 10
random initializations and report standard deviations.
The results are shown in Figure 2. In summary, we
observe the following:

Node-wise expansion outperforms layer-wise expan-
sion for prior proposal. The prior proposal does not
account for likelihood; one could think of the resam-
pling steps as ‘correction steps’ for the sub-optimal
decisions sampled from the prior proposal. Because
node-wise expansion can potentially resample at ev-
ery stage, it can correct individual bad decisions im-
mediately, whereas layer-wise expansion cannot. In
particular, we have observed that layer-wise expan-
sion tends to produce shallower trees compared to
node-wise expansion, leading to poorer performance.
This phenomenon can be explained as follows: as the
depth of the node increases, the prior probability of
stopping increases whereas the posterior probability of
stopping might be quite low. In node-wise expansion,
the resampling step can potentially retain the parti-
cles where the node has not been stopped. However,
in layer-wise expansion, too many nodes might have
stopped prematurely and the resampling step cannot
‘correct’ all these bad decisions easily (i.e., it would
require many more particles to sample trees where all
the nodes in a layer have not been stopped). Another
interesting observation is that layer-wise expansion ex-
hibits higher variance: this can be explained by the
fact that layer-wise expansion samples a greater num-
ber of random variables (on average) than node-wise
before resampling, and so suffers for the same reason
that importance sampling can suffer from high vari-
ance. Note that both expansion strategies perform
similarly for the optimal proposal due to the fact that
the proposal accounts for the likelihood and resam-
pling does not affect the results significantly. Due to
its superior performance, we consider only node-wise
expansion in the rest of the paper.

The plots on the right side of Figure 2 suggest that
the optimal proposal requires fewer particles than the
prior proposal (as expected). However, the per-stage
cost of optimal proposal is much higher than the prior,
leading to significant increase in the overall runtime
(see Section 3.2 for a related discussion). Hence, the
prior proposal offers a better predictive performance
vs computation time tradeoff than the optimal pro-
posal.

The performance of optimal proposal saturates very
quickly and is near-optimal even when the number of
particles is small (M = 10).

101 102 103 104

Mean Time (s)

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103

Number of particles

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103 104 105

Mean Time (s)

−0.55

−0.50

−0.45

−0.40

−0.35

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103

Number of particles

−0.55

−0.50

−0.45

−0.40

−0.35

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

Figure 2. Results on pen-digits (top), and magic-04 (bot-
tom). Left column plots test log p(y|x) vs runtime, while
right column plots test log p(y|x) vs number of particles.
The blue circles and red squares represent optimal and
prior proposals respectively. The solid and dashed lines
represent node-wise and layer-wise proposals respectively.

4.1.2. Effect of irrelevant features

In the next experiment, we test the effect of irrelevant
features on the performance of the various proposals.
We use the madelon dataset2 for this experiment, in
which the data points belong to one of 2 classes and
lie in a 500-dimensional space, out of which only 20
dimensions are deemed relevant. The training dataset
contains 2000 data points and the test dataset contains
600 data points. We use the validation dataset in the
UCI ML repository as our test set because labels are
not available for the test dataset.

The setup is identical to the previous section. The
results are shown in Figure 3. Here, the optimal
proposal outperforms the prior proposal in both the
columns, requiring fewer particles as well as outper-
forming the prior proposal for a given computational
budget. While this dataset is atypical (only 4% of the
features are relevant), it illustrates a potential vulner-
ability of the prior proposal to irrelevant features.

4.1.3. Effect of the number of islands

Averaging the results of several independent particle
filters (aka islands) is a way to reduce variance at the
cost of bias, compared with running a single, larger
filter. In the asymptotic regime, this would not make
sense, but as we will see, performance is improved
with multiple islands, suggesting we are not yet in the
asymptotic regime. In this experiment, we evaluate
the effect of the number of islands on the test perfor-

2http://archive.ics.uci.edu/ml/datasets/Madelon

http://archive.ics.uci.edu/ml/datasets/Madelon

Top-down particle filtering for Bayesian decision trees

102 103 104

Mean Time (s)

−0.70

−0.65

−0.60

−0.55

−0.50

−0.45

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]

101 102 103 104

Number of particles

−0.70

−0.65

−0.60

−0.55

−0.50

−0.45

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]

102 103 104

Mean Time (s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]

101 102 103 104

Number of particles

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]

Figure 3. Results on madelon dataset: The top and bot-
tom rows display log p(y|x) and accuracy on the test data
against runtime (left) and the number of particles (right)
respectively. The blue circles and red squares represent
optimal and prior proposals respectively.

100 101 102 103 104

Number of particles per island

−1.8
−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

lo
g
p(
Y
|X

)
(t

es
t)

151020502002000
Number of islands

100 101 102 103 104

Number of particles per island

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

A
cc

ur
ac

y
(t

es
t)

151020502002000
Number of islands

Figure 4. Results on pen-digits: Test log p(y|x) (left) and
accuracy (right) vs I and M/I for fixed M = 2000.

mance of the prior proposal. We fix the total number
of particles to 2000 and vary I, the number of islands
(and hence, the number of particles per island). Note
that all the islands operate on the entire dataset unlike
bagging. Here, we present results only on the pen-digits
dataset (see Appendix C for results on the magic-04
dataset). The results are shown in Figure 4. We ob-
serve that (i) the test performance drops sharply if we
use fewer than 100 particles per island and (ii) when
M/I ≥ 100, the choices of I ∈ [5, 100] outperform
I = 1. Since the islands are independent, the compu-
tation across islands is ‘embarrassingly parallelizable’.

4.2. SMC vs MCMC

In this experiment, we compare the SMC algorithms
to the MCMC algorithm proposed by Chipman et al.
(1998), which employs four types of Metropolis-
Hastings proposals: grow (split a leaf node into child
nodes), prune (prune a pair of leaf nodes belonging to
the same parent), change (change the decision rule at
a node) and swap (swap the decision rule of a parent
with the decision rule of the child). In our experiments,

we average the MCMC predictions over the trees from
all previous iterations.

The experimental setup is identical to Section 4.1, ex-
cept that we fix the number of islands, I = 5. We vary
the number of particles for SMC3 and the number of
iterations for MCMC and plot the log predictive prob-
ability and accuracy on the test data as a function of
runtime. In Figure 5, we observe that SMC (prior,
node-wise) is roughly two orders of magnitude faster
than MCMC while achieving similar predictive perfor-
mance on pen-digits and magic-04 datasets. Although
the exact speedup factor depends on the dataset in
general, we have observed that SMC (prior, node-
wise) is at least an order of magnitude faster
than MCMC. The SMC runtimes in Figure 5 are
recorded by running the I islands in a serial fashion.
As discussed in Section 4.1.3, one could parallelize the
computation leading to an additional speedup by a fac-
tor of I. In the pen-digits dataset, the performance of
prior proposal seems to drop as we increase M beyond
2000. However, the marginal likelihood on the training
data increases with M (see Appendix D). We believe
that the deteriorating performance is due to model
misspecification (axis-aligned decision trees are hardly
the ‘right’ model for handwritten digits) rather than
the inference algorithm itself: ‘better’ Bayesian infer-
ence in a misspecified model might lead to a poorer
solution (see (Minka, 2000) for a related discussion).

To evaluate the sensitivity of the trends above to the
hyper parameters α, αs, βs, we systematically varied
the values of these hyper parameters and repeated the
experiment. The results are qualitatively similar. See
Appendix E for additional information.

4.3. SMC vs other existing approaches

The goal of these experiments was to verify that our
SMC approximation performed as well as the “gold
standard” MCMC algorithms most commonly used in
the Bayesian decision tree learning setting. Indeed,
our results suggest that, for a fraction of the compu-
tational budget, we can achieve a comparable level of
accuracy. In this final experiment, we re-affirm that
the Bayesian algorithms are competitive in accuracy
with the classic CART algorithm. (There are many
other comparisons that one could pursue and other au-
thors have already performed such comparisons. E.g.,
Taddy et al. (2011) demonstrated that their tree struc-
tured models yield similar performance as Gaussian

3We fix I = 5 so that the minimum value of M (= 100)
corresponds to M/I = 20 particles per island. Further
improvements could be obtained by ‘adapting’ I to M as
discussed in Section 4.1.3.

Top-down particle filtering for Bayesian decision trees

102 103 104

Mean Time (s)

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

−0.42

−0.40

−0.38

−0.36

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure 5. Results on pen-digits (top row), and magic-04
(bottom row). Left column plots test log p(y|x) vs run-
time, while right column plots test accuracy vs runtime.
The blue cirlces, red squares and black diamonds represent
optimal, prior proposals and MCMC respectively.

processes and random forests.) We used the CART
implementation provided by scikit-learn (Pedregosa
et al., 2011) with two criteria: gini purity and infor-
mation gain and set min samples leaf = 10 (min-
imum number of data points at a leaf node).4 In
addition, we performed Laplacian smoothing on the
probability estimates from CART using the same α
as for the Bayesian methods. Our Python implemen-
tation of SMC takes about 50-100x longer to achieve
the same test accuracy as the highly-optimized imple-
mentation of CART. For this reason, we plot CART
accuracy as a horizontal bar. The accuracy and log
predictive probability on test data are shown in Fig-
ure 5. The Bayesian decision tree frameworks achieve
similar (or better) test accuracy to CART, and out-
perform CART significantly in terms of the predictive
likelihood. SMC delivers the benefits of having an ap-
proximation to the posterior, but in a fraction of the
time required by existing MCMC methods.

5. Discussion and Future work

We have proposed a novel class of Bayesian inference
algorithms for decision trees, based on the sequential
Monte Carlo framework. The algorithms mimic classic
top-down algorithms for learning decision trees, but
use “local” likelihoods along with resampling steps
to guide tree growth. We have shown good compu-
tational and statistical performances, especially com-
pared with a state-of-the-art MCMC inference algo-

4Lower values (min samples leaf = 1, 5) tend to yield
slightly higher test accuracies (comparable to SMC and
MCMC) but much lower predictive probabilities.

rithm. Our algorithms are easier to implement than
their MCMC counterparts, whose efficient implemen-
tations require sophisticated book-keeping.

We have also explored various design choices leading
to different SMC algorithms. We have found that
expanding too many nodes simultaneously degraded
performance, and more sophisticated ways of choos-
ing nodes surprisingly did not improve performance.
Finally, while the one-step optimal proposal often re-
quired fewer particles to achieve a given accuracy, it
was significantly more computationally intensive than
the prior proposal, leading to a less efficient algorithm
overall on datasets with few irrelevant input dimen-
sions. As the number of irrelevant dimensions in-
creased the balance tipped in favour of the optimal
proposal. An interesting direction of exploration is to
devise some way to interpolate between the prior and
optimal proposals, getting the best of both worlds.

The model underlying this work assumes that the data
is explained by a single tree. In contrast, many uses
of decision trees, e.g., random forests, bagging, etc.,
can be interpreted as working within a model class
where the data is explained by a collection of trees.
Bayesian additive regression trees (BART) (Chipman
et al., 2010) are such a model class. Prior work has
considered MCMC techniques for posterior inference
(Chipman et al., 2010). A significant but important
extension of this work would be to tackle additive com-
binations of trees, potentially in a way that continues
to mimic classic algorithms.

Finally, in order to more closely match existing work
in Bayesian decision trees, we have used a prior over
decision trees that depends on the input data X. This
has the undesirable side-effect of breaking exchange-
ability in the model, making it incoherent with respect
to changing dataset sizes and to working with online
data streams. One solution is to use an alternative
prior for decision trees, e.g., based on the Mondrian
process (Roy & Teh, 2009), whose projectivity would
re-establish exchangeability while allowing for efficient
posterior computations that depend on data.

Acknowledgments

We would like to thank Charles Blundell, Arnaud
Doucet, David Duvenaud, Jan Gasthaus, Hong Ge,
Zoubin Ghahramani, and James Robert Lloyd for
helpful discussions and feedback on drafts. DMR is
supported by a Newton International Fellowship and
Emmanuel College. BL and YWT gratefully acknowl-
edge generous funding from the Gatsby Charitable
Foundation.

Top-down particle filtering for Bayesian decision trees

References

Anagnostopoulos, C. and Gramacy, R.B. Dynamic
trees for streaming and massive data contexts. arXiv
preprint arXiv:1201.5568, 2012.

Asuncion, A. and Newman, D. J. UCI machine
learning repository. http://www.ics.uci.edu/

~mlearn/MLRepository.html, 2007.

Bouchard-Côté, A., Sankararaman, S., and Jordan,
M. I. Phylogenetic inference via sequential monte
carlo. Systematic biology, 61(4):579–593, 2012.

Breiman, L. Random forests. Machine Learning, 45:
5–32, 2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen,
R. A. Classification and regression trees. Chapman
& Hall/CRC, 1984.

Buntine, W. Learning classification trees. Stat. Com-
put., 2:63–73, 1992.

Cappé, O., Godsill, S. J., and Moulines, E. An
overview of existing methods and recent advances
in sequential Monte Carlo. Proc. IEEE, 95(5):899–
924, 2007.

Chipman, H. and McCulloch, R. E. Hierarchical priors
for Bayesian CART shrinkage. Stat. Comput., 10(1):
17–24, 2000.

Chipman, H. A., George, E. I., and McCulloch, R. E.
Bayesian CART model search. J. Am. Stat. Assoc.,
pp. 935–948, 1998.

Chipman, H. A., George, E. I., and McCulloch, R. E.
BART: Bayesian additive regression trees. Ann.
Appl. Stat., 4(1):266–298, 2010.

Del Moral, P., Doucet, A., and Jasra, A. Sequential
Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat.
Methodol., 68(3):411–436, 2006.

Denison, D. G. T., Mallick, B. K., and Smith, A. F. M.
A Bayesian CART algorithm. Biometrika, 85(2):
363–377, 1998.

Douc, R., Cappé, O., and Moulines, E. Comparison of
resampling schemes for particle filtering. In Image
Sig. Proc. Anal., pp. 64–69, 2005.

Friedman, J. H. Greedy function approximation: a
gradient boosting machine. Ann. Statist, 29(5):
1189–1232, 2001.

Gordon, N. J., Salmond, D. J., and Smith, A.
F. M. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. Radar Sig. Proc., IEE
Proc. F, 140(2):107–113, 1993.

Minka, T. P. Bayesian model averaging is not
model combination. MIT Media Lab note.
http://research.microsoft.com/en-us/um/

people/minka/papers/bma.html, 2000.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and E., Duchesnay. Scikit-learn: Machine
Learning in Python. J. Machine Learning Res., 12:
2825–2830, 2011.

Quinlan, J. R. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

Quinlan, J. R. C4.5: programs for machine learning.
Morgan Kaufmann, 1993.

Roy, D. M. and Teh, Y. W. The Mondrian process. In
Adv. Neural Information Proc. Systems, volume 21,
pp. 1377–1384, 2009.

Taddy, M. A., Gramacy, R. B., and Polson, N. G.
Dynamic trees for learning and design. J. Am. Stat.
Assoc., 106(493):109–123, 2011.

Teh, Y. W., Daumé III, H., and Roy, D. M. Bayesian
agglomerative clustering with coalescents. In Adv.
Neural Information Proc. Systems, volume 20, 2008.

Wu, Y., Tjelmeland, H., and West, M. Bayesian
CART: Prior specification and posterior simulation.
J. Comput. Graph. Stat., 16(1):44–66, 2007.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://research.microsoft.com/en-us/um/people/minka/papers/bma.html
http://research.microsoft.com/en-us/um/people/minka/papers/bma.html

Top-down particle filtering for Bayesian decision trees

Supplementary material

A. SMC algorithm

Algorithm 1 SMC for Bayesian decision tree learning

Inputs: Training data (X,Y)
Number of particles M

Initialize: T
(m)
0 = E

(m)
0 = {ε}

τ
(m)
0 = κ

(m)
0 = ∅

w
(m)
0 = f(Y |T (m)

0)

W0 =
∑
m w

(m)
0

for i = 1 : MAX-STAGES do
for m = 1 : M do

Sample T (m)
i from Qi(· | T (m)

i−1)

where T (m)
i := (T

(m)
i , κ

(m)
i , τ

(m)
i , E

(m)
i)

Update weights: (Here P,Qi denote their densities.)

w
(m)
i =

P(T (m)
i) g(Y | T (m)

i , X)

Qi(T (m)
i | T (m)

i−1)P(T (m)
i−1)

(8)

= w
(m)
i−1

P(T (m)
i | T (m)

i−1)

Qi(T (m)
i | T (m)

i−1)

g(Y | T (m)
i , X)

g(Y | T (m)
i−1 , X)

(9)

end for
Compute normalization: Wi =

∑
m w

(m)
i

Normalize weights: (∀m) w̄
(m)
i = w

(m)
i /Wi

if
(∑

m(w̄
(m)
i)2

)−1
< ESS-THRESHOLD then

(∀m) Resample indices jm from
∑
m′ w̄

(m′)
i δm′

(∀m) T (m)
i ← T (jm)

i ; w
(m)
i ←Wi/M

end if
if (∀m)E

(m)
i = ∅ then

exit for loop
end if

end for
return Estimated marginal probability Wi/M and

weighted samples {w(m)
i ,T

(m)
i , κ

(m)
i , τ

(m)
i }Mm=1.

B. Effect of SMC proposal and
expansion strategy on test accuracy

The results are shown in Figure 6.

C. Effect of the number of islands:
magic-04 dataset

The results are shown in Figure 7.

101 102 103 104

Mean Time (s)

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103

Number of particles

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103 104 105

Mean Time (s)

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

101 102 103

Number of particles

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
SMC optimal [layer]
SMC prior [layer]

Figure 6. Results on pen-digits (top), and magic-04 (bot-
tom). Left column plots test accuracy vs runtime, while
right column plots test accuracy vs number of particles.
The blue circles and red squares represent optimal and
prior proposals respectively. The solid and dashed lines
represent node-wise and layer-wise proposals respectively.

100 101 102 103 104

Number of particles per island

−0.65

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

lo
g
p(
Y
|X

)
(t

es
t)

151020502002000
Number of islands

100 101 102 103 104

Number of particles per island

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y
(t

es
t)

151020502002000
Number of islands

Figure 7. Results on magic-04 : Test log p(y|x) (left) and
accuracy (right) vs I and M/I for fixed M = 2000.

D. Marginal likelihood

The log marginal likelihood of the training data for
different proposals is shown in Figure 8. As the num-
ber of particles increases, the log marginal likelihood
of prior and optimal proposals converge to the same
value (as expected).

E. Sensitivity of results to choice of
hyperparameters

In this experiment, we evaluate the sensitivity of
the runtime vs predictive performance comparison be-
tween SMC (prior and optimal proposals), MCMC
and CART to the choice of hyper parameters α
(Dirichlet concentration parameter) and αs, βs (tree
priors). We consider only node-wise expansion since
it consistently outperformed layer-wise expansion in
our previous experiments. In the first variant, we
fix α = 5.0 (since we do not expect it to affect the

Top-down particle filtering for Bayesian decision trees

102 103 104

Number of particles

−5600

−5500

−5400

−5300

−5200

−5100

L
og

M
ar

gi
na

ll
ik

el
ih

oo
d

(t
ra

in
)

SMC optimal [node]
SMC prior [node]

102 103 104

Number of particles

−3400

−3200

−3000

−2800

−2600

−2400

L
og

M
ar

gi
na

ll
ik

el
ih

oo
d

(t
ra

in
)

SMC optimal [node]
SMC prior [node]

Figure 8. Results on pen-digits (left), and magic-04
(right). Mean log marginal likelihood (i.e., mean
log p(Y |X) for training data averaged across 10 runs) vs
number of particles. The blue circles and red squares rep-
resent optimal and prior proposals respectively.

timing results) and vary the hyper parameters from
αs = 0.95, βs = 0.5 to αs = 0.8, βs = 0.2 (bold re-
flects changes) and also consider intermediate config-
urations αs = 0.95,βs = 0.2 and αs = 0.8, βs = 0.5.
In the second variant, we fix αs = 0.95, βs = 0.5 and
set α = 1.0. Figures 9, 10, 11 and 12 display the re-
sults on pen-digits (top row), and magic-04 (bottom
row). The left column plots test log p(y|x) vs run-
time, while the right column plots test accuracy vs
runtime. The blue circles and red squares represent
optimal and prior proposals respectively. Comparing
the results to Figure 5 (in main text), we observe that
the trends are qualitatively similar to those observed
for α = 5.0, αs = 0.95, βs = 0.5 in Section 4.2 (in main
text): (i) SMC consistently offers a better runtime vs
predictive performance tradeoff than MCMC, (ii) the
prior proposal offers a better runtime vs predictive
performance tradeoff than the optimal proposal, (iii)
α = 1.0 leads to similar test accuracies as α = 5.0 (the
predictive probabilities are obviously not comparable).

102 103 104

Mean Time (s)

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

−0.42

−0.41

−0.40

−0.39

−0.38

−0.37

−0.36

−0.35

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure 9. Hyperparameters: α = 5.0,αs = 0.8, βs = 0.5

(see main text for additional information).

103 104

Mean Time (s)

−0.6

−0.5

−0.4

−0.3

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

0.80

0.85

0.90

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

−0.46

−0.44

−0.42

−0.40

−0.38

−0.36

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure 10. Hyperparameters: α = 5.0, αs = 0.95,βs = 0.2
(see main text for additional information).

103 104

Mean Time (s)

−0.7

−0.6

−0.5

−0.4

−0.3

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

0.80

0.85

0.90

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

−0.42

−0.40

−0.38

−0.36

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

103 104

Mean Time (s)

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure 11. Hyperparameters: α = 5.0,αs = 0.8, βs =
0.2 (see main text for additional information).

102 103 104

Mean Time (s)

−0.6

−0.5

−0.4

−0.3

−0.2

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

−0.40

−0.38

−0.36

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.81

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure 12. Hyperparameters: α = 1.0, αs = 0.95, βs = 0.5
(see main text for additional information).

