Top-down particle filtering for Bayesian decision trees

Balaji Lakshminarayanan¹, Daniel M. Roy² and Yee Whye Teh³

1. Gatsby Unit, UCL, 2. University of Cambridge and 3. University of Oxford

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Introduction

- Input: attributes $X = \{x_i\}_{i=1}^N$, labels $Y = \{y_i\}_{i=1}^N$ (i.i.d)
- ▶ $y_i \in \{1, ..., K\}$ (classification) or $y_i \in \mathbb{R}$ (regression)
- ► Goal: Model p(y|x)

Introduction

- ▶ Input: attributes $X = \{x_i\}_{i=1}^N$, labels $Y = \{y_i\}_{i=1}^N$ (i.i.d)
- ▶ $y_i \in \{1, ..., K\}$ (classification) or $y_i \in \mathbb{R}$ (regression)
- ► Goal: Model p(y|x)
- Assume p(y|x) is specified by decision tree T
- Bayesian decision trees:

• Posterior:
$$p(\mathcal{T}|Y,X) \propto \underbrace{p(Y|\mathcal{T},X)}_{\mathcal{P}(\mathcal{T}|X)} \underbrace{p(\mathcal{T}|X)}_{\mathcal{P}(\mathcal{T}|X)}$$

• Prediction: $p(y_*|x_*) = \sum_{\mathcal{T}} p(\mathcal{T}|Y, X) p(y_*|x_*, \mathcal{T})$

Example: Classification tree

 θ : Multinomial parameters at leaf nodes

Example: Regression tree

heta: Gaussian parameters at leaf nodes

Motivation

- Classic non-Bayesian induction algorithms (e.g. CART) learn a single tree in a top-down manner using greedy heuristics (post-pruning and/or bagging necessary)
- MCMC for Bayesian decision trees: [Chipman et al., 1998]: local Monte Carlo modifications to the tree structure (less prone to over fitting but slow to mix)
- Our contribution: Sequential Monte Carlo (SMC) algorithm that approximates the posterior, in a top-down manner
- Take home message: SMC provides better computation vs predictive performance tradeoff than MCMC

Bayesian decision trees: likelihood

 $p(\mathcal{T}|Y,X) \propto \underbrace{p(Y|\mathcal{T},X)}_{likelihood} \underbrace{p(\mathcal{T}|X)}_{prior}$

Likelihood

- Assume x_n falls in the j^{th} leaf node of \mathcal{T}
- ► Likelihood for n^{th} data point: $p(y_n | x_n, T, \theta) = p(y_n | \theta_j, x_n)$

$$p(Y | \mathcal{T}, X, \Theta) = \prod_{n} p(y_n | x_n, \mathcal{T}, \theta) = \prod_{j \in \text{leaves}(\mathsf{T})} \prod_{n \in N(j)} p(y_n | \theta_j)$$

Likelihood

- Assume x_n falls in the j^{th} leaf node of \mathcal{T}
- ► Likelihood for n^{th} data point: $p(y_n | x_n, T, \theta) = p(y_n | \theta_j, x_n)$

$$p(Y \mid \mathcal{T}, X, \Theta) = \prod_{n} p(y_n \mid x_n, \mathcal{T}, \theta) = \prod_{j \in \text{leaves}(\mathsf{T})} \prod_{n \in N(j)} p(y_n \mid \theta_j)$$

• Better: integrate out θ_j , use marginal likelihood

$$p(Y | \mathcal{T}, X) = \prod_{j \in \mathsf{leaves}(\mathsf{T})} \int_{\theta_j} \prod_{n \in N(j)} p(y_n | \theta_j) p(\theta_j) d\theta_j$$

- Classification: Dirichlet Multinomial
- Regression: Normal Normal Inverse Gamma

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Bayesian decision trees: prior

 $p(\mathcal{T}|Y,X) \propto \underbrace{p(Y|\mathcal{T},X)}_{likelihood} \underbrace{p(\mathcal{T}|X)}_{prior}$

0. Start with empty tree.

1. Choose to split root node with feature 1 and threshold 0.5.

2. Choose to not split node 0.

3. Choose to split node 1 with with feature 2 and threshold 0.35.

- 4. Choose to not split node 10.
- 5. Choose to not split node 11.

Sequence of random variables for a tree

1. $\rho_{\epsilon} = 1, \kappa_{\epsilon} = 1, \tau_{\epsilon} = 0.5$ 2. $\rho_{0} = 0$ 3. $\rho_{1} = 1, \kappa_{1} = 2, \tau_{1} = 0.35$ 4. $\rho_{10} = 0$ 5. $\rho_{11} = 0$

Sequential prior over decision trees

Probability of split (assuming a valid split exists):

$$p(\mathsf{j}|\mathsf{split}) = lpha_{s} \cdot \left(1 + \mathit{depth}(j)
ight)^{-eta_{s}} \quad lpha_{s} \in (0,1), \,\, eta_{s} \in [0,\infty)$$

• κ_j, τ_j sampled uniformly from the range of valid splits

Sequential prior over decision trees

Probability of split (assuming a valid split exists):

$$p(\mathsf{j}|\mathsf{split}) = lpha_{s} \cdot \left(1 + \mathit{depth}(j)
ight)^{-eta_{s}} \quad lpha_{s} \in (0,1), \,\, eta_{s} \in [0,\infty)$$

κ_j, τ_j sampled uniformly from the range of valid splits
Prior distribution:

$$p(\mathsf{T}, \kappa, \tau | X) = \prod_{j \in \mathsf{leaves}(\mathsf{T})} p(j \text{ not split})$$
$$\times \prod_{j \in \mathsf{nonleaves}(\mathsf{T})} p(j \text{ split}) p(\kappa_j, \tau_j)$$

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Bayesian decision trees: posterior

 $p(\mathcal{T}|Y,X) \propto \underbrace{p(Y|\mathcal{T},X)}_{likelihood} \underbrace{p(\mathcal{T}|X)}_{prior}$

SMC algorithm for Bayesian decision trees

• Importance sampler: Draw $\mathcal{T}^{(c)} \sim q(\cdot)$

$$p(Y|X) = \sum_{\mathcal{T}} p(Y, \mathcal{T}|X) \approx \sum_{c=1}^{C} \underbrace{\frac{1}{C} \frac{p(\mathcal{T}^{(c)})}{q(\mathcal{T}^{(c)})} p(Y|X, \mathcal{T}^{(c)})}_{w^{(c)}}$$

SMC algorithm for Bayesian decision trees

• Importance sampler: Draw $\mathcal{T}^{(c)} \sim q(\cdot)$

$$p(Y|X) = \sum_{\mathcal{T}} p(Y, \mathcal{T}|X) \approx \sum_{c=1}^{C} \underbrace{\frac{1}{C} \frac{p(\mathcal{T}^{(c)})}{q(\mathcal{T}^{(c)})} p(Y|X, \mathcal{T}^{(c)})}_{w^{(c)}}$$

• Normalize:
$$\bar{w}^{(c)} = \frac{w^{(c)}}{\sum_{c'} w^{(c')}}$$

Approximate posterior:

$$p(\mathcal{T}|Y,X) \approx \sum_{c} \bar{w}^{(c)} \, \delta(\mathcal{T}=\mathcal{T}^{(c)})$$

SMC algorithm for Bayesian decision trees (contd.)

Sequential importance sampler (SIS):

$$p(\mathcal{T}_{n}) = p(\mathcal{T}_{0}) \prod_{n'=1}^{n} p(\mathcal{T}_{n'}|\mathcal{T}_{n'-1}) \quad q(\mathcal{T}_{n}) = q_{0}(\mathcal{T}_{0}) \prod_{n'=1}^{n} q_{n'}(\mathcal{T}_{n'}|\mathcal{T}_{n'-1})$$

$$p(Y|X,\mathcal{T}_{n}) = \underline{p(Y|X,\mathcal{T}_{0})} \underbrace{\frac{p(Y|X,\mathcal{T}_{1})}{p(Y|X,\mathcal{T}_{0})} \cdots \frac{p(Y|X,\mathcal{T}_{n})}{p(Y|X,\mathcal{T}_{n-1})}$$

SMC algorithm for Bayesian decision trees (contd.)

Sequential importance sampler (SIS):

$$p(\mathcal{T}_n) = p(\mathcal{T}_0) \prod_{n'=1}^n p(\mathcal{T}_{n'} | \mathcal{T}_{n'-1}) \quad q(\mathcal{T}_n) = q_0(\mathcal{T}_0) \prod_{n'=1}^n q_{n'}(\mathcal{T}_{n'} | \mathcal{T}_{n'-1})$$
$$p(Y|X, \mathcal{T}_n) = \underline{p(Y|X, \mathcal{T}_0)} \underbrace{\frac{p(Y|X, \mathcal{T}_1)}{p(Y|X, \mathcal{T}_0)}} \cdots \underbrace{\frac{p(Y|X, \mathcal{T}_n)}{p(Y|X, \mathcal{T}_{n-1})}}$$

$$w = \frac{1}{C} \frac{p(\mathcal{T}_{n})}{q(\mathcal{T}_{n})} p(Y|X, \mathcal{T}_{n})$$

= $w_{0} \prod_{n'=1}^{n} \frac{p(\mathcal{T}_{n'} | \mathcal{T}_{n'-1})}{q_{n'}(\mathcal{T}_{n'} | \mathcal{T}_{n'-1})} \underbrace{\frac{p(Y | X, \mathcal{T}_{n'})}{p(Y | X, \mathcal{T}_{n'-1})}}_{\text{local likelihood}}$

- ► Sequential Monte Carlo (SMC): SIS + adaptive resampling steps
- Every node is processed just once: no multi-path issues

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments

Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Experimental setup

Datasets:

- magic-04: N = 19K, D = 10, K = 2.
- pendigits: N = 11K, D = 16, K = 10.
- 70% 30% train-test split
- Numbers averaged across 10 different initializations

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

SMC design choices

Proposals

- prior proposal: $q_n(\rho_j, \kappa_j, \tau_j) = p(\rho_j, \kappa_j, \tau_j)$
- optimal proposal:

$$q_n(\rho_j = \text{stop}) \propto p(j \text{ not split})p(Y_{N(j)}|X_{N(j)}),$$

$$q_n(\rho_j = \text{split}, \kappa_j, \tau_j) \propto p(j \text{ split})p(\kappa_j, \tau_j) \times \underbrace{p(Y_{N(j0)}|X_{N(j0)})}_{\text{left child}} \underbrace{p(Y_{N(j1)}|X_{N(j1)})}_{\text{right child}}.$$

- Set of nodes considered for expansion at iteration n
 - node-wise: next node
 - layer-wise: all nodes at depth n
- Multinomial resampling

Effect of SMC design choices

Figure: Results on magic-04 dataset

Effect of irrelevant features on SMC design choices

Figure: Results on madelon dataset

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Predictive performance vs computation: SMC vs MCMC

- Fix hyper parameters $\alpha = 5, \alpha_s = 0.95, \beta_s = 0.5$
- ▶ MCMC [Chipman et al., 1998]: one of the 4 proposals:
 - ► grow
 - prune
 - change
 - swap
- MCMC averages predictions over all previous trees
- Vary number of particles in SMC, number of MCMC iterations and compare runtime vs performance

Predictive performance vs computation: SMC vs MCMC

Figure: Results on magic-04 dataset

Take home message

SMC (*prior*, *node-wise*) is at least an order of magnitude faster than MCMC

Outline

Introduction

Sequential prior over decision trees

Bayesian inference: Top-down particle filtering

Experiments Design choices in the SMC algorithm SMC vs MCMC

Conclusion

Conclusion

SMC for fast Bayesian inference for decision trees

- mimick the top-down generative process of decision trees
- use 'local' likelihoods + resampling steps to guide tree growth
- For a fixed computational budget, SMC outperforms MCMC

Conclusion

SMC for fast Bayesian inference for decision trees

- mimick the top-down generative process of decision trees
- use 'local' likelihoods + resampling steps to guide tree growth
- For a fixed computational budget, SMC outperforms MCMC
- Future directions
 - Particle-MCMC for Bayesian Additive Regression Trees
 - Mondrian process prior: projective and exchangeable prior for decision trees [Roy and Teh, 2009]

Thank you!

Code available at http://www.gatsby.ucl.ac.uk/~balaji

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian CART model search.

J. Am. Stat. Assoc., pages 935–948.

Roy, D. M. and Teh, Y. W. (2009).

The Mondrian process.

In *Adv. Neural Information Proc. Systems*, volume 21, pages 1377–1384.