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Introduction

I Input: attributes X = {xi}Ni=1, labels Y = {yi}Ni=1 (i.i.d)

I yi ∈ {1, . . . ,K} (classification) or yi ∈ R (regression)

I Goal: Model p(y |x)

I Assume p(y |x) is specified by decision tree T
I Bayesian decision trees:

I Posterior: p(T |Y ,X ) ∝ p(Y |T ,X )︸ ︷︷ ︸
likelihood

p(T |X )︸ ︷︷ ︸
prior

I Prediction: p(y∗|x∗) =
∑
T p(T |Y ,X )p(y∗|x∗, T )
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Example: Classification tree

x1 > 0.5

θ0 x2 > 0.35

θ10 θ11

0 1

0 1

x2

x10

1

1

B10

B0 B11

+
+

+

+
+

+

−
−

−

θ: Multinomial parameters at leaf nodes



Example: Regression tree
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Motivation

I Classic non-Bayesian induction algorithms (e.g. CART) learn
a single tree in a top-down manner using greedy heuristics
(post-pruning and/or bagging necessary)

I MCMC for Bayesian decision trees: [Chipman et al., 1998]:
local Monte Carlo modifications to the tree structure (less
prone to over fitting but slow to mix)

I Our contribution: Sequential Monte Carlo (SMC) algorithm
that approximates the posterior, in a top-down manner

I Take home message: SMC provides better computation vs
predictive performance tradeoff than MCMC



Bayesian decision trees: likelihood

p(T |Y ,X ) ∝ p(Y |T ,X )︸ ︷︷ ︸
likelihood

p(T |X )︸ ︷︷ ︸
prior



Likelihood

I Assume xn falls in the j th leaf node of T
I Likelihood for nth data point: p(yn | xn, T ,θ) = p(yn|θj , xn)

p(Y | T ,X ,Θ) =
∏
n

p(yn | xn, T ,θ) =
∏

j∈leaves(T)

∏
n∈N(j)

p(yn|θj)

I Better: integrate out θj , use marginal likelihood

p(Y | T ,X ) =
∏

j∈leaves(T)

∫
θj

∏
n∈N(j)

p(yn|θj)p(θj)dθj

I Classification: Dirichlet - Multinomial

I Regression: Normal - Normal Inverse Gamma
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Bayesian decision trees: prior

p(T |Y ,X ) ∝ p(Y |T ,X )︸ ︷︷ ︸
likelihood

p(T |X )︸ ︷︷ ︸
prior



Partial trees

0. Start with empty tree.
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Partial trees

1. Choose to split root node with feature 1 and threshold 0.5.

ε : x1 > 0.5

0 1

B0 B1x2

x10

1

1

+
+

+

+
+

+

−
−

−



Partial trees

2. Choose to not split node 0.
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Partial trees

3. Choose to split node 1 with with feature 2 and threshold 0.35.

ε : x1 > 0.5

0 1 : x2 > 0.35
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Partial trees

4. Choose to not split node 10.
5. Choose to not split node 11.
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Sequence of random variables for a tree

ε : x1 > 0.5

0 1 : x2 > 0.35

10 11

1. ρε = 1, κε = 1, τε = 0.5

2. ρ0 = 0

3. ρ1 = 1, κ1 = 2, τ1 = 0.35

4. ρ10 = 0

5. ρ11 = 0



Sequential prior over decision trees

I Probability of split (assuming a valid split exists):

p(j split) = αs ·
(

1 + depth(j)
)−βs

αs ∈ (0, 1), βs ∈ [0,∞)

I κj , τj sampled uniformly from the range of valid splits

I Prior distribution:

p(T, κ, τ |X ) =
∏

j∈leaves(T)

p(j not split)

×
∏

j∈nonleaves(T)

p(j split)p(κj , τj)
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Bayesian decision trees: posterior

p(T |Y ,X ) ∝ p(Y |T ,X )︸ ︷︷ ︸
likelihood

p(T |X )︸ ︷︷ ︸
prior



SMC algorithm for Bayesian decision trees

I Importance sampler: Draw T (c) ∼ q(·)

p(Y |X ) =
∑
T

p(Y , T |X ) ≈
C∑

c=1

1

C

p(T (c))

q(T (c))
p(Y |X , T (c))︸ ︷︷ ︸

w (c)

I Normalize: w̄ (c) = w (c)∑
c′ w

(c′)

I Approximate posterior:

p(T |Y ,X ) ≈
∑
c

w̄ (c) δ(T = T (c))
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SMC algorithm for Bayesian decision trees (contd.)

I Sequential importance sampler (SIS):

p(Tn) = p(T0)
n∏

n′=1

p(Tn′ |Tn′−1) q(Tn) = q0(T0)
n∏

n′=1

qn′(Tn′ |Tn′−1)
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��p(Y |X , T0)�
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���p(Y |X , T0)
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p(Tn)

q(Tn)
p(Y |X , Tn)

= w0

n∏
n′=1

p(Tn′ | Tn′−1)

qn′(Tn′ | Tn′−1)

p(Y |X , Tn′)
p(Y |X , Tn′−1)︸ ︷︷ ︸

local likelihood

I Sequential Monte Carlo (SMC): SIS + adaptive resampling steps

I Every node is processed just once: no multi-path issues
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Experimental setup

I Datasets:
I magic-04 : N = 19K , D = 10, K = 2.
I pendigits: N = 11K , D = 16, K = 10.

I 70% - 30% train-test split

I Numbers averaged across 10 different initializations
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SMC design choices

I Proposals
I prior proposal: qn(ρj , κj , τj) = p(ρj , κj , τj)
I optimal proposal:

qn(ρj = stop) ∝ p(j not split)p(YN(j)|XN(j)),

qn(ρj = split, κj , τj) ∝ p(j split)p(κj , τj)

× p(YN(j0)|XN(j0))︸ ︷︷ ︸
left child

p(YN(j1)|XN(j1))︸ ︷︷ ︸
right child

.

I Set of nodes considered for expansion at iteration n
I node-wise: next node
I layer-wise: all nodes at depth n

I Multinomial resampling



Effect of SMC design choices
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Figure: Results on magic-04 dataset



Effect of irrelevant features on SMC design choices

madelon: N = 2.6K , D = 500, K = 2
(96% of the features are irrelevant)
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Figure: Results on madelon dataset
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Predictive performance vs computation: SMC vs MCMC

I Fix hyper parameters α = 5, αs = 0.95, βs = 0.5
I MCMC [Chipman et al., 1998]: one of the 4 proposals:

I grow
I prune
I change
I swap

I MCMC averages predictions over all previous trees

I Vary number of particles in SMC, number of MCMC
iterations and compare runtime vs performance



Predictive performance vs computation: SMC vs MCMC

102 103 104

Mean Time (s)

−0.42

−0.40

−0.38

−0.36

−0.34

lo
g
p(
Y
|X

)
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

102 103 104

Mean Time (s)

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y
(t

es
t)

SMC optimal [node]
SMC prior [node]
Chipman-MCMC
CART (gini)
CART (entropy)

Figure: Results on magic-04 dataset



Take home message

SMC (prior, node-wise) is at least
an order of magnitude faster than MCMC
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Conclusion

I SMC for fast Bayesian inference for decision trees
I mimick the top-down generative process of decision trees
I use ‘local’ likelihoods + resampling steps to guide tree growth
I For a fixed computational budget, SMC outperforms MCMC

I Future directions
I Particle-MCMC for Bayesian Additive Regression Trees
I Mondrian process prior: projective and exchangeable prior for

decision trees [Roy and Teh, 2009]
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Thank you!

Code available at
http://www.gatsby.ucl.ac.uk/~balaji

http://www.gatsby.ucl.ac.uk/~balaji
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