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Quantifying Uncertainty In Deep Learning

• Why predictive uncertainty?
– Good uncertainty scores quantify when we can trust themodel’s predictions

• Predict output distribution p(y|x) rather than point estimate
– Classification: output label y∗ along with confidence– Regression: output mean and variance
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Source of uncertainty: Inherent stochasticity

Output y for a given x could be inherently stochastic
• Rewards in a casino
• Measurement noise in y
• Noise in labeling process (outcome could depend on rater)
• Also known as aleatoric uncertainty
• Considered to be “irreducible uncertainty”: persists even inthe limit of infinite data
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Source of uncertainty: Model uncertainty

• Multiple values of parameters could be consistent with theobserved data
• Also known as epistemic uncertainty
• Considered to be “reducible uncertainty”: vanishes in thelimit of infinite data (subject to identifiability)
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Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)

• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection

• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems

• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration

• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization

• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know

• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



Applications of Predictive Uncertainty1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)
• Active learning for efficient data collection
• Dealing with noisy data and train-test skew in productionsystems
• Reinforcement learning: (Safe) Exploration
• Model interpretability and visualization
• Build modular systems that know what they don’t know
• ... and many more!

1Weight uncertainty is also useful, e.g. compression, sensitivity analysis 5



How do we measure the quality of uncertainty?

• Calibration: Measures how probabilistic forecasts alignwith observed long-run frequencies– Weather forecasting: Of all days where model predicted rainwith 80% probability, what fraction did we observe rain?– Measures: Calibration curve / Reliability diagrams,Expected calibration error (ECE)

• Robustness to dataset shift: does the system exhibithigher uncertainty on inputs far away from training data?– p(y|x) is typically accurate when x ∼ ptrain(x), but can makeoverconfident errors when asked to predict on
out-of-distribution (OOD) inputs– Cross-validation can inflate performance. Need to measureability of model to reject OOD inputs (e.g. confidenceversus accuracy curves).• Challenges– Lack of ground truth: no “right answer” in some cases– Cost of decisions may be difficult to model
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How do deep networks fare?
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Deep networks are poorly calibrated
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High confidence predictions on OOD inputs
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A quick overview of Bayesian deep learning
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Bayesian deep learning

• Bayesian Model Averaging (BMA) in a nutshell:
– Specify prior over parameters p(θ)– Compute posterior distribution of parameters p(θ|D)– Translate parameter uncertainty to predictive uncertainty

• True posterior distribution p(θ|D) is usually hard tocompute and approximated:– Variational inference
– Approximate true posterior distribution by simplerparametric distribution q(θ), usually a single mode– Laplace approximation, BBB, Dropout variational inference– Markov Chain Monte Carlo
– Do not make parametric assumption– Define Markov chain that eventually samples from trueposterior– Lots of recent work on stochastic gradient MCMC: SGLD,SGHMC, etc
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Why Bayesian deep learning?

• BMA satisfies the axioms of probability (as it uses Bayesrule) and is the only way to protect against “Dutch books”.

• BMA is optimal if:
– “prior is correct” i.e. true model is within hypothesis class– true posterior can be computed exactly

• Bayesian deep learning is gaining popularity
– Lots of great tools exist for low dimensional problems (e.g.Hamiltonian Monte Carlo, Gaussian processes)– Better software and probabilistic programming tools– But the true multi-modal posterior is really hard toapproximate for high dimensional spaces
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Is there a scalable alternative to Bayesian model averaging for
quantifying predictive uncertainty?

Yes!
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Our contribution: simple yet powerful baseline

Probabilistic, but non-Bayesian, baseline

• Performs well on evaluation metrics
• Simple to implement (minimal changes to baseline)
• Scalable to large datasets (e.g. ImageNet)
• Robust:

– Works for different output types (classification/regression)– Works for different architectures
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A Simple Recipe for Uncertainty Estimation

1. Let neural network parametrize a distribution pθ(y|x).– Classification: softmax parametrizes discrete distribution– Regression: Gaussian with mean µθ(x) & var σ2
θ(x)

2. Use a proper scoring rule as training criterion.– Classification: cross entropy loss– Regression: Gaussian likelihood mean µθ(x) & var σ2
θ(x)3. (Optional) Augment with adversarial training

– Augment (x + ∆x, y) where ∆x = −ε sign(∇x log pθ(y|x)
)

– Encourages p(y|x) to be similar to p(y|x + ∆x)4. Train an ensemble ofM networkswith random initialization5. Combine predictions at test time
p(y|x) =

1
M

M∑
m=1

pθm(y|x,θm)

Model combination & not Bayesian Model Averaging
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BMA vs Model combination2

• BMA does soft model selection: BMA converges to singlemodel in infinite data limit.• Ensembles do model combination. Hypothesis space isricher (as it is an additive model).
2Example from Bayesian Model Averaging Is Not Model Combination(Minka, 2001) 17



Results on a toy regression task

• Left plot: non-probabilistic network, use empiricalvariance between 5 networks as uncertainty

• Middle plot: single probabilistic network
• Right plot: ensemble of 5 probabilistic networks.

18



Results on a toy regression task

• Left plot: non-probabilistic network, use empiricalvariance between 5 networks as uncertainty
• Middle plot: single probabilistic network

• Right plot: ensemble of 5 probabilistic networks.

18



Results on a toy regression task

• Left plot: non-probabilistic network, use empiricalvariance between 5 networks as uncertainty
• Middle plot: single probabilistic network
• Right plot: ensemble of 5 probabilistic networks.

18



Results on UCI regression benchmark datasets

Datasets RMSE NLLPBP MC-dropout Deep Ensembles PBP MC-dropout Deep Ensembles
Boston housing 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02Naval propulsion plant 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05Power plant 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21Year Prediction MSD 8.88 ± NA 8.85 ± NA 8.89 ± NA 3.60 ± NA 3.59 ± NA 3.35 ± NA

• Our method achieves better NLL, but slightly worse RMSEin some cases
• Even though non-Bayesian, our method is competitive withprobabilistic backpropagation (PBP) and MC-Dropout
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Calibration results on Year Prediction MSD

Probabilistic networks (left) are much better calibrated thannon-probabilistic networks (right).

Figure: x-axis denotes the expected fraction and y-axis denotes theobserved fraction; ideal output is the dashed blue line. Abovediagonal = under-confidence, below diagonal = over-confidence.
20



Classification Results on MNIST using MLP

0 5 10 15
Number of nets

1.0

1.2

1.4

1.6

1.8
Classification Error

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10 15
Number of nets

0.02

0.04

0.06

0.08

0.10

0.12

0.14
NLL

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10 15
Number of nets

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030
Brier Score

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

• Ensembles lead to better predictive uncertainty

• Adversarial training leads to further improvements
• Similar results on SVHN using convolutional nets
• We also show results on ImageNet to illustrate scalability
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Evaluating predictive uncertainty on OOD

• Goal: check if the methods are more uncertain whiletesting on out-of-distribution (OOD) dataset.

• Setup:
– Train on MNIST– Evaluate on known test set (MNIST) and unknown test set(NotMNIST) (both 28 x 28 gray-scale images)

• Also trained / tested on different datasets:
– Train on SVHN / Test on CIFAR (both 32 x 32 x 3 images)– ImageNet: train on dog categories and test on non-dogcategories
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

Single network & MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are more robust.Similar results on SVHN-CIFAR and ImageNet (dogs vsno-dogs).
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Accuracy Vs Confidence
Model abstains from making prediction when confidence < τEvaluate test accuracy only on examples where maxy p(y|x) ≥ τ

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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• MC-dropout can produce overconfident wrong predictions,whereas deep ensembles are significantly more robust.• Similar results on ImageNet (dogs vs no-dogs)
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Qualitatively evaluating predictive uncertainty

• Top two rows: examples with lowest disagreement
• Bottom two rows: examples with highest disagreement
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Why would this work?

• Modeling distribution pθ(y|x) captures inherent ambiguity(aleatoric uncertainty).

• Ensemble approximates epistemic uncertainty
– Training on bootstrap samples has theoretical justification– In practice, using entire dataset works better.

• Interesting similarities to ensembles of decision trees
– Breiman’s random forests [2] used bagging– Later work on Extremely Randomized Trees found baggingto be unnecessary if there was sufficient randomization [4]– (Non-Bayesian) Ensembles of probabilistic decision treescan give good uncertainty estimates in practice [5]
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Take home message

• Non-Bayesian, Probabilistic solutions can be surprisinglyeffective at estimating predictive uncertainty

• Strong non-Bayesian baselines are valuable to understandthe limitations
– Better ways to specify priors– Better ways to improve approximate posteriors

• Lots of other promising non-Bayesian solutions
– Temperature scaling– ODIN

• Combining Bayesian and non-Bayesian solutions can getthe best of both worlds
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So far: Discriminative models

30



Discriminative vs Generative models

• p(y|x) is typically accurate when x ∼ ptrain(x), but can makeoverconfident errors when asked to predict on OOD

• Use generative model to decide when to trust p(y|x) [1]3

3Novelty Detection and Neural Network Validation (Bishop, 1994) 31
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AABI workshop, NeurIPS 20174

Panel Discussion, Advances in Approximate Bayesian Inference(AABI) workshop

4https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=46m2s 33
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AABI workshop, NeurIPS 2017
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AABI workshop, NeurIPS 2017
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Generative models for CIFAR

Deep generative models where density p(x) can be computed:
Flows, Auto-regressive models, VAEs (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)
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Training a Flow-Based Model on CIFAR-10

39



Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Not caused by overfitting: Early stopping does
not help
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Ensembling does not fix the problem either
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Digging deeper into flows
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Flows: one slide summary
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Decomposition of likelihood for flow models
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Decomposition of likelihood for flow models
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Is the log volume term the culprit?

To isolate the effect of the volume term, we define
constant-volume (w.r.t. input) flows.
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Is the log volume term the culprit? No.

52



Analysis of Constant Volume
GLOW models
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Analysis of Constant Volume GLOW models
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Analysis of Constant Volume GLOW models

One weird trick to increase likelihoods: grayscale images!
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Summary of Results
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Summary of Results
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Summary of Results
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Take home message

• Deep generative models are attractive but have problemsdetecting out-of-distribution data.

• For flow-based models, the phenomenon can be explainedthrough the relative variances of the different inputdistributions
– Grayscale images– Constant images

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Novelty detection– Anomaly detection
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Papers available on my webpage (link)
• Simple and scalable predictive uncertainty estimation using
deep ensembles, NeurIPS, 2017 [6]

• Clinically applicable deep learning for diagnosis and referral
in retinal disease, Nature medicine, 2018 [3]

• Do Deep Generative Models Know What They Don’t Know?,ICLR, 2019 [8]

Recent work on models combining p(y|x) and p(x)

• Hybrid models with deep and invertible features, arXiv, 2018[7]
Check out our ICML 2019 workshophttps://sites.google.com/corp/view/udlworkshop2019/
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Thanks!
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Backup slides
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Triage Recommendation for Patients with Eye
Diseases using OCT scans

• Optical Coherence Tomography (OCT)– Creates a high-resolution 3D scan of the retina– OCT technique works like ultrasound but with light• Collaboration with Moorfields Eye Hospital
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Use case: Referral suggestion from OCT scan
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Two-Stage Architecture

• First: ensemble of segmentation networks to the OCT scan
• Second: ensemble of classification networks
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Two-Stage Architecture (continued)

• Segmentation map provides detailed, fully clinicallyinterpretable representation.
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Two-Stage Architecture (continued)

• Second stage classification network learns knowledge thatis independent of the used scanning device.
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Two-Stage Architecture (continued)

• Our framework reaches the performance of human experts
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• Ensemble 5 segmentation instances and 5 classificationinstances to get 25 predictions for each diagnosis.

80



Receiver Operating Characteristic (ROC) Curve

• We achieve an area under the curve of 99.2
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Receiver Operating Characteristic (ROC) Curve

• Evaluated human performance on this task using 8 experts• Only two of the top experts from Moorfields with over 20years experience were on par with our network
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Full referral results

• Our method achieves similar results in the standard triagewith 4 referral decisions too
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