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* Why predictive uncertainty?
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Quantifying Uncertainty In Deep Learning

* Why predictive uncertainty?

— Good uncertainty scores quantify when we can trust the
model’s predictions

* Predict output distribution p(y|x) rather than point estimate

— Classification: output label y* along with confidence
— Regression: output mean and variance



Source of uncertainty: Inherent stochasticity

Output y for a given x could be inherently stochastic
* Rewards in a casino
* Measurement noise in y
* Noise in labeling process (outcome could depend on rater)
+ Also known as aleatoric uncertainty

+ Considered to be “irreducible uncertainty”: persists even in
the limit of infinite data



Source of uncertainty: Model uncertainty
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+ Multiple values of parameters could be consistent with the
observed data

+ Also known as epistemic uncertainty

+ Considered to be “reducible uncertainty”: vanishes in the
limit of infinite data (subject to identifiability)
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Applications of Predictive Uncertainty’

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Active learning for efficient data collection

* Dealing with noisy data and train-test skew in production
systems

+ Reinforcement learning: (Safe) Exploration

* Model interpretability and visualization

* Build modular systems that know what they don't know
* ... and many more!

"Weight uncertainty is also useful, e.g. compression, sensitivity analysis



How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies
— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?
— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)
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How do we measure the quality of uncertainty?

+ Calibration: Measures how probabilistic forecasts align
with observed long-run frequencies

— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?

— Measures: Calibration curve / Reliability diagrams,
Expected calibration error (ECE)

* Robustness to dataset shift: does the system exhibit
higher uncertainty on inputs far away from training data?

- p(y|x) is typically accurate when x ~ pynin(x), but can make
overconfident errors when asked to predict on
out-of-distribution (OOD) inputs

— Cross-validation can inflate performance. Need to measure
ability of model to reject 00D inputs (e.g. confidence
VErsus accuracy curves).

* Challenges
- Lack of ground truth: no “right answer” in some cases
— Cost of decisions may be difficult to model



How do deep networks fare?



Deep networks are poorly calibrated

On Calibration of Modern Neural Networks

Chuan Guo”' Geoff Pleiss“' Yu Sun”' Kilian Q. Weinberger '

Abstract

Confidence calibration — the problem of predict-
ing probability estimates representative of the
true correctness likelihood — is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-
parameter variant of Platt Scaling — is surpris-
ingly effective at calibrating predictions.

1. Introduction
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.



High confidence predictions on OOD inputs

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming
anguyen8@uwyo. edu yosinski@cs.cornell.edu jeffclune@uwyo.edu

Abstract
Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of

pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [ (] revealed that
changing an image (e.g. of alion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take ¢ i neu- Xiog pengun
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes - =

that DNNs believe with near certainty are familiar objects, oo | remote oo ] Arcan rey
which we call “fooling images” (more generally, fooling ex-  Figure 1. Evolved images that are unrecognizable to humans,
amples). Our results shed light on interesting differences ™t that stte-of-the-art DNNs trained on ImageNet believe with
between human vision and current DNNs, and raise ques- 99.6% certainty to be a familiar object. This result highlights

rions about th Jity of DNN tor visi differences between how DNNs and humans recognize obje
lons about fhe generallly o compuler vision. Images are cither directly (top) or indirectly (bottom) encoded.
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A quick overview of Bayesian deep learning

10
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Bayesian deep learning

+ Bayesian Model Averaging (BMA) in a nutshell:
— Specify prior over parameters p(6)
— Compute posterior distribution of parameters p(6|D)
— Translate parameter uncertainty to predictive uncertainty
* True posterior distribution p(6|D) is usually hard to
compute and approximated:
— Variational inference
- Approximate true posterior distribution by simpler
parametric distribution q(#), usually a single mode
- Laplace approximation, BBB, Dropout variational inference
— Markov Chain Monte Carlo

— Do not make parametric assumption
- Define Markov chain that eventually samples from true

posterior
- Lots of recent work on stochastic gradient MCMC: SGLD,

SGHMC, etc
1



Why Bayesian deep learning?

+ BMA satisfies the axioms of probability (as it uses Bayes
rule) and is the only way to protect against “Dutch books”.
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Why Bayesian deep learning?

+ BMA satisfies the axioms of probability (as it uses Bayes

rule) and is the only way to protect against “Dutch books”.

+ BMA is optimal if:

— “prior is correct” i.e. true model is within hypothesis class

— true posterior can be computed exactly

+ Bayesian deep learning is gaining popularity

- Lots of great tools exist for low dimensional problems (e.g.
Hamiltonian Monte Carlo, Gaussian processes)

— Better software and probabilistic programming tools

— But the true multi-modal posterior is really hard to
approximate for high dimensional spaces

12



Is there a scalable alternative to Bayesian model averaging for
quantifying predictive uncertainty?
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Is there a scalable alternative to Bayesian model averaging for
quantifying predictive uncertainty? Yes!
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Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles

Balaji Lakshminarayanan Alexander Pritzel Charles Blundell
DeepMind
{balajiln,apritzel,cblundell}@google.com
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Our contribution: simple yet powerful baseline

Probabilistic, but non-Bayesian, baseline
+ Performs well on evaluation metrics
+ Simple to implement (minimal changes to baseline)

- Scalable to large datasets (e.g. ImageNet)
* Robust:

- Works for different output types (classification/regression)
- Works for different architectures

15
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A Simple Recipe for Uncertainty Estimation

. Let neural network parametrize a distribution pg(y|x).
— Classification: softmax parametrizes discrete distribution
- Regression: Gaussian with mean 19(x) & var o3(x)
. Use a proper scoring rule as training criterion.
— Classification: cross entropy loss
- Regression: Gaussian likelihood mean 1¢(x) & var o3(x)
. (Optional) Augment with adversarial training
- Augment (x + Ax,y) where Ax = —e sign (Vx |ng9(y|X))
— Encourages p(y|x) to be similar to p(y|x + Ax)
Train an ensemble of M networks with random initialization
Combine predictions at test time

PP =5 Zpem (VIX, Om)

m=1

Model combination & not Bayesian Model Averaging

16



BMA vs Model combination?
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Figure 1: (a) A classification problem where points in 2D are labeled with ‘x’ or ‘0’. The optimal
solution is to label ‘0’ if a point is in at least two circles, corresponding to a uniform vote between
the circles. (b) The test-set accuracy of BMA, as a function of training set size. BMA always
focuses on the topmost circle, even though the other two circles have nearly the same accuracy.

+ BMA does soft model selection: BMA converges to single
model in infinite data limit.

+ Ensembles do model combination. Hypothesis space is
richer (as it is an additive model).

2Example from Bayesian Model Averaging Is Not Model Combination
(Minka, 2001)

17



Results on a toy regression task
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+ Left plot: non-probabilistic network, use empirical
variance between 5 networks as uncertainty
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Results on a toy regression task
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+ Left plot: non-probabilistic network, use empirical
variance between 5 networks as uncertainty

+ Middle plot: single probabilistic network
* Right plot: ensemble of 5 probabilistic networks.




Results on UCI regression benchmark datasets

Datasets RMSE NLL
PBP MC-dropout Deep Ensembles PBP MC-dropout  Deep Ensembles

Boston housing 3.01£0.18 2.97 +0.85 3.28 +1.00 2.57 +£0.09 2.46+0.25 2.41+£0.25
Concrete 5.67 £0.09 5.23+0.53 6.03 +0.58 3.16 £ 0.02 3.04 +0.09 3.06 £ 0.18
Energy 1.80 £ 0.05 1.66 +0.19 2.09 +0.29 2.04+£0.02 199 +0.09 1.38 £ 0.22
Kin8nm 0.10 £0.00 0.10 £0.00 0.09 + 0.00 -0.90 £ 0.01 -0.95+0.03 -1.20 + 0.02
Naval propulsion plant | 0.01+0.00 0.01+ 0.00 0.00 + 0.00 -3.73+0.01 -3.80+0.05 -5.63 £ 0.05
Power plant 4.12 £ 0.03 4.02+0.18 4.11+£0.17 2.84+0.01 2.80+0.05 2.79 + 0.04
Protein 473 £0.01 4.36 +0.04 4.71+0.06 2.97+0.00 2.89+0.01 2.83+0.02
Wine 0.64 +0.01 0.62 + 0.04 0.64 + 0.04 0.97 +£0.01 0.93+0.06 0.94 +0.12
Yacht 1.02+0.05 1.11+0.38 1.58 +0.48 1.63+0.02 1.55+0.12 1.18 +0.21
Year Prediction MSD 8.88 £ NA 8.85 + NA 8.89 £ NA 3.60 = NA 3.59 £ NA 3.35+ NA

+ Our method achieves better NLL, but slightly worse RMSE
in some cases

* Even though non-Bayesian, our method is competitive with
probabilistic backpropagation (PBP) and MC-Dropout

19



Calibration results on Year Prediction MSD

Probabilistic networks (left) are much better calibrated than
non-probabilistic networks (right).
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Figure: x-axis denotes the expected fraction and y-axis denotes the
observed fraction; ideal output is the dashed blue line. Above
diagonal = under-confidence, below diagonal = over-confidence.



Classification Results on MNIST using MLP
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Similar results on SVHN using convolutional nets

We also show results on ImageNet to illustrate scalability
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Evaluating predictive uncertainty on OOD

+ Goal: check if the methods are more uncertain while
testing on out-of-distribution (OOD) dataset.
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Evaluating predictive uncertainty on OOD

+ Goal: check if the methods are more uncertain while

testing on out-of-distribution (OOD) dataset.

* Setup:

— Train on MNIST

- Evaluate on known test set (MNIST) and unknown test set
(NotMNIST) (both 28 x 28 gray-scale images)

+ Also trained / tested on different datasets:

— Train on SVHN / Test on CIFAR (both 32 x 32 x 3 images)
— ImageNet: train on dog categories and test on non-dog
categories

22



Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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Predictive entropy on known & unknown inputs

Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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Single network & MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are more robust.
Similar results on SVHN-CIFAR and ImageNet (dogs vs

no-dogs).
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Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
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Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)
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* MC-dropout can produce overconfident wrong predictions,
whereas deep ensembles are significantly more robust.
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Accuracy Vs Confidence

Model abstains from making prediction when confidence <
Evaluate test accuracy only on examples where max, p(y|x) > 7
Train: MNIST. Test: MNIST + NotMNIST (out-of-distribution)

90

—e— Ensemble
——e—— Ensemble + R
—e—— Ensemble + AT
~——e—— MC dropout

®
o

~
o

%)
o

Accuracy on examples p(y|z) >
B [
o o

00 01 02 03 04 05 06 07 08 09
Confidence Threshold

* MC-dropout can produce overconfident wrong predictions,
whereas deep ensembles are significantly more robust.
+ Similar results on ImageNet (dogs vs no-dogs)



Qualitatively evaluating predictive uncertainty
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+ Top two rows: examples with lowest disagreement
* Bottom two rows: examples with highest disagreement
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Why would this work?

* Modeling distribution pg(y|x) captures inherent ambiguity
(aleatoric uncertainty).
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Why would this work?

* Modeling distribution pg(y|x) captures inherent ambiguity

(aleatoric uncertainty).

- Ensemble approximates epistemic uncertainty

— Training on bootstrap samples has theoretical justification

— In practice, using entire dataset works better.

* Interesting similarities to ensembles of decision trees

- Breiman'’s random forests [2] used bagging

— Later work on Extremely Randomized Trees found bagging
to be unnecessary if there was sufficient randomization [4]

- (Non-Bayesian) Ensembles of probabilistic decision trees
can give good uncertainty estimates in practice [5]
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setting.

Al imaging is expanding globaly at an unprecedented
. leading to an ever-expanding quantiy of data that
equires human expertise and judgement to interpret and
o his

triage. In many clinical specialites there is a relative shorta
pertise to provide timely diagnosis and referral. For example,
oohaimolory, the widesresd avalablty of aptcal cohirence

OCT has shown promise in resolving some of these criteria i isola
tion, but has not yet shown clinical applicabilty by resolving al three.

Results
Clinical application and Al architecture, We developed our
architecture in the challenging context of OCT imaging for oph
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Take home message

+ Non-Bayesian, Probabilistic solutions can be surprisingly
effective at estimating predictive uncertainty
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Take home message

+ Non-Bayesian, Probabilistic solutions can be surprisingly
effective at estimating predictive uncertainty

+ Strong non-Bayesian baselines are valuable to understand
the limitations

— Better ways to specify priors
— Better ways to improve approximate posteriors

* Lots of other promising non-Bayesian solutions

- Temperature scaling
— ODIN
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Take home message

+ Non-Bayesian, Probabilistic solutions can be surprisingly
effective at estimating predictive uncertainty

+ Strong non-Bayesian baselines are valuable to understand
the limitations

— Better ways to specify priors
— Better ways to improve approximate posteriors

* Lots of other promising non-Bayesian solutions

- Temperature scaling

— ODIN

+ Combining Bayesian and non-Bayesian solutions can get
the best of both worlds

28



Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick*{ Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind
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So far: Discriminative models

30



Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D

3Novelty Detection and Neural Network Validation (Bishop, 1994)
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Discriminative vs Generative models

“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ py.in(X), but can make
overconfident errors when asked to predict on 00D
- Use generative model to decide when to trust p(y|x) [1]3

$Novelty Detection and Neural Network Validation (Bishop, 1994)
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if p(z*;¢) <,

then reject =*

Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].




AABI workshop, NeurlPS 20174

Panel Discussion, Advances in Approximate Bayesian Inference
(AABI) workshop

“https://www.youtube.com/watch?v=x1UByHT60mQ&feature=youtu.be&t=46m2s
33
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AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the

software.
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AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?
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AABI workshop, NeurlPS 2017

ZOUBIN: [The Bishop (1994) procedure] should be built into the
software.

MODERATOR: 1Isn’t that hard?

ZOUBIN: If you stick a picture of a chicken into an MNIST
classifier, it should tell you it’s neither a seven nor a one.

[AUDIENCE LAUGHS]
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Generative models for CIFAR

Generative
'E-ﬁ==§ Model p <XCIFAR—10>

h"EiH-' Training

Deep generative models where density p(x) can be computed:
Flows, Auto-regressive models, VAEs (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10  Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)
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Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images

1 :
EEE o
dEGREESESn

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464

(Lower is Better)

00005
EEN CIFAR10-TRAIN

o004 M CIFAR10-TEST

00003
00002
00001

00000
-12000  -10000  -8000 6000 4000

log p(X) (Higher is Better)

39



Training a Flow-Based Model on CIFAR-10

SVHN Test Images

1
2 |

A O O o [

Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

00005
BN CIFAR10-TRAIN

oooos 8 CIFARIO-TEST
W SVHN-TEST

00003

00002

00001

00000
-12000 10000  -8000 6000 ~4000

log p(X) (Higher is Better)
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits( Per Dimen?ion
NLL / # dims / log 2)
AR fu2f o] v B 14 CIFAR10-Train 3.386
. ... ﬂ 3.464
L Dl S04

m: BigProblem! e

oooos M CIFAR10-TEST

W SVHN-TEST

00003

00002

00001

00000
-12000  -10000 8000 6000

4000
log p(X) (Higher is Better)
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Phenomenon holds for VAEs and PixelCNN too

000030 000045 000040
m—CIFARIO-TRAIN o o00i0 - CIFAR10-TRAIN CIFARLO-TRAIN
000025 WM CIFAR10-TEST CIFAR10-TEST 00003 CIFAR10-TEST
B SVHN-TEST oo SVHN-TEST 000030 SVHN-TEST
000020 000030
000025
000025
000015 000020
000020
o000s
000010 000015
000010 oo
000005
o 0000s 000005
000000 — 000000 — 90000
00 -20000 15000 10000  -5000 3 ~16000 1400012000 ~10000 8000 ~6000 4000 ~2000 ~16000-14000-12000-10000 3000 6000 4000 -2000 O

log p(X) log p(X) log p(X)
(a) PixelCNN (b) VAE with RNVP as encoder ~ (¢) VAE conv-categorical likelihood



The phenomenon is asymmetric w.r.t. datasets

0.0005
EEE CIFAR10-TRAIN
00004 BN CIFAR10-TEST
BN SVHN-TEST

0.0003

0.0002

0.0001

000?012000 -10000 —8000 -6000 —4000
log p(X)
CIFAR-10 vs SVHN

0.0006

EEE SVHN-TRAIN
SVHN-TEST
CIFAR10-TEST

0.0005

0.0004
0.0003
0.0002
0.0001

0.0000
10000 —9000 —8000 —7000 —6000 —5000 —4000 —3000 —2000

log p(X)
SVHN vs CIFAR-10
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Additional OOD dataset pairs

000204 1t 4L
. FashionMNIST-TRAIN
= FashionMNIST-TEST

00015 - WEE MNIST-TEST

00010 -
00005 -

00000 4 | —— e P —
4000 ~3500 ~3000 ~2500 ~2000 ~1500 ~1000 ~500 O

log p(X)

FashionMNIST vs MNIST

00005 . .

W ColebA-TRAIN
CelebA-TEST

W SVHN-TEST

00004 -
00003 -
00002 -
00001 -

000004 r v " " -
14000 -12000 -10000 -8000 -6000 —4000 -2000

log p(X)

CelebA vs SVHN

L R R S S R S R

. imageNet-TRAIN
= imageNet-TEST
[ CIFAR10-TEST
-
-

00004 -

CFAR100-TEST

0.0003 - SVHN-TEST

00000 4 4

106 506
ImageNet vs CIFAR-10
vs SVHN
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Not caused by overfitting: Early stopping does

not help

4.5
_ —— CIFAR-10 TRAIN
§ a0 —— CIFAR-10 TEST
= —— SVHN TEST
o
‘» 3.5
C
()
£
- 3.0
T
o
_‘Lln_' 2.5 k
g

2.0

0 20000 40000 60000 80000 100000
iterations

During Optimization



Ensembling does not fix the problem either

0.0005 0.0005
EEN CIFAR10-TRAIN
B CGFAR10-TEST
BN SVHN-TEST

Emm CIFAR10-TRAIN
0.0004 B CIFAR10-TEST
B SVHN-TEST

0.0004

0.0003 0.0003
0.0002 0.0002
0.0001 0.0001
0.0000 0.0000
-12000 -10000 -8000 —6000 —4000 —14000 —-12000 —10000 -8000 -6000 —4000 -2000 0
log p(X) log p(X)

CIFAR-10 vs SVHN CIFAR-10 vs SVHN
1 Glow Ensemble of 10 Glows



Digging deeper into flows
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X: 7 — f(X) df (X)
f(x) is a bijection
(invertible 1:1 mapping)
X z Use f such that th
. e that the
Use simple p, distribution selsuc .
(e.g. standard normal) Jacobian df/dx is easy to
compute

x=f%z) z=1(x)
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Decomposition of likelihood for flow models

00005
EEN CFAR10-TRAIN

0000s ™= CIFAR10-TEST
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~12000 -10000 -8000 -6000 -4000

log p(X)

CIFAR-10 vs SVHN
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Distribution Term
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Volume Term
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Decomposition of likelihood for flow models

00005
WEN CIFAR10-TRAIN

00004 ™ CIFAR0-TEST
BN SVHN-TEST
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00000
-12000  -10000  -8000 6000 4000

log p(X)

CIFAR-10 vs SVHN

= Looks to be the cause
of the phenomenon
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Is the log volume term the culprit?

We define a sub-class we term constant-volume (w.r.t. input) flows.

Use only translation operations.

To isolate the effect of the volume term, we define
constant-volume (w.r.t. input) flows.
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Is the log volume term the culprit? No.

We define a sub-class we term constant-volume (w.r.t. input) flows.

CIFAR-10 vs SVHN

0.0030

BN CIFAR10-TRAIN

Use only translation operations. 00025 W CIFARL0-TEST
W SVHN-TEST

0.0020

0.0015

0.0010

0.0005

0.0000
—10000 -9500 9000 —8500 -8000 ~-7500 ~-7000 —6500

log p(X)
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Analysis of Constant Volume
GLOW models
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eqlogp(; 0)] — Eyp- log p(a; 0)]

Non-Training Training
Distribution Distribution
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[log p(; 0)] — Ey- [log p(; 6)]

Non-Training Training
Distribution Distribution

Second Moment
of Training
Distribution

Tr { [Vio log p (f(o; $)) + V3, log ’é?_wﬁ ] (2 —Ep*)}

4 second Moment
of Non-Training
Distribution

~
~

N =

Change-of-Variable
Terms
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Analysis of Constant Volume GLOW models

Mathematical characterization:

0 < Eq[logp(; 0)] — Ep- [log p(; 0)]

Non-Training Training

Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2 .
R 5 Tr | V2, logp. (f(@o; ) + Vo ela 2| | (2 — 5
) { Second Moment
: of Non-Training
Change-of-Variable Distribution

Terms
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

{ [ IOg p(:z:g, )] ( )} Second Moment Second Moment
of Non-Training of Training
c K C 2 Distribution Distribution
_2 2
logp(z Y) E H E :uk .j E : Tghyw,e = Tp* hw,c)
c=1 \k=1j=1 h,w

1x1 Cony. Params
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [VZ:O logp(a:o, 0)] (Eq — Ep*)} Second Moment  Second Moment
of Non-Training of Training
Distribution Distribution

0> < —
8 Ing zZ; 'l»b Z H Zu’k c,j Z(Ug,h,w,c - g*,h,w,c)

c=1 \k=1j=1 h,w

\ 1x1 Conv. Param.s\

Sum over spatial
Sums over channel dimensions
dimensions

Product over
steps in flow

58



Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr { [V?co IOg p(:l:o, 0)] (Eq — Ep* )} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

0?
8 9.2 Ing Z; "/’ Z H Zuk (%] Z(Gg,h,w,c - z*,h,w,c)

c=1\ k=1 j=1 hyw

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square
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Analysis of Constant Volume GLOW models

Plugging in the CV-Glow transform:

Tr{[ Vi, logp(eo; 6)] (g —Zpr)}  seconanement - seconiomen
a c Distﬁtion Distribution
a a.2 logp(z ¢ Z H Zuk cJj Z(Ug,h,w,c - Ug*,h,w,c)
c=1 \k=1j=1 hyw 4
< 0 for all log- ¢ <
concave densities Non-negative Sign boils down to
(B CREE) due to square difference in moments.
Speaks to asymmetric
behavior.

60



Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [log p(z; 0)] — Ecrrario[log p(; 0)]

K C

R 5 [0f 123+ 0f-65+0a3-14.5] >0 where ac = [[ D tne,;
P k=1j=1

Differences in variances in the
three spatial dimensions
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Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:
Esvin [logp(a:; 0)] - ]ECIFARIO[Ing(w; 0)]

K C
1
RS o7 [0f 123+ 03 6.5+ 03 145] >0 where a, = 11D ukes

g. .
¥ k=1j=1
—— CIFAR-10 TRAIN
Differences in variances in the K—;:i
—— SVHN TEST

three spatial dimensions

The expression will be non-negative for any
parameter setting of the CV flow....

Bits-per-dimension (bpd)

[

20000 40000 60000 80000 100000
iterations
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Analysis of Constant Volume GLOW models

Plugging in the CIFAR-10 and SVHN statistics:

Esvin [logp(a:; 0)] — Ecrario [10317(1’5 9)]

K C
1
~ 202 [a% 123+ 0265+ a2 - 14.5] >0 where a, = H Zuk,c,j
P k=1j=1
0014 — CIFAR10 i
Differences in variances in the ooz g‘;:;l"ﬁ”" '
three spatial dimensions ey ;
008
This also means that we can manipulate the relative oo
log likelihoods just by changing the variance of the ooot
data. For natural images, this amounts to graying... °*
0 6500-10000-5300 ~9000 8500 ~8000 ~7500 7000 ~6500 6000
log p(X)

One weird trick to increase likelihoods: grayscale images!
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Summary of Results
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Summary of Results

= = s Empirical Results
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Summary of Results

= » s Empirical Results
=== Analytical Results

NICE

DEEP -]

CONSTANT
sonenare

GANs™
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Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.
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Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.

* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images
— Constant images
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Take home message

- Deep generative models are attractive but have problems
detecting out-of-distribution data.
* For flow-based models, the phenomenon can be explained
through the relative variances of the different input
distributions

— Grayscale images

— Constant images
* Be cautious when using density estimates from deep
generative models as proxy for “similarity” to training data

— Novelty detection
— Anomaly detection
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Papers available on my webpage (link)

+ Simple and scalable predictive uncertainty estimation using
deep ensembles, NeurlPS, 2017 [6]

* Clinically applicable deep learning for diagnosis and referral
in retinal disease, Nature medicine, 2018 [3]

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [8§]
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https://sites.google.com/corp/view/udlworkshop2019/

Papers available on my webpage (link)

+ Simple and scalable predictive uncertainty estimation using
deep ensembles, NeurlPS, 2017 [6]

* Clinically applicable deep learning for diagnosis and referral
in retinal disease, Nature medicine, 2018 [3]

* Do Deep Generative Models Know What They Don’t Know?,
ICLR, 2019 [8§]

Recent work on models combining p(y|x) and p(x)

* Hybrid models with deep and invertible features, arXiv, 2018
[7]

Check out our ICML 2019 workshop
https://sites.google.com/corp/view/udlworkshop2019/
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Thanks!
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Results
Clinical application and Al architecture, We developed our
architecture in the challenging context of OCT imaging for oph
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Triage Recommendation for Patients with Eye
Diseases using OCT scans

+ Optical Coherence Tomography (OCT)
— Creates a high-resolution 3D scan of the retina
— OCT technique works like ultrasound but with light

+ Collaboration with Moorfields Eye Hospital

Optic Disk

Macula

Back of the eye (view through pupil)
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Use case: Referral suggestion from OCT scan

Urgent (days)

Semi-Urgent (weeks)
Routine (months)

Observation only
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Two-Stage Architecture

+ First: ensemble of segmentation networks to the OCT scan
- Second: ensemble of classification networks

14,884 training tissue maps with confirmed
diagno:;ls and referral decision

b
&ra
o

classification
network ensemble

877 manually segmented
training images

segmentation
network ensemble
—_—

digital OCT scan

) diagnosis probabilities
Tissue map hypotheses and referral suggestion
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Two-Stage Architecture (continued)

+ Segmentation map provides detailed, fully clinically

interpretable representation.

877 manually segmented
training images

Zo

14,884 training tissue maps with confirmed
diagnosis and referral decision

‘ clinically e
- interpretable
m . full mac. hole Referral Suggestion (%1
> [epresentation &g '.a
segmentation classification o ] b
network ensemt 1etwork ensemble = s
digital OCT scan

Tissue map hypotheses

qqqqqqqqq

ddddd

ER|

diagnosis probabilities
and referral suggestion
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Two-Stage Architecture (continued)

+ Second stage classification network learns knowledge that
is independent of the used scanning device.

scanning device independent
877 manually segmer N
trainingyimagges "d
e G
= i
i

Acquires fundamental

knowledge about the human
eye anatomy and pathologies

segmentation
network ensembl|
=

wwwwwwww

aaaaa

digital OCT scan

) diagnosis probabilitiesI4
Tissue map hypotheses and referral su@
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Two-Stage Architecture (continued)

+ Our framework reaches the performance of human experts

14,884 training tissue maps with confirmed
diagnosis and referral decision

877 manually segmented 4P chv
training images "& rt
RO expe
w ‘« “.6« & performance
m> e . full mac. ho m;::‘m- S
> N a4 r :

o 02
Dlagnosis Probability (%]
normal 71
] 9.0
54
o

segmentation classification .
network ensemble network ensemble o
> 519
o Votumes tmm)
digital OCT scan e oo
diagnosis probabilities
Tissue map hypotheses and referral suggestion
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- Ensemble 5 segmentation instances and 5 classification
instances to get 25 predictions for each diagnosis.

classif. instance 1

classif. instance 2
classif. instance 3 |
seg. instance 1 classif. instance 4|

|
classi. nstance 5=
|

classif. instance 1
classif. instance 2

classif, instance 3, ] |

seg. instance 2

. T W I
|

classif. instance 5,

classif. instance 1
classif. instance 2

(] I

classif. instance 3 | |
|

|

seg. instance 3
classif. instance 4
classif. instance 5

ciasst rsence 1

classif. instance 2|

] I
classif. instance 3_
I
I
|

seg. instance 4
classif. instance 4|

classif. instance 5

classif. instance 1
classif, instance 2|

classif. instance 3 |
classif. instance 4 |

] I

seg. instance 5

¢t e
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Receiver Operating Characteristic (ROC) Curve

« We achieve an area under the curve of 99.2

Urgent Referral Zoom
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Receiver Operating Characteristic (ROC) Curve

Evaluated human performance on this task using 8 experts
* Only two of the top experts from Moorfields with over 20
years experience were on par with our network
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Gold Standard Referral

Full referral results

+ Our method achieves similar results in the standard triage
with 4 referral decisions too

Referral Decisions:
1. Urgent (within days) 3. Routine (within months)

2. Semi-urgent (within weeks) 4. Observation only
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