Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell

{balajiln,apritzel,cblundell}@google.com

Overview

- Goal: Predict y_* for test data x_* along with predictive uncertainty estimate
- Bayesian neural networks are popular, but have some disadvantages
- Non-trivial modifications to training code
- Computationally slow & difficult to scale
- Quality of Bayesian posterior predictions depends on prior specification (model mis-specification) and posterior approximation. Bayesian approach only translates weight uncertainty to predictive uncertainty.

Time (log scale)

Our contributions:

- An experimental protocol to measure quality of predictive uncertainty
- Calibration measures (NLL, Brier score): Frequentist coverage of subjective forecasts
- Robustness to dataset shift: Is predictive uncertainty higher on test examples from unknown classes (out-of-distribution)?
- A simple probabilistic, non-Bayesian baseline that produces surprisingly good results

A Simple Recipe for Uncertainty Estimation

- 1. Let each neural network parametrize a distribution over the outputs, i.e. $p_{\theta}(y|\mathbf{x})$. Use a **proper scoring rule** as training criterion
- Classification: cross entropy loss
- Heteroscedastic Regression: net outputs mean $\mu_{\theta}(\mathbf{x})$ and variance $\sigma_{\theta}^2(\mathbf{x})$

$$\ell(\boldsymbol{\theta}, \mathbf{x}_n, y_n) = \frac{1}{2} \log \sigma_{\boldsymbol{\theta}}^2(\mathbf{x}) + \frac{\left(y - \mu_{\boldsymbol{\theta}}(\mathbf{x})\right)^2}{2\sigma_{\boldsymbol{\theta}}^2(\mathbf{x})} + ext{const.}$$

- 2. Augment with **adversarial training**
- 3. Train an **ensemble of** *M* **networks in parallel** with random initialization
- 4. Combine predictions at test time

$$p(y|\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} p_{\theta_m}(y|\mathbf{x}, \theta_m)$$

Model combination & not Bayesian Model Averaging

Paper, poster, slides: http://www.gatsby.ucl.ac.uk/~balaji

Adversarial Training Given an input **x** with target y, create new examples (**x**', **y**) using the **fast gradient sign method**:

$$\mathbf{x}' = \mathbf{x} + \boldsymbol{\epsilon} \operatorname{sign} ig(
abla_{\mathbf{x}} \, \ell(oldsymbol{ heta}, \mathbf{x}, oldsymbol{y}) ig)$$

- Adversarial training encourages predictive distribution $p(y|\mathbf{x})$ to be similar to $p(y|\mathbf{x} + \Delta \mathbf{x})$ which encourages local smoothness and improves robustness.
- Uses gradient $\nabla_{\mathbf{x}} \ell(\boldsymbol{\theta}, \mathbf{x}, \mathbf{y})$ instead of random direction in $\Delta \mathbf{x} \in \{-1, 1\}^D$
- Can also use Virtual Adversarial training $\Delta \mathbf{x} = \arg \max_{\Delta \mathbf{x}} \operatorname{KL}(p(y|\mathbf{x})||p(y|\mathbf{x} + \Delta \mathbf{x}))$

Regression on Toy Dataset

- Blue line: ground truth curve, red dots: observed **noisy training data points** and gray lines: predicted mean along with three standard deviations
- Left plot corresponds to empirical variance of 5 networks trained using MSE, middle and right plot show the effect of learning variance using a single net and 5 networks respectively
- Empirical variance significantly under-estimates predictive uncertainty

Results on Regression Benchmarks

Datasets		RMSE			NLL	
	PBP	MC-dropout	Deep Ensembles	PBP	MC-dropout	Deep Ensembles
Boston housing	$\textbf{3.01} \pm \textbf{0.18}$	$\textbf{2.97} \pm \textbf{0.85}$	$\textbf{3.28} \pm \textbf{1.00}$	$\textbf{2.57} \pm \textbf{0.09}$	$\textbf{2.46} \pm \textbf{0.25}$	$\textbf{2.41} \pm \textbf{0.25}$
Concrete	$\textbf{5.67} \pm \textbf{0.09}$	$\textbf{5.23} \pm \textbf{0.53}$	$\textbf{6.03} \pm \textbf{0.58}$	$\textbf{3.16} \pm \textbf{0.02}$	$\textbf{3.04} \pm \textbf{0.09}$	$\textbf{3.06} \pm \textbf{0.18}$
Energy	$\textbf{1.80} \pm \textbf{0.05}$	$\textbf{1.66} \pm \textbf{0.19}$	$\textbf{2.09} \pm \textbf{0.29}$	$\textbf{2.04} \pm \textbf{0.02}$	$\textbf{1.99} \pm \textbf{0.09}$	$\textbf{1.38} \pm \textbf{0.22}$
Kin8nm	0.10 ± 0.00	0.10 ± 0.00	$\textbf{0.09} \pm \textbf{0.00}$	$\textbf{-0.90}\pm0.01$	$\textbf{-0.95} \pm \textbf{0.03}$	-1.20 \pm 0.02
Naval propulsion plant	0.01 ± 0.00	0.01 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$	$\textbf{-3.73}\pm0.01$	$\textbf{-3.80}\pm0.05$	-5.63 \pm 0.05
Power plant	$\textbf{4.12} \pm \textbf{0.03}$	$\textbf{4.02} \pm \textbf{0.18}$	$\textbf{4.11} \pm \textbf{0.17}$	$\textbf{2.84} \pm \textbf{0.01}$	$\textbf{2.80} \pm \textbf{0.05}$	$\textbf{2.79} \pm \textbf{0.04}$
Protein	$\textbf{4.73} \pm \textbf{0.01}$	$\textbf{4.36} \pm \textbf{0.04}$	$\textbf{4.71} \pm \textbf{0.06}$	$\textbf{2.97} \pm \textbf{0.00}$	$\textbf{2.89} \pm \textbf{0.01}$	$\textbf{2.83} \pm \textbf{0.02}$
Wine	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.62} \pm \textbf{0.04}$	$\textbf{0.64} \pm \textbf{0.04}$	$\textbf{0.97} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.06}$	$\textbf{0.94} \pm \textbf{0.12}$
Yacht	$\textbf{1.02} \pm \textbf{0.05}$	$\textbf{1.11} \pm \textbf{0.38}$	$\textbf{1.58} \pm \textbf{0.48}$	1.63 ± 0.02	$\textbf{1.55} \pm \textbf{0.12}$	$\textbf{1.18} \pm \textbf{0.21}$
Year Prediction MSD	$8.88\pm NA$	$\textbf{8.85} \pm \textbf{NA}$	$8.89 \pm NA$	$3.60\pm \text{NA}$	$3.59\pm NA$	$3.35\pm\mathbf{NA}$

Figure: Calibration results on the Year Prediction MSD dataset: x-axis denotes the expected fraction and y-axis denotes the observed fraction; ideal output is the dashed blue line. Predicted variance (left) is significantly better calibrated than the empirical variance (right), which is overconfident.

- augmentation

Classification Results

Figure: Results on MNIST using 3-layer MLP

Ensemble improves both classification error and predictive uncertainty (NLL, Brier score) Adversarial training is better than random data

All of our ensemble variants outperform MC-dropout

Ensembles produce better uncertainty on other architectures and datasets as well

Figure: Results on on SVHN using CNNs

1	Top-1 error	Top-5 error	NLL	Brier Score
	%	%		imes10 ⁻³
	22.166	6.129	0.959	0.317
•	20.462	5.274	0.867	0.294
}	19.709	4.955	0.836	0.286
$\left \right $	19.334	4.723	0.818	0.282
•	19.104	4.637	0.809	0.280
	18.986	4.532	0.803	0.278
,	18.860	4.485	0.797	0.277
3	18.771	4.430	0.794	0.276
)	18.728	4.373	0.791	0.276
)	18.675	4.364	0.789	0.275

Table: Classification on ImageNet using CNNs.

Uncertainty Evaluation on Known and Unknown Classes (Out-of-Distribution examples) Train MLP on standard MNIST training set. Evaluate on standard MNIST test set (known classes) as well

as NotMNIST test set (unknown classes) which contains 28×28 images of alphabets

Expect higher uncertainty on unknown classes as these inputs are far away from training data Measure of uncertainty: predictive entropy

Figure: Histogram of the predictive entropy on test examples from known classes (top row) and unknown classes (bottom row), as we vary M.

Figure: Accuracy vs Confidence curves: Evaluate test accuracy only on examples where $\max_{y} p(y|\mathbf{x}) \geq \tau$. Networks trained on MNIST and tested on both MNIST test containing known classes and the NotMNIST dataset containing unseen classes. MC-dropout can produce overconfident wrong predictions, whereas deep ensembles are significantly more robust.

Figure: ImageNet trained only on dogs: Histogram of the predictive entropy (left) and maximum predicted probability (right) on test examples from known classes (dogs) and unknown classes (non-dogs), as we vary M.

DeepMind

Summary

Non-Bayesian method, yet produces surprisingly good predictive uncertainty estimates

Simple to implement. No need for hyperparameter tuning. Scalable & well-suited for parallel distributed computation Works for different output types (classification, regression) and wide variety of architectures (MLP, CNN)