
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell
{balajiln,apritzel,cblundell}@google.com Paper, poster, slides: http://www.gatsby.ucl.ac.uk/∼balaji

Overview
I Goal: Predict y∗ for test data x∗ along with predictive

uncertainty estimate
I Bayesian neural networks are popular, but have some

disadvantages
I Non-trivial modifications to training code
I Computationally slow & difficult to scale
I Quality of Bayesian posterior predictions depends on
prior specification (model mis-specification) and
posterior approximation. Bayesian approach only
translates weight uncertainty to predictive uncertainty.

I Our contributions:
I An experimental protocol to measure quality of
predictive uncertainty
I Calibration measures (NLL, Brier score): Frequentist
coverage of subjective forecasts

I Robustness to dataset shift: Is predictive uncertainty
higher on test examples from unknown classes
(out-of-distribution)?

I A simple probabilistic, non-Bayesian baseline that
produces surprisingly good results

A Simple Recipe for Uncertainty Estimation
1. Let each neural network parametrize a distribution over

the outputs, i.e. pθ(y|x). Use a proper scoring rule as
training criterion
I Classification: cross entropy loss
I Heteroscedastic Regression: net outputs mean µθ(x)
and variance σ2

θ(x)

`(θ, xn, yn) =
1
2 log σ2

θ(x) +

(
y − µθ(x)

)2
2σ2

θ(x)
+ const.

2. Augment with adversarial training
3. Train an ensemble of M networks in parallel with

random initialization
4. Combine predictions at test time

p(y|x) =
1
M

M∑
m=1

pθm(y|x,θm)

Model combination & not Bayesian Model Averaging

Adversarial Training
Given an input x with target y, create new examples
(x′, y) using the fast gradient sign method:

x′ = x + ε sign
(
∇x `(θ, x, y)

)
I Adversarial training encourages predictive

distribution p(y|x) to be similar to p(y|x + ∆x)
which encourages local smoothness and
improves robustness.

I Uses gradient∇x `(θ, x, y) instead of random
direction in ∆x ∈ {−1, 1}D

I Can also use Virtual Adversarial training
∆x = arg max∆xKL

(
p(y|x)||p(y|x + ∆x)

)
Regression on Toy Dataset

−6 −4 −2 0 2 4 6

−200

−100

0

100

200

I Blue line: ground truth curve, red dots: observed
noisy training data points and gray lines:
predicted mean along with three standard
deviations

I Left plot corresponds to empirical variance of 5
networks trained using MSE, middle and right
plot show the effect of learning variance using a
single net and 5 networks respectively

I Empirical variance significantly under-estimates
predictive uncertainty

Results on Regression Benchmarks
Datasets RMSE NLL

PBP MC-dropout Deep Ensembles PBP MC-dropout Deep Ensembles
Boston housing 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25
Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18
Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22
Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02
Naval propulsion plant 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05
Power plant 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04
Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02
Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12
Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21
Year Prediction MSD 8.88 ± NA 8.85 ± NA 8.89 ± NA 3.60 ± NA 3.59 ± NA 3.35 ± NA

Figure: Calibration results on the Year Prediction MSD dataset:
x-axis denotes the expected fraction and y-axis denotes the
observed fraction; ideal output is the dashed blue line.
Predicted variance (left) is significantly better calibrated than
the empirical variance (right), which is overconfident.

Classification Results

0 5 10 15
Number of nets

1.0

1.2

1.4

1.6

1.8
Classification Error

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10 15
Number of nets

0.02

0.04

0.06

0.08

0.10

0.12

0.14
NLL

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10 15
Number of nets

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030
Brier Score

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

Figure: Results on MNIST using 3-layer MLP

I Ensemble improves both classification error and
predictive uncertainty (NLL, Brier score)

I Adversarial training is better than random data
augmentation

I All of our ensemble variants outperform MC-dropout
I Ensembles produce better uncertainty on other

architectures and datasets as well

0 5 10
Number of nets

2

4

6

8

10

12

14
Classification Error

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10
Number of nets

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
NLL

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

0 5 10
Number of nets

0.004

0.006

0.008

0.010

0.012

0.014

0.016
Brier Score

Ensemble

Ensemble + R

Ensemble + AT

MC dropout

Figure: Results on on SVHN using CNNs

M Top-1 error Top-5 error NLL Brier Score
% % ×10−3

1 22.166 6.129 0.959 0.317
2 20.462 5.274 0.867 0.294
3 19.709 4.955 0.836 0.286
4 19.334 4.723 0.818 0.282
5 19.104 4.637 0.809 0.280
6 18.986 4.532 0.803 0.278
7 18.860 4.485 0.797 0.277
8 18.771 4.430 0.794 0.276
9 18.728 4.373 0.791 0.276
10 18.675 4.364 0.789 0.275
Table: Classification on ImageNet using CNNs.

Uncertainty Evaluation on Known and Unknown
Classes (Out-of-Distribution examples)

I Train MLP on standard MNIST training set. Evaluate
on standard MNIST test set (known classes) as well
as NotMNIST test set (unknown classes) which
contains 28× 28 images of alphabets

I Expect higher uncertainty on unknown classes as
these inputs are far away from training data

I Measure of uncertainty: predictive entropy

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

0

2

4

6

8

10

12

14
Ensemble

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

Ensemble + R

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

Ensemble + AT

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

MC dropout 0.1

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

0

2

4

6

8

10

12

14
Ensemble

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

Ensemble + R

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

Ensemble + AT

1

5

10

−0.5 0.0 0.5 1.0 1.5 2.0
entropy values

MC dropout 0.1

1

5

10

Figure: Histogram of the predictive entropy on test examples from known
classes (top row) and unknown classes (bottom row), as we vary M.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Confidence Threshold ¿

30

40

50

60

70

80

90

A
cc

u
ra

cy
 o

n
 e

x
a
m

p
le

s
p
(y
jx
)
¸
¿ Ensemble

Ensemble + R

Ensemble + AT

MC dropout

Figure: Accuracy vs Confidence curves: Evaluate test accuracy only on
examples where maxy p(y|x) ≥ τ . Networks trained on MNIST and tested on
both MNIST test containing known classes and the NotMNIST dataset
containing unseen classes. MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are significantly more robust.

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

entropy values

0

1

2

3

4

5

6

7

8
Known classes

1

2

3

4

5

1 0 1 2 3 4 5

entropy values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Unknown classes

1

2

3

4

5

0.2 0.4 0.6 0.8 1.0 1.2

max predicted prob

0

1

2

3

4

5

6

7

8
Known classes

1

2

3

4

5

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

max predicted prob

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Unknown classes

1

2

3

4

5

Figure: ImageNet trained only on dogs: Histogram of the predictive entropy
(left) and maximum predicted probability (right) on test examples from
known classes (dogs) and unknown classes (non-dogs), as we vary M.

Summary
I Non-Bayesian method, yet produces surprisingly good

predictive uncertainty estimates
I Simple to implement. No need for hyperparameter tuning.
I Scalable & well-suited for parallel distributed computation
I Works for different output types (classification, regression)

and wide variety of architectures (MLP, CNN)

http://www.gatsby.ucl.ac.uk/~balaji

