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Overview
I Goal: Predict y∗ for test data x∗ along with predictive

uncertainty estimate
I Bayesian neural networks are popular, but have some

disadvantages
I Non-trivial modifications to training code
I Computationally slow & difficult to scale
I Quality of Bayesian posterior predictions depends on
prior specification (model mis-specification) and
posterior approximation. Bayesian approach only
translates weight uncertainty to predictive uncertainty.

I Our contributions:
I An experimental protocol to measure quality of
predictive uncertainty
I Calibration measures (NLL, Brier score): Frequentist
coverage of subjective forecasts

I Robustness to dataset shift: Is predictive uncertainty
higher on test examples from unknown classes
(out-of-distribution)?

I A simple probabilistic, non-Bayesian baseline that
produces surprisingly good results

A Simple Recipe for Uncertainty Estimation
1. Let each neural network parametrize a distribution over

the outputs, i.e. pθ(y|x). Use a proper scoring rule as
training criterion
I Classification: cross entropy loss
I Heteroscedastic Regression: net outputs mean µθ(x)
and variance σ2

θ(x)

`(θ, xn, yn) =
1
2 log σ2

θ(x) +

(
y − µθ(x)

)2
2σ2

θ(x)
+ const.

2. Augment with adversarial training
3. Train an ensemble of M networks in parallel with

random initialization
4. Combine predictions at test time

p(y|x) =
1
M

M∑
m=1

pθm(y|x,θm)

Model combination & not Bayesian Model Averaging

Adversarial Training
Given an input x with target y, create new examples
(x′, y) using the fast gradient sign method:

x′ = x + ε sign
(
∇x `(θ, x, y)

)
I Adversarial training encourages predictive

distribution p(y|x) to be similar to p(y|x + ∆x)
which encourages local smoothness and
improves robustness.

I Uses gradient∇x `(θ, x, y) instead of random
direction in ∆x ∈ {−1, 1}D

I Can also use Virtual Adversarial training
∆x = arg max∆xKL

(
p(y|x)||p(y|x + ∆x)

)
Regression on Toy Dataset
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I Blue line: ground truth curve, red dots: observed
noisy training data points and gray lines:
predicted mean along with three standard
deviations

I Left plot corresponds to empirical variance of 5
networks trained using MSE, middle and right
plot show the effect of learning variance using a
single net and 5 networks respectively

I Empirical variance significantly under-estimates
predictive uncertainty

Results on Regression Benchmarks
Datasets RMSE NLL

PBP MC-dropout Deep Ensembles PBP MC-dropout Deep Ensembles
Boston housing 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25
Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18
Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22
Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02
Naval propulsion plant 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05
Power plant 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04
Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02
Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12
Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21
Year Prediction MSD 8.88 ± NA 8.85 ± NA 8.89 ± NA 3.60 ± NA 3.59 ± NA 3.35 ± NA

Figure: Calibration results on the Year Prediction MSD dataset:
x-axis denotes the expected fraction and y-axis denotes the
observed fraction; ideal output is the dashed blue line.
Predicted variance (left) is significantly better calibrated than
the empirical variance (right), which is overconfident.

Classification Results
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Figure: Results on MNIST using 3-layer MLP

I Ensemble improves both classification error and
predictive uncertainty (NLL, Brier score)

I Adversarial training is better than random data
augmentation

I All of our ensemble variants outperform MC-dropout
I Ensembles produce better uncertainty on other

architectures and datasets as well
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Figure: Results on on SVHN using CNNs

M Top-1 error Top-5 error NLL Brier Score
% % ×10−3

1 22.166 6.129 0.959 0.317
2 20.462 5.274 0.867 0.294
3 19.709 4.955 0.836 0.286
4 19.334 4.723 0.818 0.282
5 19.104 4.637 0.809 0.280
6 18.986 4.532 0.803 0.278
7 18.860 4.485 0.797 0.277
8 18.771 4.430 0.794 0.276
9 18.728 4.373 0.791 0.276
10 18.675 4.364 0.789 0.275
Table: Classification on ImageNet using CNNs.

Uncertainty Evaluation on Known and Unknown
Classes (Out-of-Distribution examples)

I Train MLP on standard MNIST training set. Evaluate
on standard MNIST test set (known classes) as well
as NotMNIST test set (unknown classes) which
contains 28× 28 images of alphabets

I Expect higher uncertainty on unknown classes as
these inputs are far away from training data

I Measure of uncertainty: predictive entropy
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Figure: Histogram of the predictive entropy on test examples from known
classes (top row) and unknown classes (bottom row), as we vary M.
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Figure: Accuracy vs Confidence curves: Evaluate test accuracy only on
examples where maxy p(y|x) ≥ τ . Networks trained on MNIST and tested on
both MNIST test containing known classes and the NotMNIST dataset
containing unseen classes. MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are significantly more robust.
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Figure: ImageNet trained only on dogs: Histogram of the predictive entropy
(left) and maximum predicted probability (right) on test examples from
known classes (dogs) and unknown classes (non-dogs), as we vary M.

Summary
I Non-Bayesian method, yet produces surprisingly good

predictive uncertainty estimates
I Simple to implement. No need for hyperparameter tuning.
I Scalable & well-suited for parallel distributed computation
I Works for different output types (classification, regression)

and wide variety of architectures (MLP, CNN)

http://www.gatsby.ucl.ac.uk/~balaji

