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Overview

» Goal: Predict y, for test data x, along with predictive
uncertainty estimate

» Bayesian neural networks are popular, but have some

disadvantages

~ Non-trivial modifications to training code

» Computationally slow & difficult to scale

~ Quality of Bayesian posterior predictions depends on
prior specification (model mis-specification) and
posterior approximation. Bayesian approach only
translates weight uncertainty to predictive uncertainty.

Adversarial Training
Given an input x with target y, create new examples
(X', y) using the fast gradient sign method:

X' = X+ € sign (Vx /(0, x,y))

» Can also use Virtual Adversarial training

» Adversarial training encourages predictive
distribution p(y|x) to be similar to p(y|x + Ax)
which encourages local smoothness and
improves robustness.

» Uses gradient Vy /(0, x, y) instead of random
direction in Ax € {—1,1}

A AX = arg maxay KL X X + AX
“Goodness” [N MCMC g AX (P(y X)||p(Y] ))
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» Our contributions:
~ An experimental protocol to measure quality of
predictive uncertainty
~ Calibration measures (NLL, Brier score): Frequentist
coverage of subjective forecasts
~ Robustness to dataset shift. |Is predictive uncertainty
higher on test examples from unknown classes
(out-of-distribution)?
» A simple probabilistic, non-Bayesian baseline that
produces surprisingly good results
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» Blue line: ground truth curve, red dots: observed
noisy training data points and gray lines:
predicted mean along with three standard

» Left plot corresponds to empirical variance of 5
networks trained using MSE, middle and right
plot show the effect of learning variance using a
single net and 5 networks respectively

» Empirical variance significantly under-estimates
predictive uncertainty

Results on Regression Benchmarks

A Simple Recipe for Uncertainty Estimation
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Figure: Calibration results on the Year Prediction MSD dataset:
x-axis denotes the expected fraction and y-axis denotes the
observed fraction; ideal output is the dashed blue line.
Predicted variance (left) is significantly better calibrated than
the empirical variance (right), which is overconfident.

Classification Results
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Figure: Results on MNIST using 3-layer MLP

» Ensemble improves both classification error and
predictive uncertainty (NLL, Brier score)

» Adversarial training is better than random data
augmentation

» All of our ensemble variants outperform MC-dropout

» Ensembles produce better uncertainty on other
architectures and datasets as well
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Figure: Results on on SVHN using CNNs

M Top-1 error Top-5 error NLL |Brier Score
% % x1073
1 22.166 6.129 0.959 0.37/
2 20.462 5.274 0.867 0.294
3 19.709 4955 0.836/ 0.286
4| 19.334 4.723 0.818  0.282
5 19.104 4637 0809 0.280
6 18.986 4532 0.803] 0.278
/7 18.860 4485 0.797 0.277
8 18.771 4430 0.794 0.276
9 18.728 4373 0.791 0.276
10 18.675 4364 0./789 0.275

Table: Classification on ImageNet using CNNs.

Uncertainty Evaluation on Known and Unknown

Classes (Out-of-Distribution examples)

» Train MLP on standard MNIST training set. Evaluate
on standard MNIST test set (known classes) as well
as NotMNIST test set (unknown classes) which
contains 28 x 28 images of alphabets

» Expect higher uncertainty on unknown classes as
these inputs are far away from training data

» Measure of uncertainty: predictive entropy
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Figure: Histogram of the predictive entropy on test examples from known
classes (top row) and unknown classes (bottom row), as we vary M.
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Figure: Accuracy vs Confidence curves: Evaluate test accuracy only on
examples where max, p(y|x) > 7. Networks trained on MNIST and tested on
both MNIST test containing known classes and the NotMNIST dataset
containing unseen classes. MC-dropout can produce overconfident wrong
predictions, whereas deep ensembles are significantly more robust.
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Figure: ImageNet trained only on dogs: Histogram of the predictive entropy
(left) and maximum predicted probability (right) on test examples from
known classes (dogs) and unknown classes (non-dogs), as we vary M.

Summary
» Non-Bayesian method, yet produces surprisingly good
predictive uncertainty estimates
» Simple to implement. No need for hyperparameter tuning.
» Scalable & well-suited for parallel distributed computation

» Works for different output types (classification, regression)
and wide variety of architectures (MLP, CNN)
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