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Abstract—In this paper, we present new probabilistic models
for identifying bird species from audio recordings. We intro-
duce the independent syllable model and consider two ways of
aggregating frame level features within a syllable. We charac-
terize each syllable as a probability distribution of its frame
level features. The independent frame independent syllable
(IFIS) model allows us to distinguish syllables whose feature
distributions are different from one another. The Markov chain
frame independent syllable (MCFIS) model is introduced for
scenarios where the temporal structure within the syllable
provides significant amount of discriminative information. We
derive the Bayes risk minimizing classifier for each model
and show that it can be approximated as a nearest neighbour
classifier. Our experiments indicate that the IFIS and MCFIS
models achieve 88.26% and 90.61% correct classification rates,
respectively, while the equivalent SVM implementation achieves
86.15%.
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I. INTRODUCTION

Human speech recognition systems are generally based on

models that characterize the vocabulary and grammar of a

particular language. The notion of vocabulary and grammar

is usually ambiguous for sound signals other than human

speech. However, bird vocalization is a good example of

a class of natural sounds where we can expect to find an

underlying vocabulary and inherent grammatical structure

[1]. Bird recordings usually contain a structured pattern of

brief sounds from a species-specific vocabulary. Those brief

sounds are usually called elements or syllables [2]. Since

these syllables are characteristic of a particular species, prob-

abilistic models that treat these syllables as the basic building

blocks lend themselves naturally to species identification.

The process of identifying the constituent syllables present

in a recording is known as segmentation. After segmenta-

tion, each syllable is represented by a suitable choice of

feature vector. These feature vectors then act as inputs to

a classification algorithm for identifying the particular bird

species. Different feature representations and machine learn-

ing methods have been applied for bird species identification

in the literature [1], [3]–[6]. In [4], the authors used dynamic

time warping (DTW) to compare the input spectrograms

with a predefined set of templates. In [5], the authors used

neural networks and multivariate statistical techniques in

conjunction with a set of temporal and spectral features.

In [6], the authors used wavelet coefficients along with self

organizing map (SOM) and multilayer perceptron (MLP). In

[1], the authors compared three different feature represen-

tations (sinusoidal model, Mel-cepstrum model, descriptive

parameters) by evaluating their performance with different

classification algorithms based on DTW, Gaussian mixture

model (GMM), Hidden Markov model (HMM). In [3], the

author used a decision tree based classifier with support

vector machine (SVM) at each node.

Even though different machine learning algorithms have

been applied for bird species identification, there has been

little work on the development of probabilistic models

specific to bird vocalization. Probabilistic models enable

Bayesian inference and help in identifying the interesting

characteristics of data [7]. Probabilistic models have been

successfully applied in other domains, for instance, the

Dirichlet-multinomial model has been applied for classi-

fication as well as clustering of documents [8] and the

Hierarchical Dirichlet process hidden Markov model (HDP-

HMM) has been applied for word segmentation [9].

Bird vocalization is analogous to document classification

in that the probability of syllables (words) depends on the

particular species (topic). Hence, we can build probabilistic

models for bird vocalization in a similar manner to those

developed for document classification. There has been little

previous work in probabilistic modeling of syllables for

bird species identification. There are different ways to char-

acterize a syllable in terms of its frame-level features. In

[1], the authors computed the spectral peak for each frame

within the syllable and used analysis by synthesis overlap

add (ABS/OLA) algorithm to parametrize the variation in

spectral peak within a syllable. Another approach is to

compute the features of each frame within the syllable and

use the average of these frame-level features to represent the

syllable. HMM-based approaches model syllables as states

and each frame within the syllable as an observation and are

quite similar to our approach.

In this paper, we characterize each syllable as a probability

distribution and treat the feature representation of each frame

within a syllable to be observations from that particular

syllable distribution. Modeling each syllable with a proba-

bility distribution allows us to employ Bayesian inference

techniques for bird species identification at the syllable

level. In this paper, we make the following contributions:

we introduce the independent syllable model and consider

two models of treating the frames within a syllable, namely



independent frame independent syllable (IFIS) model and

Markov chain frame independent syllable (MCFIS) model.

We derive the Bayes-risk minimizing classifiers for each

case and show that they can be approximated by the nearest

neighbor with the distance metric being the appropriate

divergence. For both IFIS and MCFIS models, we consider

the special case where the frame level features are assumed

to follow a multivariate Gaussian distribution. We experi-

mentally evaluate the accuracy of the proposed classifiers

and features using cross-validation on a data set consisting

of 426 thirty-second recordings of six species of birds, from

the Cornell Macaulay library. In our experiments, IFIS and

MCFIS models are able to achieve correct classification rates

of about 88.26% and 90.61% respectively compared to the

86.15% achieved by the equivalent SVM implementation.

II. PROBLEM STATEMENT

Our objective is to identify bird species based on audio

recordings. We have a collection of recordings of bird

sounds, each of which is labeled with a particular species.

The recordings differ in their duration, so they are split into

equal-length intervals. The task is to learn an acoustic model

for each species based on these training set intervals so that

we can correctly classify a test interval. Analogous to human

speech where syllables are characteristic of a particular

language, there are some ‘syllables’ that are characteristic

of a particular bird species. Hence, it makes more sense to

treat these syllables as the basic building blocks and develop

probability models for each syllable. It is common practice

to divide syllables further into frames, where each frame

corresponds to the sound in a very short span of time.

The frames can then be represented by features such as:

mean frequency, spectral bandwidth, short time energy, zero

crossing rate, Mel frequency cepstral coefficients (MFCC)

and energy. More formally, a syllable x(i) consisting of ni

frames can be viewed as a sequence of observations, i.e.,

syllable x(i) = [x1(i), x2(i), . . . , xni
(i)] where observation

xj(i) corresponds to the feature vector representation of the

jth frame in the ith syllable. The duration of the syllables

is characteristic of a particular species, hence the number of

frames within a syllable ni is included as part of the model.

Each recording can now be viewed as a sequence of syllables

where the number of syllables within a fixed interval of

time depends on the particular species. Mathematically,

the data in an interval of sound may be represented as

D = [x(1), n1, . . . ,x(N), nN , N ] where N represents the

number of syllables in a fixed interval. In this paper, we build

a generative probability model for the syllables produced by

each species (from the labeled training examples) and extend

this probabilistic model to build Bayes-optimal classifiers for

bird species identification.

Table I
NOMENCLATURE

Variable Description

m Class index (bird species)
N Number of syllables present in a fixed interval

θi Syllable parametrization vector of ith syllable

ni Number of frames in ith syllable (length)

x(i) ith syllable features, [x1(i)x2(i) · · ·xni
(i)]

xj(i) Feature representation of the jth frame (i.e.,

jth observation) in ith syllable

Nt
m(l) Number of syllables present in the lth training

interval from class m

Nt
m Total number of training syllables from class m,

∑

l Nt
m(l)

Kt
m Number of training set intervals from class m

Kt Total number of training set intervals
D Data in an interval [x(1), n1, . . . ,x(N), nN , N ]

Subscript m indicates class m, Superscript t indicates training set

III. INDEPENDENT SYLLABLE MODEL

We start with the syllable independence assumption com-

mon to both of our models. Figure 1 explains how an

interval of recording may be generated using the independent

syllable model. We assume that the syllables present in a

recording are independent and identically distributed (i.i.d.)

i.e., we select both a syllable parametrization vector θi (for

the frame-level features) and length ni for each syllable in-

dependent of other syllables. If we denote the class (species)

by m, we have

P (θ1, n1, . . . , θN , nN , N |m) = P (N |m)
N∏

i=1

P (θi, ni|m),

where P (θi, ni|m) represents the joint distribution of

(θi, ni) for class m and P (N |m) represents the probability

for the number of syllables per interval for class m. The

syllable parametrization vector θi is a hidden parameter

and cannot be observed directly. Instead, we observe the

frame level features of the frames constituting that particular

syllable, i.e., information about θi is available only through

the observations x(i) = [x1(i), x2(i), . . . , xni
(i)]. The like-

lihood of a syllable x(i) can be found by marginalizing over

the hidden variable θi as in

P (x(i), ni|m) = Eθi

[

P (x(i)|θi, ni)
]

P (ni|m). (1)

Assuming that we have a collection of all the syllables

produced by the different species of birds, the independent

syllable model is quite similar to the ‘bag-of-words’ model

used for document classification [8]. The probability of each

syllable (word) depends on the particular species (topic) and

hence, our inference method is quite similar to that employed

in document classification. However, we include the length

of the syllable ni and the number of syllables present within

an interval of recording N as part of our model. Even though



(θ1, n1)
︸ ︷︷ ︸

Syllable 1

, (θ2, n2)
︸ ︷︷ ︸

Syllable 2

, . . .

{[x1(1), . . . , xn1
(1)], n1}

︸ ︷︷ ︸

Syllable 1

, {[x1(2), . . . , xn2
(2)], n2}

︸ ︷︷ ︸

Syllable 2

, . . .

Figure 1. The independent syllable model
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Figure 2. Graphical models of (a) the IFIS model and (b) the MCFIS
model

two birds may vocalize in the same frequency range, the

length of the syllable and number of syllables present within

an interval are usually species-dependent and hence provide

valuable information for identifying the different species of

birds. Note that the independent syllable model does not

specify how the frame level features within a syllable are

generated in Eq. (1). Next, we consider two models for

P (x(i)|θi, ni) namely IFIS and MCFIS.

A. IFIS model

In this model, each syllable is assumed

to be an i.i.d. sequence of observations, i.e.,

x(i) = [x1(i), x2(i), . . . , xni
(i)] where each observation

is drawn independently according to px(x|θi). Based on

the graphical model for the IFIS model in Fig. 2(a), the

likelihood that an interval belongs to class m is given by

P (D|m) = (2)

P (N |m)

N∏

i=1

Eθi

[ ni∏

j=1

px(xj(i)|θi)
∣
∣
∣ni,m

]

P (ni|N,m).

where Eθi
[·|ni,m] represents marginalization over θi. The

logarithm of Eq. (2) can be written as

log P (D|m) = C(X) + log P (N |m)

+

N∑

i=1

log

∫

θ

e−niD̂kl(px(·|θ̂)‖px(·|θ))dF (θ, n = ni|m), (3)

where we have used integral form of expectation and θ̂,

C(X) and D̂kl are defined as

θ̂ = arg max
θ

ni∑

j=1

log p(xj(i)|θ),

C(X) =

N∑

i=1

ni∑

j=1

log px(xj(i)|θ̂),

D̂kl(px(·|θ̂)‖px(·|θ)) =
1

ni

ni∑

j=1

log
px(xj(i)|θ̂)
px(xj(i)|θ)

. (4)

Due to space limitations, we omit the lengthy derivations

leading to Eq. (3), and refer to [10] instead. By definition,

D̂kl is a non-negative quantity. θ̂ for a syllable can

be obtained by maximizing the likelihood of frame

level features conditioned on the other parameters, i.e.,

P (x(i)|ni, N,m). We can also interpret D̂kl as a sample

estimate of the KL divergence Dkl(px(·|θ̂)‖px(·|θ)). The

log-likelihood model in Eq. (3) is very general in that it

does not specify the precise form of the frame probability

model px(·|θ). Next, we will present a special case where

the frame probability model is assumed to follow a Gaussian

distribution.

Gaussian IFIS: Here, we assume that the frame probability

model px(x|θ) follows a Gaussian distribution, i.e.,

px(x|θ) =
1√

det 2πC
e−

1
2 (x−µ)T C−1(x−µ), (5)

where θ = (µ,C), i.e., the syllable parametrization vector

is specified by the mean and covariance of the multivariate

Gaussian distribution. px(·|θ̂) is characterized as px(·|µ̂, Ĉ),
where µ̂ and Ĉ are computed from the test data. D̂kl can

be written as follows [10]

D̂kl

(
px(·|µ̂, Ĉ)‖px(·|µ,C)

)
=

1

2

(

log
det C

det Ĉ
(6)

+tr(C−1Ĉ − I) + (µ̂ − µ)T C−1(µ̂ − µ)
)

,

where the RHS of Eq. (6) equals the true KL divergence

between two Gaussian distributions N (µ̂, Ĉ) and N (µ,C)
[11]. For the Gaussian case, the sample based estimate of

the KL-divergence is shown to be equal to the actual KL-

divergence between the estimated observation PDF and the

model PDF. However, this may not be the case with other

distributions. Note that if the test syllable is very similar

to the training syllable, i.e., θ̂ ≈ θ, the value of D̂kl in

Eq. (6) approaches zero, thus maximizing the log-likelihood

in Eq. (3).

B. MCFIS model

In the previous model, we considered each syllable to

be an i.i.d. sequence of observations. Doing so, we ignored

any temporal structure within a syllable. For instance, the



i.i.d. assumption does not capture the gradient increase or de-

crease in mean frequency between successive frames within

a syllable. A simple method to incorporate temporal struc-

ture would be to model each syllable as a Markov chain of

observations i.e., p(xj(i)|xj−1(i), xj−2(i), . . . , x1(i), θi) =
p(xj(i)|xj−1(i), θi). Assuming that the first observa-

tion is generated according to a probability distribu-

tion px(·|θ) and denoting the conditional distribution by

px(xj(i)|xj−1(i), θi), the likelihood of the ith syllable can

be written as product of the likelihood of the first frame

and the conditional likelihood of the remaining frame-level

features, i.e.,

P (D|m) = P (N |m)

N∏

i=1

(

P (ni|N,m) (7)

·Eθi

[

px(x1(i)|θi)

ni∏

j=2

px(xj(i)|xj−1(i), θi)
∣
∣
∣ni,m

])

.

For tractability, we assume that px(x1(i)|θi) follows an

uniform distribution. Since px(x1(i)|θi) is uniformly dis-

tributed, it is irrelevant for classification and hence we

proceed with the conditional likelihood for the MCFIS

model given by

P (D|m) = P (N |m)

N∏

i=1

(

P (ni|N,m)

·Eθi

[ ni∏

j=2

px(xj(i)|xj−1(i), θi)
∣
∣
∣ni,m

])

. (8)

The logarithm of Eq. (8) can be written as follows [10]

log P (D|m) = C(X) + log P (N |m) (9)

+

N∑

i=1

log

∫

θ

e−(ni−1)D̂kl(θ̂‖θ)dF (θ, ni|m),

where we have used the integral form of expectation and θ̂,

C(X) and D̂kl are defined as

θ̂ = arg max
θ

ni∑

j=2

log px(xj(i)|xj−1(i), θ),

C(X) =

N∑

i=1

ni∑

j=2

log px(xj(i)|xj−1(i), θ̂), (10)

D̂kl(θ̂‖θ) =
1

ni − 1

ni∑

j=2

log
px(xj(i)|xj−1(i), θ̂)

px(xj(i)|xj−1(i), θ)
.

θ̂ for a syllable can be obtained by maximizing the

likelihood P (x(i)|ni, N,m). Note that this likelihood

involves Markov dependency between successive frame

level features in the MCFIS model. In the MCFIS case,

we can interpret D̂kl(θ̂‖θ) as a sample estimate of the

KL divergence between the conditional distributions

p(xj(i)|xj−1(i), θ̂) and p(xj(i)|xj−1(i), θ).

Gaussian MCFIS: Here, we consider the frame probability

model in Eq. (7) to be Gaussian, i.e., θ = (µ̃, C̃),

[
xj(i)

xj+1(i)

]

∼ N (µ̃, C̃), µ̃ =

[
µ1

µ2

]

, and C̃ =

[
C11 C12

CT
12 C22

]

.

Note that in this case, the syllable parametrization vector

θ includes the cross-covariance between consecutive frame

level features C12. For a multivariate Gaussian distribu-

tion, the conditional distribution px(xj(i)|xj−1(i), θ) is also

Gaussian

px(xj(i)|xj−1(i), θ) =
1√

det 2πCc

e−
1
2 (xj(i)−µj|j−1)C

−1
c (xj(i)−µj|j−1), (11)

where µj|j−1 = µ2 + CT
12C

−1
11 (xj−1(i) − µ1) and Cc =

C22 − CT
12C

−1
11 C12. If we assume the distribution of frame

level features to be stationary within a syllable, we have

µ1 = µ2 = µ, C22 = C11, and the model is characterized

by θ = (µ,C11, C12). Here, we select θ̂ by maximizing the

conditional likelihood as θ̂ML = (µ̂ML, Ĉ11ML
, Ĉ12ML

).
For a test syllable x(i) = [x1(i), x2(i), . . ., xni

(i)], the

conditional ML solutions for µ̂, Ĉ11, and Ĉ12 are given by

[10]

µ̂ML = (I − M̂)−1(µ̂2 − M̂µ̂1)

Ĉ11ML
=

∞∑

k=0

M̂kĈc(M̂
k)T

Ĉ12ML
= Ĉ11ML

M̂T

where M̂ = ĈT
12Ĉ

−1
11 , µ̂1 = 1

ni−1

∑ni−1
j=1 xj(i),

µ̂2 = 1
ni−1

∑ni−1
j=1 xj+1(i), Ĉ11 = 1

ni−1

∑ni−1
j=1 (xj(i) −

µ1)(xj(i) − µ1)
T , Ĉ12 = 1

ni−1

∑ni−1
j=1 (xj(i) −

µ1)(xj+1(i) − µ2)
T , Ĉc = Ĉ22 − ĈT

12Ĉ
−1
11 Ĉ12, and Ĉ22 =

1
ni−1

∑ni−1
j=1 (xj+1(i) − µ2)(xj+1(i) − µ2)

T . During the

training phase, the model parameters µ,C11, C12 can be esti-

mated in a similar fashion in terms of µ̂t
1, µ̂

t
2, Ĉ

t
11, Ĉ

t
12, Ĉ

t
22.

Substituting these ML estimates in Eq. (10), D̂kl for MCFIS

model can be written in the following form [10]

D̂kl(θ̂‖θ) =
1

2

(

log
det Ĉt

c

det Ĉc

+ tr(Ĉ−1t

c Ĉc − I)

+tr
[

Ĉ−1t

c (M̂ t − M̂)Ĉ11(M̂
t − M̂)T

]

+(∆µ̂2 − M̂ t∆µ̂1)
T C−1

c (∆µ̂2 − M̂ t∆µ̂1)
)

, (12)

where ∆µ̂2 = µ̂2 − µ̂t
2 and ∆µ̂1 = µ̂1 − µ̂t

1. Note that if

the test syllable is very similar to the training syllable, i.e.,

θ̂ ≈ θ, the value of D̂kl in Eq. (12) approaches zero, thus

maximizing the log-likelihood in Eq. (9).



IV. CLASSIFICATION AND TRAINING

We consider the Bayes risk minimizer of the probability of

error for classification. Hence, our classifier is the maximum-

a-posteriori (MAP) rule [7]:

m̂ = arg max
m

P (D|m)P (m), (13)

which is equivalent to the maximization of the posterior

P (m|D). We proceed with a log version of the MAP rule:

m̂ = arg max
m

log P (D|m) + log P (m).

Next, we proceed with the evaluation of the MAP criterion

for the IFIS and MCFIS models.

A. IFIS model

To obtain the MAP criterion for the IFIS model, Eq. (3)

is substituted into Eq. (14), yielding

max
m

log P (m) + log P (N |m)

+

N∑

i=1

log

∫

e−niD̂kl(px(·|θ̂)‖px(·|θ))p(θ, ni|m)dµ(θ). (14)

Typically, the models p(θ, n|m), P (N |m), P (m) in Eq. (14)

are not available. We propose to estimate them from training

samples in a non-parametric fashion. To estimate p(θ, n|m),
we follow the kernel density estimation approach. Since

only a small number of samples are available for a given

n (or potentially zero), we employ smoothing via the kernel

q(n|n(k,m)) in our estimator:

p̂(θ, n|m) =
1

N t
m

Nt
m∑

k=1

q(n|n(k,m))δ(θ − θ(k,m)), (15)

where N t
m denotes number of training syllables from class

m and θ(k,m), n(k,m) respectively denote the syllable

parametrization vector and length of the kth training syllable

from class m. The estimator p̂(θ, n|m) is essentially a

weighted average of all the training syllables from class

m where the weight q(n|n(k,m)) accounts for the syllable

length similarity. Next, we estimate the class prior probabil-

ity via the following ratio of counts

P̂ (m) =
Kt

m

Kt
, (16)

where Kt
m denotes the number of training set intervals from

class m and Kt denotes the total number of training set

intervals. Finally, we estimate the class conditional proba-

bility for the number of syllables within an interval using

the kernel density estimator

P̂ (N |m) =
1

Kt
m

Kt
m∑

j=1

qk(N |N(j,m)), (17)

where qk(·|·) is the kernel and N(j,m) denotes the number

of syllables in the jth training interval from class m.

Substituting these estimated models p̂(θ, n|m), P̂ (N |m),
P̂ (m) into Eq. (14), we obtain the following MAP criterion

[10]

min
m

− log P̂ (m) − log P̂ (N |m) + N log
N t

m

N t

+

N∑

i=1

nid((p̂xi
, ni)‖(θ(1,i,m), n(1,i,m)))

−
N∑

i=1

log(1 +

Nt
m∑

k=2

e−ni∂d((p̂xi
,ni)‖(θ

(1,i,m),n(1,i,m))) (18)

where d((θ1, n1)‖(θ2, n2)) measures a divergence between

the syllable parametrization vector and length of one syllable

to those of another by

d((θ1, n1)‖(θ2, n2)) = D̂kl(θ1‖θ2) + dq(n1, n2), (19)

where dq(n1, n2) is a non-negative divergence for comparing

syllables lengths and is given by

dq(n1, n2) =
1

n1
log

q(n1|n1)

q(n1|n2)
. (20)

Also, ∂d((p̂xi
, ni)‖(θ(k,i,m), n(k,i,m))) in (18) is given by

∂d((p̂xi
, ni)‖(θ(k,i,m), n(k,i,m))) =

d((p̂xi
, ni)‖(θ(k,i,m), n(k,i,m)))

−d((p̂xi
, ni)‖(θ(1,i,m), n(1,i,m))).

Note the use of order statistics notation (θ(1,i,m), n(1,i,m))
to denote the nearest neighbor for the ith test syllable

amongst all the training examples from class m. Consider

the MAP criterion in Eq. (18) as a sum of five terms.

The first term accounts for the fact that the number of

intervals from different training classes might not be equal.

If all classes have equal number of training intervals, the

first term becomes a constant and therefore is irrelevant

to the classification. The second term accounts for the

fact that the number of syllables within a fixed interval is

species-dependent. The last three terms correspond to the

likelihood of the observations. The last term accounts for the

contribution due to training syllables other than the nearest

neighbor from class m. For large ni, the last term becomes

negligible. If we consider the contribution of the nearest

neighbor alone, the MAP classifier reduces to

min
m

− log P̂ (m) − log P̂ (N |m) + N log
N t

m

N t
(21)

+

N∑

i=1

nid((p̂xi
, ni)‖(θ(1,i,m), n(1,i,m)))

In the Gaussian IFIS case, D̂kl in Eq. (19) is replaced by D̂kl

from Eq. (6). Due to the nearest-neighbor nature of the IFIS

classifier in Eq. (21), the training process for IFIS involves

only the computation of mean, covariance, and length of

frame level features for each syllable in the training set.



B. MCFIS model

Starting with the conditional log-likelihood as defined

in Eq. (9), the MAP classification rule for MCFIS can

be derived in a similar fashion to the IFIS model [10].

Substituting D̂kl as defined in Eq. (12) for D̂kl in Eq. (19),

we obtain

d((θ1, n1)‖(θ2, n2)) = D̂kl(θ1‖θ2) + dq(n1, n2).

The MCFIS MAP classifier is based on a nearest neighbor

rule. Hence, the training process for MCFIS involves the

computation of µ̂t
1, µ̂t

2, Ĉt
11, Ĉt

12, Ĉt
22, and the length of each

syllable in the training set. Next, we provide a numerical

evaluation of the proposed classifiers.

V. NUMERICAL RESULTS

In this section, we describe the experimental setup used

to measure the classification error rates obtained by the

proposed classifiers. We first describe the implementation

details of our experimental setup and then discuss the results.

A. Implementation details

Data We used recordings from the Cornell Macaulay

library, of 6 species as described in Table II. All of the

recordings are 44.1 kHz PCM WAV files. We manually

removed portions of recordings which contain human

voices, then divide each recording into intervals of 30

seconds, resulting in 426 intervals.

Segmentation of the audio recording To compute

spectrograms for the recordings, we divide sounds into

frames of size = 512 samples, with 93.75% overlap between

successive frames, then apply a Hamming window of the

same size followed by a 512-point FFT to obtain the

magnitude spectrum of the frame. To remove background

noise, we consider only frequency bins in the range 1000-

8000 Hz. Next, we compute the KL divergence between

the normalized power spectral density (PSD) of each frame

and the uniform distribution. We use the locations of local

minima of the KL divergence to determine boundaries

between elements. The regions within the boundaries

are treated as elements and the energy of each element

is computed. We then apply an adaptive thresholding

algorithm similar to that used in [3]. Only the elements

with energy greater than this threshold are treated as

syllables and used for further processing.

Frame level features After segmentation, the next task is

to compute frame level features. We choose to use mean

frequency and bandwidth as the frame level features. We

treat the normalized PSD as a probability density function

and compute the mean and variance as our mean frequency

and BW. We compute the energy of each frame and build a

cumulative density function (CDF) for energy of the frames

within a syllable. Only frames that fall within a 95% of

the CDF are used to compute the mean and covariance

matrix for the syllable. We used a Poisson probability mass

function (PMF) to perform kernel density estimation in

both Eq. (17) and Eq. (15).

SVM setup SVM has been successfully employed for

classifying bird syllables individually [3]. To classify a

sound interval, we used SVM to classify each of the

individual syllables and performed a majority vote based

on these individual SVM decisions. We employed the one

vs. one strategy for multiclass SVM as in [3]. The Matlab

SVM implementation SVM-KMToolbox [12] was used for

our simulation purposes. Six features: 2 mean vectors, 3

unique entries from covariance matrix and syllable length

were used and the features were normalized to lie in

the range -1 to 1. Due to MATLAB memory limitations,

we randomly subsampled five sets, each containing 4000

syllables, thus choosing 20,000 syllables totally from the

entire training set. Five SVM classifiers were obtained by

training one on each subsampled training set. The final

SVM decision was computed by adding the votes of all the

five SVM classifiers. To prevent issues due to unbalanced

training set, we ensured that each species constitutes at least

10% of the syllables in each of the subsampled training

sets. Gaussian kernel was employed and the parameters

of SVM (kernel width and regularization parameter) were

optimized by performing a grid search.

Cross Validation To measure the accuracy of the proposed

classifiers, we used them to predict the species in each

30 second interval of sound. Our cross validation setup is

similar to that in [1]. If the test interval belongs to recording

R, all the syllables from the recording R are excluded from

the training set. This ensures that the training set does not

include any syllables from the individual being classified.

Table II
COMPARISON OF CORRECT CLASSIFICATION RATES FOR THE IFIS,

MCFIS, AND SVM CLASSIFIERS ON THE SIX SPECIES DATASET

Species Name Number of Number of SVM IFIS MCFIS
intervals syllables % % %

Winter Wren 73 23471 100.0 ± 0.0 100.0 ± 0.0 97.26 ± 1.9
Swainsons Thrush 50 5635 46.00 ± 7.0 96.00 ± 2.7 88.00 ± 4.6
Black throated Blue Warbler 43 1411 88.37 ± 4.9 83.72 ± 5.6 81.40 ± 5.9
Black capped Chickadee 56 6845 71.43 ± 6.0 55.36 ± 6.6 73.21 ± 5.9
Downy Woodpecker 114 52075 91.23 ± 2.6 92.98 ± 2.3 96.49 ± 1.7
Western Tanager 90 12877 98.89 ± 1.1 91.11 ± 3.0 94.45 ± 2.4

Overall accuracy 86.15 ± 1.6 88.26 ± 1.5 90.61 ± 1.4

B. Comparison of classifiers with SVM

The results of our experiments are summarized in Table

II. The table contains the accuracy (correct classification

rate) in % for the IFIS, MCFIS models and SVM along

with the standard deviation due to cross-validation. SVM

achieves an overall accuracy of 86.15% while the IFIS



model and MCFIS model produce an overall accuracy of

88.26% and 90.61% respectively. We observe that IFIS and

MCFIS models perform better than the equivalent SVM

implementation. Training SVMs is very time-intensive and

requires parameter optimization. Care should be taken to

ensure that subsampling is done appropriately whereas no

such intensive training or parameter optimization is required

for our models. In this work, we used just mean frequency

and bandwidth as the features. If the different species differ

in their vocalization frequency, the IFIS model will produce

good results with these features. If the frequency range

of vocalization is similar for two different species, but

the nature of syllables is different, the MCFIS model can

outperform the IFIS model. Alternatively, one could use

features that capture temporal structure in conjunction with

the IFIS model.

VI. CONCLUSION

In this paper, we introduced the independent syllable

model along with two methods of aggregating frame level

features within syllables, namely, the IFIS and MCFIS

models. We derived the MAP classifiers for each model and

showed that it can be approximated using the nearest neigh-

bor approach. The training process is simple and involves

only the computation of the syllable parametrization vectors

of all the syllables in training set. We numerically evaluated

the performance the classifiers proposed and show that our

models provide competitive classification rates. The inde-

pendent syllable model does not capture temporal structure

across syllables. This can be incorporated by assuming a

Markov model for the distribution of syllables within an

interval. We believe that the combination of frame level and

syllable level temporal structure could further improve upon

the classification rates presented here.
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