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1 Introduction

Probabilistic topic models such as latent Dirichlet allocation (LDA) are widespread tools to analyse
and explore large document corpora. Consider a corpus of D documents. LDA models these docu-
ments as a mixture of K discrete distributions over vocabulary words, which are called topics. Let
wid ∈ {1, . . . , V } denote the ith word observed in document d and zid ∈ {1, . . . ,K} indicate the
topic associated with this word. The generative model of LDA ignores the sequential structure of
text and is defined as follows:

zid|θd ∼ Discrete(θd), θd ∼ Dirichlet(α1K), (1)
wid|zid, {φk} ∼ Discrete(φzid), φk ∼ Dirichlet(β1V ),

where d = {1, . . . , D}, k = {1, . . . ,K} and i = {1, . . . , Nd}. To circumvent the model selection
problem, its nonparametric Bayesian extension, which is known as the hierarchical Dirichlet process
(HDP), [2], can be considered.

Recently sparsity-enforcing priors have been proposed to enable topics to be defined by a small sub-
set of the vocabulary. Sparsity enforcing priors lead to compression as well an easier interpretation
of the topics. A suitable candidate in the Bayesian nonparametric domain is the IBP-compound-
Dirichlet distribution (ICD)[4], which has another interest beyond the simple sparsity-promoting
advantage: it enables to decouple the topic inter-document frequency and intra-document frequency.
Hence, unlike the HDP, the ICD can lead to very specific topics that might be very rare in a docu-
ment corpus overall, but relate to a lot of words in the few documents that address this topic. The
ICD assumes that a random infinite binary matrix generated by an Indian Buffet Process[1] prior
“selects” a subset of the components before applying a symmetric Dirichlet prior on the subset of
activated components. The ICD has been applied as a prior for the document-topic distribution in
a model called the Focused Topic Model (FTM)[4] to enable a small number of topics allocated per
document; it has also been applied as prior for the topic-word matrix in the Sparse Topic Model
(STM)[3] to obtain topics with fewer words describing them.

In this work, we propose a novel unified inference algorithm for the two-parameter ICD model,
which unlike previous methods is based on collapsed Gibbs sampling. Based on the degenerate
Dirichlet we are able to alternatively sample activation variables and topic assignment variables.
Currently, we are evaluating the advantages of ICD when infering sparse representation of docu-
ments in terms of topics (i.e. FTM), words (i.e. STM) or both on several benchmark data.
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Figure 1: Graphical models for the different configurations (fixed K): LDA: solid arrows only,
STM: solid + dotted arrows, FTM: solid + dashed arrows, LIDA: all arrows.

2 Two-parameter IBP compound Dirichlet prior

Let Θ̄ be a binary matrix. We assume Θ̄ serves as a prior for Θ such that they share the same
sparsity profile. The prior for Θ can be formalised as follows:

Θ|Θ̄ ∼
∏
dDirichletθ̄d(α1K), θ̄kd|πk ∼ Bernoulli(πk), πk ∼ Beta(ηδK , δ), (2)

where the Dirichlet distribution is degenerate; it is defined over the simplex of dimension
∑
k θ̄kd−1:

θd|θ̄d ∼ Dirichletθ̄d(α1K) = Γ(θ̄·dα)∏
k Γ(θ̄kdα)θ̄kd

∏
kθ

(α−1)θ̄kd
kd ,

where Γ(·) is the gamma function. By convention we assume θkd = 0 if it does not belong to the
support (i.e. if θ̄kd = 0).

The prior for πk in (2) is a truncated (finite-dimensional) two-parameter IBP. The two-parameter IBP
is a generalisation of the one-parameter IBP [1]. We can interpret δ > 0 as a repulsion parameter;
when it increases, the number of different features will increase for a given number of expected
active features. When δ = 1, we recover the one parameter IBP. In contrast to the one-parameter
IBP, the two-parameter IBP decouples the expected number of active elements (topics) per row
and the overall number of active elements (words). We claim this is a more realistic bag-of-words
generative model for documents.

The IBP is obtained by integrating out π = (π1, . . . , πK) and lettingK →∞[1]. The two parameter
IBP compound Dirichlet prior is given by

p(Θ|α, η, δ) =
∑

Θ̄p(Θ|Θ̄, α)P (Θ̄|η, δ). (3)

From this expression we see that the prior is a mixture of degenerate Dirichlet distributions over
simplices of different dimensions.

3 Latent IBP compound Dirichlet Allocation (LIDA)

We obtain the latent IBP compound Dirichlet allocation (LIDA) model by replacing the Dirichlet
prior in LDA by a truncated IBP compound Dirichlet prior. The generative model is given by

θd|θ̄d ∼ Dirichletθ̄d(α1K), θ̄kd|πk ∼ Bernoulli(πk), πk ∼ Beta(ηδK , δ), (4)

φk|φ̄k ∼ Dirichletφ̄k(β1V ), φ̄vk|κv ∼ Bernoulli(κv), κv ∼ Beta(γλV , λ),

For appropriate values of η, δ, γ, λ, the ICD prior reduces to the non-degenerate Dirichlet distribu-
tion; hence, we can recover FTM, STM and LDA as special cases of LIDA (see Fig.1). Note that
unlike [4], we use a two-parameter IBP in our FTM.
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3.1 Inference

Integrating out π = (π1, . . . , πK), κ = (κ1, . . . , κV ), {θd} and {φk} leads to the following
marginals:

P (Θ̄) ∝
∏
k

B(θ̄k· +
ηδ
K , D − θ̄k· + δ)

B(ηδK , δ)
,

P (Φ̄) ∝
∏
v

B(φ̄v· +
γλ
V ,K − φ̄v· + λ)

B(γλV , λ)
,

P (z|Θ̄) ∝
∏
d

Γ(θ̄·dα)

Γ(θ̄·dα+ n··d)

∏
k

(
Γ(θ̄kdα+ n·kd)

Γ(θ̄kdα)

)θ̄kd
,

P (w|z, Φ̄) ∝
∏
k

Γ(φ̄·kβ)

Γ(φ̄·kβ + n·k·)

∏
v

(
Γ(φ̄vkβ + nvk·)

Γ(φ̄vkβ)

)φ̄vk
,

where B(·, ·) is the beta function and nvkd is the number of times token v was assigned to topic k
in document d. The notation · means we sum over the corresponding index. We use the convention
00 = 1. Note also that n·kd = 0 if θ̄kd = 0 (as θkd = 0) and nvk· = 0 if φ̄vk = 0 (as φvk = 0).

The collapsed Gibbs sampler can be derived using Bayes’ rule and exchangeability:

P (θ̄kd = 1|z, Θ̄\kd) =
P (z, Θ̄)

P (z, Θ̄
\kd

)
∝

{
B(θ̄
\kd
·d α+n··d,α)(θ̄

\kd
k· + ηδ

K )

B(θ̄
\kd
·d α,α)(D−1−θ̄\kdk· +δ)

if n·kd = 0,

1 if n·kd > 0,

P (φ̄vk = 1|w, Φ̄\vk, z) =
P (w, Φ̄|z)

P (w, Φ̄
\vk|z)

∝

{
B(φ̄
\vk
·k β+n·k·,β)(φ̄

\vk
v· + γλ

V )

B(φ̄
\vk
·k β,β)(K−1−φ̄\vkv· +λ)

if nvk· = 0,

1 if nvk· > 0,

P (zid = k|w, z\id, Φ̄, Θ̄) =
P (w, z|Φ̄, Θ̄)

P (w, z\id|Φ̄, Θ̄)
∝ (α+n

\id
·kd)(β+n

\id
vk·)

φ̄·kβ+n
\id
·k·

I{θ̄kd = 1 ∧ φ̄vk = 1},

where I{·} is the indicator function. The variables θ̄kd and φ̄vk need only to be resampled when
n·kd = 0 and nvk· = 0, respectively. We obtain the updates for the nonparametric version by letting
K → ∞ in P (θ̄kd = 1|z, Θ̄\kd); in the posterior P (φ̄vk = 1|w, Φ̄\vk, z) we only need to replace
K by Kobs as the actual number of observed topics is finite. The prior on the number of new topics
is given by Poisson(ηδ/(D−1+δ)). The sampler for the one-parameter IBP is recovered by setting
δ = 1 and λ = 1.

3.2 Special cases

In the focussed topic model (FTM), there is no sampling of {φ̄vk} and the topic assignments are
sampled as follows:

P (zid = k|z\id,w, Θ̄) =
P (w, z|Θ̄)

P (w, z\id|Θ̄)
∝

(θ̄kdα+ n
\id
·kd)(β + n

\id
vk·)

V β + n
\id
·k·

I{θ̄kd = 1}.

Similarly, in the sparse-smooth topic model (SSTM) there is no sampling of {θ̄kd} and the topics
assignments are sampled as follows:

P (zid = k|z\id,w, Φ̄) =
P (w, z|Φ̄)

P (w, z\id|Φ̄)
∝

(α+ n
\id
·kd)(φ̄vkβ + n

\id
vk·)

φ̄·kβ + n
\id
·k·

I{φ̄vk = 1}.

Finally, in standard LDA there is no sampling of {φ̄vk} or {θ̄kd}, which leads to the well known
collapsed Gibbs sampler:

P (zid = k|z\id,w) =
P (w, z)

P (w, z\id)
∝

(α+ n
\id
·kd)(β + n

\id
vk·)

V β + n
\id
·k·

.
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3.3 Evaluation

Let w∗ denote the test corpus. We use perplexity as a performance measure:

Perplexity(w∗) = exp(− lnP (w∗|w)∑
dN
∗
d

), (5)

where the test log likelihood lnP (w∗|w) is approximated as

lnP (w∗|w) ≈
∑
d

∑
v

n∗v·d ln
1

P

∑
p

∑
k

E
[
φ

(p)
vk |w, z

(p)
]
E
[
θ

(p)
kd |z

(p)
]
. (6)

The posterior expectations are approximated as follows

E [θkd|z] ≈
E
[
θ̄kd|z, Θ̄

\kd
]
α+ n·kd∑

k E
[
θ̄kd|z, Θ̄

\kd
]
α+ n··d

, (7)

E [φvk|w, z] ≈
E
[
φ̄vk|w, z, Φ̄

\vk
]
β + nvk·∑

v E
[
φ̄vk|w, z, Φ̄

\vk
]
β + n·k·

. (8)

For the test documents, the topics z are sampled until convergence and finally, the test perplexity is
computed.

4 Discussion

We proposed LIDA, a new model that subsumes FTM, STM and LDA, and naturally extends to its
nonparametric counterpart. We believe that our sampler is simpler than previously proposed sam-
plers for sparse topic models. We are currently empirically evaluating the performance (perplexity,
sparsity, number of topics for the nonparametric version) of the different benchmark data sets in-
cluding the 20 Newsgroups and Reuters-21578 datasets and will have the results ready by the time
of the workshop.
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