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Suppose p(x) is a pdf and we have a factorization

p(x) =
1

Z

n∏
i=1

fi (x). (1)

Expectation propagation is an inference algorithm designed to
approximate the factors fi . In doing so, we may recover
approximations of the marginals and joints of p, or we may find the
normalizing constant for p. EP involves parameterising an
approximation f̃i of each factor fi and iteratively including each
factor into the approximation by minimising a KL-divergence.



For each factor fi , fix an approximating family of distributions Ωi .
Given (1) and Ωi , the EP algorithm is as follows:

initialize approximations f̃i
repeat

for i = 1, . . . , n do

f̃i ← argmax
f̂i∈Ωi

KL

 1

B
fi
∏
j 6=i

f̃i

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

C
f̂i
∏
j 6=i

f̃i

 (2)

end for
until stopping condition reached

Here, B and C are normalising constants.



Writing p̃¬i =
∏

j 6=i f̃i , we see that the update in the EP algorithm

sets f̃i to:

argmin
f̂i∈Ωi

∫
1

B
(fi p̃

¬i )(x) log
Cfi (x)

Bf̂i (x)
dx, such that

∫
(f̂i p̃

¬i )(x)dx = C .

(3)

From this equation, we see that if f̂i were unconstrained (i.e. if Ωi

were all functions on the range of x), then f̂i = C
B fi would be a

solution. Unfortunately, the computation of B and C are often
intractable. Therefore, to make progress in EP, we must place
constraints on f̃i so that minimising (3) is tractable.



There are two main sorts of constraints on f̃i that we will examine:

1. Exponential family constrains,

2. Fully factorised constraints.

In what follows we will see the general implication of these
assumptions in detail, making reference to the formulation of EP
updates as minimising (2). Other constraints are possible: any
choice of Ωi for which the computation of (3) is tractable leads to
an EP algorithm.



Exponential family constraints

Suppose f (x) = h(x) exp(ηTu(x)− A(η)) and p(x) is any
distribution. We want to find the sufficient statistic η that
minimises the following KL-divergence:

KL(p||q) =

∫
p(x) log

p

f (x)
dx,

= Ep[p(x)] + Ep[h(x)]− A(η) + ηT Ep[u(x)].

We proceed by equating the derivative of with respect to η to zero:

∇ηA(η) = Ep[u(x)]. (4)

But, because f is from an exponential family, ∇ηA(η) = Ef [u(x)].
Thus, (9) is minimised when Ef [u(x)] = Ep[u(x)]. This is why EP
is sometimes called ‘moment matching.’



Returning to the situation of EP, suppose we restrict f̃i to be
proportional to a distribution in a a given exponential family:

Ωi = {f (x) : f (x) ∝ hi (x) exp(ηTu(x)− Ai (η))∀η}.

Without loss of generality, we have assumed the same form of the
sufficient statistics u(x) for each approximating distribution.
Suppose f̃i ∝ exp(ηT

i u(x)− Ai (η̃i )) are the current site
approximations (proportionality in η̃i ). The EP minimisation step
for fi (2) is:

f̃i ← argmax
f̂i∈Ωi

KL

(
1

B
fi p̃
¬i

∣∣∣∣ ∣∣∣∣ 1

C
f̂i p̃
¬i

)
.

Collecting terms in the exponent, the second argument in the
KL-divergence is exponential family with (proportionality in η̂i ):

f̂i p̃
¬i ∝ exp

(η̂T
i +

∑
j 6=i

η̃T
j )u(x)− Ai (η̂i )−

∑
j 6=i

Ai (η̃i )

 . (5)



Suppose η̃j agree given for all j 6= i . We will use (5) to write
Ef̂i p̃¬i [u(x)] as a function of η̂i : Suppose Φi (η̂i ) = Ef̂i p̃¬i [u(x)]. To
proceed, we must be able to compute Efi p̃¬i [u(x)] for the fixed η̃j .
In this case, the update (2) is given by the following:

η̂i ← Φ−1
i (Efi p̃¬i [u(x)]). (6)



Fully factorised constraints

Suppose x = (x1, . . . , xk) and

p(x) =
1

B

n∏
i=1

fi (Ci ),

where C1, . . . ,Cn are subsets of x. (N.b. that the Ci might
overlap.) This model has the same expressive power as factor
graphs: If G is a factor graph then the terms fi (Ci ) correspond to
the factors of G . In particular, if G is an undirected graphical
model, then we can choose C1, . . . ,Cn so that Ci is the pair of
vertices conencted by the i-th edge of G .



The fully factorised constraint on f̃i (Ci ) is:

f̃i (Ci ) =
∏

x`∈Ci

f̃i`(x`)

We will also assume that f̃i`(x`) are restricted to functions
proportional to exponential families with base measure, sufficient
statistics, and partition functions hi`, ηi`,Ai` respectively. As
above: f̃i`(x`) ∝ exp(η̃T

i`u`(x`)− Ai`(η̃i`)). Note that as f̃i splits,
we write seperate sufficient statistics for each component of x. We
have constrained Ωi to be an exponential family that splits over
the random variables contained in Ci .



Under these constraints, we find factors in the KL-divergence (3)
that depend on f̂i for a fixed i :

KL

(
1

B
fi p̃
¬i

∣∣∣∣ ∣∣∣∣ 1

C
f̃i p̃
¬i

)
=

1

B

∫
(fi p̃

¬i )(x) log(fi/f̂i )(x)dx

=
1

B

∫
fi (Ci )

∏
j 6=i

∏
x`∈Cj

f̃j`(x`) log(fi/f̂i )(x)dx

=
1

B

∫
x\Ci

∏
j 6=i

∏
x`∈Cj\Ci

f̃j`(x`)

← no η̂i

dependence

·
∫

Ci

fi (Ci )
∏
j 6=i

∏
x`∈Cj∩Ci

f̃j`(x`) log(fi/f̂i )(x)dx

=KL

(
1

B ′
fi p̃
¬i
Ci

∣∣∣∣ ∣∣∣∣ 1

C ′
f̂i p̃
¬i
Ci

)
,

where p̃¬i
Ci

=
∏

j ,x`:x`∈Cj∩Ci
f̃j`(x`). Expectations with respect to the

first argument of this KL are integrals over Ci which are tractable.



In particluar, f̂i =
∏

x`∈Ci
f̂i`(x`), and so the above KL is optimised

when the following KL-divergences are minimised for each `:

KL

(
1

B ′
fi p̃
¬i
Ci

∣∣∣∣ ∣∣∣∣ 1

D ′
f̂i`p̃
¬i
Ci

)
.

By the exponential family derivation above,

(f̂i`p̃
¬i
Ci

)(x`) ∝ exp

η̂T
i` +

∑
j 6=i :x`∈Cj

η̃T
j`

 u`(x`)

−Ai`(η̂i`)−
∑

j 6=i :x`∈Cj

Aj`(η̃i`)

 (7)



So the EP update for f̂i` is found as follows:

1. Use equation (7) above to write Ef̂i`p̃
¬i
Ci

[u`(x`)] as a function

of η̂i`: suppose the function is Φi`(η̂i`) = Ef̂i`p̃
¬i
Ci

[u`(x`)]

2. Compute Efi`p̃
¬i
Ci

[u`(x`)].

3. Set f̂i` ← Φ−1
i`

(
Efi`p̃

¬i
Ci

[u`(x`)]
)

.

These first two steps involve integration over Ci which is tractable
if the sizes of Ci are small. Every named exponential family admits
an analytic form for Φ−1.



Example: Graphical models on binary variables

Suppose G is an undirected graphical model on binary random
variables V (G ) = {x1, . . . , xn}:

p(G ) ∝ 1

Z

∏
xy∈E(G)

fxy (x , y). (8)

Here, E (G ) are the edges of G . We have absorbed the factors
involving just one variable into the factors on the edges. We can
write fxy as the following exponential family with sufficient
statistics x , y , xy :

fxy (xy) = µ
(1−x)(1−y)
xy ;00 µ

x(1−y)
xy ;10 µ

(1−x)y
xy ;01 µxy

xy ;11

= exp(σxx + yσy + σxyxy + bxy ). (9)



In (9), the sufficient statistics for fxy are:

σx = log(µxy ;10/µxy ;00),

σy = log(µxy ;01/µxy ;00),

σxy = log
µxy ;11µxy ;00

µxy ;10;µxy ;01

And the partition function is:

bxy = logµxy ;00.

We will apply the fully factorized constraint to the approximate
site potentials:

f̃xy (xy) = f̃xy :x(x)fxy :y ,

∝ exp(δxy :xx) exp(δxy :yy). (10)

The sufficient statistics of this approximation are x and y .



We derive the update (6) for f̂xy assuming that f̃x ′y ′ are given for
all x ′y ′ 6= xy . We must find the expected values of the sufficient
statistics of fxyp¬xy

{xy}. As in (7), with Ci = {xy}:

fxy p̃¬xy
{xy}(x , y) ∝ exp(σxx + σyy + σxyxy + bxy

+
∑

y ′∈N(x)\y

σ̃xy ′;xx +
∑

x ′∈N(y)\x

σ̃x ′y ,yy). (11)



We compute the expected value of x under (11). Efxy p̃¬xy
{xy}

[x ] is:

exp

σx +
∑

y ′∈N(x)\y

σ̃xy ′;x

1 + exp(σy + σxy +
∑

x ′∈N(y)\x

σ̃x ′y ;y )


/

1 + exp(σx +
∑

y ′∈N(x)\y

σ̃xy ′;x) + exp(σy +
∑

x ′∈N(y)\x

σ̃x ′y ;y )

+ exp(σx + σy + σxy +
∑

x ′∈N(y)\x

σ̃x ′y ;y +
∑

y ′∈N(x)\y

σ̃xy ′;x)

 ,

=ρx . (12)



The expression for (12) in the previous slide can be calculated
directly from (11) by expanding Efxy p̃¬xy

{xy}
[x ] as:

0 ∗ (fxy p̃¬xy
{xy}(0, 0) + fxy p̃¬xy

{xy}(0, 1)) + 1 ∗ (fxy p̃¬xy
{xy}(1, 0) + fxy p̃¬xy

{xy}(1, 1))

fxy p̃¬xy
{xy}(0, 0) + fxy p̃¬xy

{xy}(0, 1) + fxy p̃¬xy
{xy}(1, 0) + fxy p̃¬xy

{xy}(1, 1)
.

Next,

Ef̃xy
[x ] = (0 ∗ (exp(0σ̃xy :x + 0σ̃xy :y ) + exp(0σ̃xy :x + 1σ̃xy :y ))

+1 ∗ (exp(1σ̃xy :x + 0σ̃xy :y ) + exp(1σ̃xy :x + 1σ̃xy :y )))

/ (exp(0σ̃xy :x + 0σ̃xy :y ) + exp(1σ̃xy :x + 0σ̃xy :y )

+ exp(0σ̃xy :x + 1σ̃xy :y ) + exp(1σ̃xy :x + 1σ̃xy :y )))

=
exp(δ̃xy ;x)

1 + exp(δ̃xy ;x)
. (13)



Equating (12) and (13) yields the update for δ̃xy ;x :

Ef̃xy
[x ] = Efxy p̃¬xy

{xy}
[x ],

⇔ exp(δ̃xy ;x)

1 + exp(δ̃xy ;x)
= ρx ,

⇔ δ̃xy ;x = log
ρx

1− ρx
. (14)

Thus, the update for δ̃xy ;x is:

δ̃xy ;x ← log
ρx

1− ρx
,

and the update for δxy ;y is by symmetry. This completes the EP
algorithm for arbitrary undirected graphs of binary random
variables. Note that (14) is found by inverting the expected value
as a function of the natural parameter. This is the Φ−1 function
from (6).


