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Part 1: Predictive uncertainty estimation in
Discriminative models



Discriminative models




Quantifying Uncertainty In Deep Learning

* What do we mean by predictive uncertainty? Examples:

— Classification: output label y* along with confidence
— Regression: output mean and variance

* Why predictive uncertainty?

— Good uncertainty scores quantify when we can trust the
model’s predictions



Sources of predictive uncertainty

* Inherent stochasticity
- y for a given x could be stochastic, e.g. measurement noise
— Also known as aleatoric uncertainty

— Considered to be irreducible uncertainty: persists even in
the limit of infinite data



Sources of predictive uncertainty

* Inherent stochasticity

- y for a given x could be stochastic, e.g. measurement noise

— Also known as aleatoric uncertainty

— Considered to be irreducible uncertainty: persists even in
the limit of infinite data

* Model uncertainty

— Multiple values of parameters could be consistent with the
observed data

— Also known as epistemic uncertainty

— Considered to be reducible uncertainty: vanishes in the limit
of infinite data (subject to identifiability)
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Applications of Predictive Uncertainty

+ Cost-sensitive decision making (e.g. healthcare,
self-driving cars, robotics)

+ Dealing with dataset shift in real-world machine learning
systems

— Feature skew between train and test
— Open-set classification: May be asked to predict on test
inputs that do not belong to any of the training classes

+ Active learning for efficient data collection
- Reinforcement learning: (safe) exploration
* Build modular systems that know what they don't know



How do we measure the quality of
predictive uncertainty?



Challenges

+ Lack of ground truth
+ Cost of down-stream decisions may be difficult to model
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1. Calibration

+ Measures how well model’s predicted confidence aligns
with observed accuracy
- Does predicted probability of correctness (confidence)
match the observed frequency of correctness (accuracy)?
— Weather forecasting: Of all days where model predicted rain
with 80% probability, what fraction did we observe rain?
- 80% implies perfect calibration
— Less than 80% implies model is overconfident
— Greater than 80% implies model is under-confident
— Calibration curve / Reliability diagrams
- Expected calibration error (ECE)



2. Robustness to dataset shift

* Does the system exhibit higher uncertainty on inputs far
away from training data?
— We expect p(y|x) to be more accurate when x ~ prran(X),
than on out-of-distribution (OOD) inputs
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2. Robustness to dataset shift

* Does the system exhibit higher uncertainty on inputs far
away from training data?
— We expect p(y|x) to be more accurate when x ~ prran(X),
than on out-of-distribution (OOD) inputs
— Need to measure ability of model to reject OOD inputs.
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How do deep networks fare?
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Deep networks are poorly calibrated

On Calibration of Modern Neural Networks

Chuan Guo”' Geoff Pleiss“' Yu Sun”' Kilian Q. Weinberger '

Abstract

Confidence calibration — the problem of predict-
ing probability estimates representative of the
true correctness likelihood — is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling — a single-
parameter variant of Platt Scaling — is surpris-
ingly effective at calibrating predictions.

1. Introduction
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.
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High confidence predictions on OOD inputs

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen
University of Wyoming

anguyen8@uwyo. edu

Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [ (] revealed that
changing an image (e.g. of alion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take ¢ i neu-
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ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

[tentcar | remotecontrol ]| [ Arican arey
Figure 1. Evolved images that are unrecognizable to humans.
but that state-of-the-art DNN trained on ImageNet believe with
99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are cither directly (top) or indirectly (bottom) encoded.

peacock
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Predictive Uncertainty in Deep Learning:
Large-Scale Benchmark

Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift

Yaniv Ovadia* Emily Fertig*' Jie Ren’
Google Research Google Research Google Research
yovadia@google.com emilyaf@google.com jjren@google.com
Zachary Nado D Sculley Sebastian Nowozin
Google Research Google Research Google Research
znado@google.com dsculley@google.com nowozin@google.com
Joshua V. Dillon Balaji Lakshminarayanan* Jasper Snoek!
Google Research DeepMind Google Research
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Popular methods

+ (Vanilla) Maximum softmax probability [Hendrycks and
Gimpel, 2016]

15



Popular methods

+ (Vanilla) Maximum softmax probability [Hendrycks and
Gimpel, 2016]

* (Temp Scaling) Post-hoc calibration by temperature scaling
using i.i.d. validation set [Guo et al., 2017, Platt, 1999]

15



Popular methods

+ (Vanilla) Maximum softmax probability [Hendrycks and
Gimpel, 2016]

* (Temp Scaling) Post-hoc calibration by temperature scaling
using i.i.d. validation set [Guo et al., 2017, Platt, 1999]

* (Dropout) Monte-Carlo Dropout [Gal and Ghahramani, 2016,
Srivastava et al., 2014] with rate p

15



Popular methods

+ (Vanilla) Maximum softmax probability [Hendrycks and
Gimpel, 2016]

* (Temp Scaling) Post-hoc calibration by temperature scaling
using i.i.d. validation set [Guo et al., 2017, Platt, 1999]

* (Dropout) Monte-Carlo Dropout [Gal and Ghahramani, 2016,
Srivastava et al., 2014] with rate p

+ (Deep Ensembles) Ensembles of M networks trained
independently on the entire dataset using random
initialization [Lakshminarayanan et al., 2017]

Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles

Balaji Lakshminarayanan Al der Pritzel Charles Blundell
DeepMind
{balajiln,apritzel,cblundell}@google.com
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* (Deep Ensembles) Ensembles of M networks trained
independently on the entire dataset using random
initialization [Lakshminarayanan et al., 2017]

+ (SVI) Stochastic Variational Bayesian Inference [Blundell

et al., 2015, Graves, 2011, Wen et al., 2018].
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Popular methods

+ (Vanilla) Maximum softmax probability [Hendrycks and
Gimpel, 2016]
+ (Temp Scaling) Post-hoc calibration by temperature scaling
using i.i.d. validation set [Guo et al., 2017, Platt, 1999]
+ (Dropout) Monte-Carlo Dropout [Gal and Ghahramani, 2016,
Srivastava et al., 2014] with rate p
* (Deep Ensembles) Ensembles of M networks trained
independently on the entire dataset using random
initialization [Lakshminarayanan et al., 2017]
+ (SVI) Stochastic Variational Bayesian Inference [Blundell
et al., 2015, Graves, 2011, Wen et al., 2018].
+ (LL) Approximate Bayesian inference for the parameters of
the last layer only [Riquelme et al., 2018]

- (LL SVI) Mean field SVI on the last layer only

- (LL Dropout) Dropout only on activations before last layer

16



Datasets and Architectures

+ Image classification (convolutional neural networks)
— MNIST
— CIFAR-10
— ImageNet
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Datasets and Architectures

+ Image classification (convolutional neural networks)

— MNIST
— CIFAR-10
— ImageNet
+ Text classification (LSTMSs)
- Criteo Kaggle Display Ads Challenge (multi-layer
perceptrons)
— dataset with class-imbalance
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Goals of this benchmark

Questions of interest:
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+ How do uncertainty and accuracy of different methods
vary for different datasets and model architectures?
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Goals of this benchmark

Questions of interest:

* How trustworthy are the uncertainty estimates of different
methods under dataset shift?

* Does calibration in the i.i.d. setting translate to calibration
under dataset shift?

+ How do uncertainty and accuracy of different methods
vary for different datasets and model architectures?

Release open-source TensorFlow code as well as predictions

+ https://github.com/google-research/google-research/tree/
master/uq_benchmark_2019

18


https://github.com/google-research/google-research/tree/master/uq_benchmark_2019
https://github.com/google-research/google-research/tree/master/uq_benchmark_2019

Dataset shift: ImageNet-C
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Figure: Image source: [Hendrycks and Dietterich, 2019]
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Dataset shift: Varying intensity on ImageNet-C
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Figure: Increasing intensity of corruption
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Dataset shift: Testing on completely different

dataset

CIFAR-10 Training Images
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Accuracy decreases as dataset shift increases
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Uncertainty quality decreases significantly as
dataset shift increases

Method
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Model is overconfident even though it is way less accurate.
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Calibration under dataset shift

[ Temperature scaling is well-calibrated on i.i.d. test, but not calibrated under dataset shift ]
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Calibration under dataset shift

[ Temperature scaling is well-calibrated on i.i.d. test, but not calibrated under dataset shift ]
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[ Ensembles are consistently among the best performing methods, especially under dataset shift
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Similar trends on text experiments
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Similar trends on Criteo experiments as well
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Take home messages from our benchmark

+ Calibration under dataset shift is a major challenge
+ Relative ordering of methods is mostly consistent (except
for MNIST) across our experiments.

- Deep ensembles [Lakshminarayanan et al., 2017] seem to
perform the best across most metrics and be more robust
to dataset shift

- Relatively small ensemble size (e.g. 5) may be sufficient.

+ SVI performs best on MNIST but seems difficult to use on
larger datasets (e.g. ImageNet) and architectures
(e.g. LSTMs).

— More work required to make it robust and scalable
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Part 2: Out-of-Distribution behavior of
Deep Generative Models
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So far: Discriminative models
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Discriminative vs Generative models

Y NS !
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ prran(X), but can
make overconfident errors when asked to predict on 00D
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Discriminative vs Generative models

Y NS !
! X,
X
Xl
p(x)
“Discriminative” Model “Generative” Model

* p(y|x) is typically accurate when x ~ prran(X), but can
make overconfident errors when asked to predict on 00D
* Use density model p(x) to decide when to trust p(y|x)
[Bishop, 1994]
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Novelty Detection & Neural Network Validation

Inputs Unlike Training Data

if p(x™; @) <7,

then reject «*

Use p(X) modél to reject
inputs with density below
some threshold [Bishop, 1994].
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Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro Matsukawa”' Yee Whye Teh! Dilan Gorur' Balaji Lakshminarayanan '

+ ldea: use flows to compute exact density p(x) and p(y|x) in
a single feed-forward pass
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Hybrids of Generative & Discriminative models

Hybrid Models with Deep and Invertible Features

Eric Nalisnick ! Akihiro Matsukawa”' Yee Whye Teh! Dilan Gorur' Balaji Lakshminarayanan '

+ ldea: use flows to compute exact density p(x) and p(y|x) in
a single feed-forward pass

* Motivation: If density model p(x) can address dataset shift,
we can potentially use computationally simpler methods for
model uncertainty

* Works well in some cases

* The failure modes were very interesting, so we decided to
investigate this in detail ...
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Published as a conference paper at ICLR 2019

DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick*{ Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind
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Generative models for CIFAR

Generative
'E-HHB‘ Model P <XCIFAR—10)

h".iﬂ.‘ Training

Deep generative models where density p(x) can be computed:
* Flow-based models: GLOW [Kingma and Dhariwal, 2018]
- Auto-regressive models: PixelCNNs [van den Oord et al.,
2016]
* Variational Auto-Encoders (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)

Training: CIFAR-10  Testing: SVHN

GENERATIVE
MODEL

p(xCIFAR-IO) § p(XSVHN)
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Training a Flow-Based Model on CIFAR-10

CIFAR-10 Training Images
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Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464

(Lower is Better)
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images
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Bits Per Dimension
(NLL / # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
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(Lower is Better)
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Training a Flow-Based Model on CIFAR-10

SVHN Test Images Bits( Per Dimen?ion
NLL / # dims / log 2)
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Model assigns high likelihood to constant

CIFAR-10 Training Images
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Bits Per Dimension
(NLL/ # dims / log 2)

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

(Lower is Better)

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR-10

Random 15.773
Constant (128) 0.589
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Phenomenon holds throughout training
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Ensembling does not fix the problem either

0.0005 0.0005
EEN CIFAR10-TRAIN
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BN SVHN-TEST

Emm CIFAR10-TRAIN
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Explaining the failure mode for
Flow-based models
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Flows: one slide summary

Define Z by a transformation of
another variable X:

Z = f(X)

Change of Variables Formula (X = 2):

w0y |2 = o
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Flows: one slide summary

Define Z by a transformation of
another variable X:

7= f(x)

f(x) must be a bijection
(invertible 1:1 mapping)

x=fY%z) z=£f(x)

Change of Variables Formula (X = Z):

(0 | ] =i
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = 2):
another variable X:
Z=f(X df (X
) p (00 [ L2 =50

f(x) must be a bijection
(invertible 1:1 mapping) /

Use simple base
distribution p_such
as Gaussian

x=f%z) z=£(x)

!

Use architecture such that
determinant of Jacobian
|df/dx| is easy to compute
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Flows: one slide summary

Define Z by a transformation of Change of Variables Formula (X = Z):

another variable X:

Z = f(X)

df (X)

(0 [ L2 =50
f(x) must be a bijection
(invertible 1:1 mapping) / T
Use simple base Use architecture such that
distribution p, such determinant of Jacobian

x=1fYz) z=1£(x)

as Gaussian / |df/dx| is easy to compute

Compose simple f's to build a powerful model f = f of o...of
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Explaining the observations using CV-GLOW

Mathematical characterization:

0 < Eqllog p(; )] — Eyp- [log p(a; 0)]

Non-Training Training
Distribution Distribution
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Explaining the observations using CV-GLOW

Mathematical characterization:

0 < Eq[log p(; 0)] — Ep-[log p(x; 6)]

Non-Training Training
Distribution Distribution Second Moment
of Training
8f Distribution
1 —
~ 1] [V own. (1o ) + 92, g | 322 | 2, 50}

4 second Moment
of Non-Training
Distribution

Change-of-Variable
Terms
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Explaining the observations using CV-GLOW

Mathematical characterization:

0 < Eq[log p(a; 0)] — Ep- [log p(a; 6)]

Non-Training Training

Distribution Distribution
Second Moment
of Training
Distribution
1 3 —
2 .
~ §’I‘r V:vo logpz(f(w0,¢))+V g VN Sa (&_zp*)
> { Second Moment
: of Non-Training
Change-of-Variable Distribution

Terms
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Explaining the observations using CV-GLOW

Plugging in the CV-Glow transform:

Tr { [Vio log p($0, 0)] (Eq — Ep* )} Second Moment Second Moment
of Non-Training of Training
c Distribution Distribution

8 —
a 9.2 logp z; ’(p Z quk (%] Z(Ug,h,w,c - 2*,h,w,c)

c=1 \k=1j=1 h,w

< 0 for all log-
concave densities Non-negative
(e.g. Gaussian) due to square
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Explaining the observations using CV-GLOW

0 < Eq[logp(; 0)] — Ep- [log p(; 6)]

- . Second

Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z( q,hwc p hwc)

Second Moment of
Non-Training
Distribution
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Explaining the observations using CV-GLOW

0 < Eq[logp(a; 0)] — Eyp- [log p(a; )]

- = Second
Non-Training Training Moment of
Distribution Distribution Training
2 2
Z (aq,h J,(:di p').w,c)
h,u

Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
@ Asymmetry

D Uniform Inputs

D Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[log p(x; 8)] — Eyp-[log p(a; 0))

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

2 2
Z(Uq,h,w,c ~ Opt hwie)
h,w

Second Moment of
Non-Training
Distribution

() CIFAR-10 vs SVHN (plugging in empirical moments)
[:] Asymmetry (due to sub. being non-commutative)
D Uniform Inputs

[:] Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[logp(z; )] — Ep- [log p(a; 0)]

. L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution
c —
~ ZM_ g’,h,w,c)
c=1 h,w
Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
[:] Uniform Inputs

[:] Ensembling

D Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[log p(; 0)] — Ep- [log p(a; 0)]

- . Second
Non-Training Training Moment of
Distribution Distribution Training

Non-Training
Distribution

D CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)
D Ensembling

[:] Early Stopping
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Explaining the observations using CV-GLOW

0 < Eqllog p(a; 6)] ~ Ey- log p(a; 0)]

- L Second
Non-Training Training Moment of
Distribution Distribution Training

Distribution

Z(Uq,hwc " hwc)

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
D Uniform Inputs (non-training 2nd moment is zero)
[:] Ensembling

(sign doesn’t depend on model param. values)
O Early Stopping }
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Explaining the observations using CV-GLOW

0 < Eq[logp(z; 0)] — Ep- [log p(x; 0)]

- L Second
Non-Training Training Moment of

Distribution Distribution Training
Distribution

Z(ag,h,w,c - 012" .h.,w,c)

hyaw

Second Moment of
Non-Training
Distribution

(] CIFAR-10 vs SVHN (plugging in empirical moments)
D Asymmetry (due to sub. being non-commutative)
C] Uniform Inputs (non-training 2nd moment is zero)

[:] Ensembling
(sign doesn't depend on model param. values)
(] Early Stopping
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Explaining the observations using CV-GLOW

0 < Eq[logp(x; 0)] — Ep-[log p(x; 0)]

- — Second
Nqn-T_ralr?lng .Tra.mln.g Moment of
Distribution Distribution Training

Distribution

02 < 2 2
R 54 lqg_n(z!) Z Z(aq.h,w,v = O hwe)
lc=1 h,w
Second Moment of

Non-Training
Distribution

Hypothesis: If the second-order pmm v m

statistics do indeed dominate, we - -

should be able to control the
likelihoods by graying the images...
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Explaining the observations using CV-GLOW

0 < Eqllogp(; 0)] — Ey- [log p(x; 0)]

- - Second
Non-Training Training Moment of
Distribution Distribution Training
Distribution
C
§ : 2 2
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c=1 hyaw
Second Moment of
Non-Training
0014 —— CIFARLO istri i
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—— SVHN
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One weird trick to
increase your
likelihoods!
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Take home messages

+ Deep generative models are attractive but have problems
detecting out-of-distribution data.
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Take home messages

+ Deep generative models are attractive but have problems
detecting out-of-distribution data.
* Be cautious when using density estimates from deep
generative models as proxy for “similarity” to training data
- Novelty detection
— Anomaly detection
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Take home messages

+ Deep generative models are attractive but have problems
detecting out-of-distribution data.

* Be cautious when using density estimates from deep
generative models as proxy for “similarity” to training data

— Novelty detection

— Anomaly detection

* For flow-based models, the phenomenon can be explained
through the relative variances of the input distributions
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Recent Follow-up Work
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Better OOD detection for genomic sequences

Likelihood Ratios for Out-of-Distribution Detection

Jie Ren* ' Peter J. Liu Emily Fertig'
Google Research Google Research Google Research
jjren@google.com peterjliu@google.com emilyaf@google.com
Jasper Snoek Ryan Poplin Mark A. Depristo
Google Research Google Inc. Google Inc.
jsnoek@google.com rpoplin@google.com mdepristo@google.com
Joshua V. Dillon Balaji Lakshminarayanan*
Google Research DeepMind
jvdillon@google.com balajiln@google.com
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Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood

= ] ]
<o ] ) s
fAa8
il I

log pg(z4)

6.0
5.4
4.8
42
36
3.0
24
18
12
0.6
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Explaining the failure mode for PixelCNN

+ PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

+ Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.

(W) (78] 7 :
«({ 0 (7]<lr3 :
AAAA ~03 :
EDRE 2572 :

log py(q)
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Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker
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Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)
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Likelihood Ratio to distinguish
Background vs Semantics

* Input x consists of background xg and semantic
component xs. Examples:

— Images: background versus objects

— Text: stop words versus key words

— Genomics: GC background versus motifs

— Speech: background noise versus speaker

can be dominant
the focus

p(x) =|pxp)|p(xs)

* Training a background model on perturbed inputs.
Compute the likelihood ratio

po(x) — 1o ﬁ(XB) po(xs) ~1lo po(xs)

LLR(X) = ].Og De, (X) B Ds, (XB) De, (XS) Do, (XS)
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Likelihood ratio improves OOD detection for
PixelCNN

* PixelCNN++ model trained on FashionMNIST

+ Heat-map showing per-pixel contributions on
Fashion-MNIST (in-dist) and MNIST (OOD)

* Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .

~[==f V77 SASH EAN
< [0l 7573 HEnA
fAfA ~v~03 MNEAE IEE
ERE o572 MAOAEE AERE

log pp(z4) log po(xq) — log py,(4)

w
ReslENs
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Likelihood ratio significantly improves OOD
detection on genomics data too

Method AUROC
Likelihood 0.630
Likelihood Ratio 0.755

Classifier-based p(ylx) 0.622

Classifier-based Entropy 0.622

Classifier-based ODIN 0.645

Classifier Ensemble 5 0.673

Classifier-based 0.496
Mahalanobis Distance



https://github.com/google-research/google-research/tree/master/genomics_ood
https://github.com/google-research/google-research/tree/master/genomics_ood

Likelihood ratio significantly improves OOD
detection on genomics data too

Method AUROC
Likelihood 0.630
Likelihood Ratio 0.755

Classifier-based p(ylx) 0.622

Classifier-based Entropy 0.622

Classifier-based ODIN 0.645

Classifier Ensemble 5 0.673

Classifier-based 0.496
Mahalanobis Distance

+ Realistic benchmark + open-source code
+ https://github.com/google-research/google-research/tree/

master/genomics_ood -


https://github.com/google-research/google-research/tree/master/genomics_ood
https://github.com/google-research/google-research/tree/master/genomics_ood

Detecting Out-of-Distribution Inputs to Deep
Generative Models Using a Test for Typicality

Eric Nalisnick; Akihiro Matsukawa, Yee Whye Teh, Balaji Lakshminarayanan®
DeepMind
{enalisnick, amatsukawa, ywteh, balajiln}@google.com
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Motivating question: why don't we ever see

samples from the OOD set?

Samples from
Generative Model

MNIST:
Higher Likelihood

FashionMNIST:

Training Set

BIAPV TN RO
ANNY T\ ®© ¢ r
~ =T 0NN
NNO Mmoo —o N
oWV ~0
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T ﬂﬂz'@

11 4 o § i
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Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions
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Typical sets versus Mode

+ Mode can be very atypical of the distribution in high
dimensions
* High-dimensional Gaussian:
- Modeisat u
— Typical samples lie near the shell

PROBABILITY
DENSITY

Highest
Density

TYPICAL SET PROBABILITY

DENSITY

Samples VOLUME

Olod'/*) DisTANCE FROM MODE Distance From Mope

(a) Gaussian Example (b) Mlustration (c) Simulation

Figure: High dimensional Gaussian
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Could similar phenomenon happen with
deep generative models too?

High Density HIGH MASS High Probability

(Samples)
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Definition of typical sets

Definition 2.1. e-Typical Set [11]

For a distribution p(x) with support x € X, the e-typical set

AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

where Hp(x)] = [, p(x)[-log p(x

n=1

x)|dx and € € R* is a small constant.
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Definition of typical sets

Definition 2.1. e-Typical Set [11] For a distribution p(x) with support x € X, the e-typical set
AN[p(x)] € XN is comprised of all N-length sequences that satisfy

N
Blp(d] - € < 7+ > loga(en) < Hp(x)] +¢

n=1

where H[p(x)] = [, p(x)[-log p(x)]dx and ¢ € R is a small constant.

Testing for typicality

* If a batch x4, ..., Xy is in the typical set, then the average
negative log likelihood should be close to the entropy.

+ Can use tools from statistical hypothesis testing literature
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Testing for Typicality improves OOD detection

== ID: SVHN-TEST.

= 00D: CIFARIO-TEST -

= ID: SVHN-TEST = ID: SVHN-TEST
== 00D: CIFAR100-TEST -

-

= 00D: ImageNet-TEST -

Fraction of Batches Classified as 00D

Batch Size (M)

(a) SVHN Train, CIFARI0 Test

1 = ID: CIFARIOTEST
1 == 0OD: SVHN-TEST -

ee—

g
8
3
3

Fraction of Batches Cla:

mBa(‘:h 5;& (?:10:
(d) CIFAR10 Train, SVHN Test
.

8.

== ID: ImageNet-TEST
== 00D: SVHN-TEST

Fraction of Batches Classified as 00D
Fraction of Batches Classified as 00D

Batch Size (M)

(b) SVHN Train, CIFAR100 Test  (c) SVHN Train, ImageNet Test

Batch Size (M)

@= ID: CIFAR10-TEST
@= 0OD: ImageNet-TEST -

= ID: CIFAR10-TEST
@= 0OD: CIFAR100-TEST -

e

Fraction of Batches Classified as 00D

Fraction of Batches Cla:

Batch Size (M) Batch Size (M)

(e) CIFARIO0 Train, CIFAR100 Test (f) CIFAR10 Train, ImageNet Test

: ImageNet-TEST
00D: CIFAR100-TEST -

1D: ImageNet-TEST.
famm 00D: CIFARIO-TEST -

Batch Size (M)

(g) ImageNet Train, SVHN Test

Fraction of Batches Classified as 00D

Batch Size (M)

(h) ImageNet Train, CIFARIO Test (i) ImageNet Train, CIFAR100 Test

Batch Size (M)

Figure: Effect of batch size on AUC of OOD detection
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Closing Thoughts
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Challenges for Uncertainty Quantification

+ Accuracy uncertainty quantification under dataset shift
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Challenges for Uncertainty Quantification

+ Accuracy uncertainty quantification under dataset shift
+ Scalable Bayesian inference

+ Better understanding out-of-distribution behavior of deep
predictive models as well as deep generative models

+ Model mis-specification
+ Realistic benchmarks that reflect real-world challenges
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Papers available on my webpage (link)

Predictive uncertainty estimation in deep learning

* Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [Ovadia et al., 2019]

* Simple and scalable predictive uncertainty estimation using deep
ensembles [Lakshminarayanan et al., 2017]

* Hybrid models with deep and invertible features [Nalisnick et al., 2019b]

81


http://www.gatsby.ucl.ac.uk/~balaji/
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Predictive uncertainty estimation in deep learning

* Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [Ovadia et al., 2019]

* Simple and scalable predictive uncertainty estimation using deep
ensembles [Lakshminarayanan et al., 2017]

* Hybrid models with deep and invertible features [Nalisnick et al., 2019b]

Out-of-distribution robustness of deep generative models

* Do deep generative models know what they don’t know? [Nalisnick et al.,
2019a]

* Likelihood ratios for out-of-distribution detection [Ren et al., 2019]

* Detecting out-of-distribution inputs to deep generative models using a
test for typicality [Nalisnick et al., 2019]

81


http://www.gatsby.ucl.ac.uk/~balaji/

Bishop, C. M. (1994). Novelty Detection and Neural Network Validation.

Blundell, C., Cornebise, J., Kavukcuogluy, K., and Wierstra, D. (2015). Weight uncertainty
in neural networks. In ICML.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In ICML.

Graves, A. (2011). Practical variational inference for neural networks. In NIPS.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural
networks. arXiv preprint arXiv:1706.04599.

Hendrycks, D. and Dietterich, T. (2019). Benchmarking neural network robustness to
common corruptions and perturbations. ICLR.

Hendrycks, D. and Gimpel, K. (2016). A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative Flow with Invertible 1x1
Convolutions. In NeurlPS.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable
predictive uncertainty estimation using deep ensembles. In NeurlPS.

Nalisnick, E., Matsukawa, A., Teh, Y., Gorur, D., and Lakshminarayanan, B. (2019a). Do
Deep Generative Models Know What They Don’t Know? In ICLR.

Nalisnick, E., Matsukawa, A., Teh, Y., Gorur, D., and Lakshminarayanan, B. (2019b).
Hybrid models with deep and invertible features. In ICML.

82



Nalisnick, E., Matsukawa, A., Teh, Y. W., and Lakshminarayanan, B. (2019). Detecting
out-of-distribution inputs to deep generative models using a test for typicality. arXiv
preprint arXiv:1906.02994.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V.,
Lakshminarayanan, B., and Snoek, J. (2019). Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. arXiv preprint
arXiv:1906.02530.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers, pages
61-74. MIT Press.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., DePristo, M. A,, Dillon, J. V., and
Lakshminarayanan, B. (2019). Likelihood ratios for out-of-distribution detection.
arXiv preprint arXiv:1906.02845.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep Bayesian Bandits Showdown: An
Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. In ICLR.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. JMLR.

van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A,, et al. (2016).
Conditional image generation with pixel CNN decoders. In NeurlPS.

Wen, Y., Vicol, P, Ba, J., Tran, D., and Grosse, R. (2018). Flipout: Efficient
pseudo-independent weight perturbations on mini-batches. arXiv preprint
arXiv:1803.04386.

83



	Motivation and Background
	Deep generative models

