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Part 1: Predictive uncertainty estimation in
Discriminative models
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Discriminative models
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Quantifying Uncertainty In Deep Learning

• What do we mean by predictive uncertainty? Examples:
– Classification: output label y∗ along with confidence– Regression: output mean and variance

• Why predictive uncertainty?
– Good uncertainty scores quantify when we can trust the

model’s predictions
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Sources of predictive uncertainty

• Inherent stochasticity
– y for a given x could be stochastic, e.g. measurement noise– Also known as aleatoric uncertainty– Considered to be irreducible uncertainty: persists even inthe limit of infinite data

• Model uncertainty
– Multiple values of parameters could be consistent with theobserved data– Also known as epistemic uncertainty– Considered to be reducible uncertainty: vanishes in the limitof infinite data (subject to identifiability)
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Applications of Predictive Uncertainty

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)

• Dealing with dataset shift in real-world machine learningsystems
– Feature skew between train and test– Open-set classification: May be asked to predict on testinputs that do not belong to any of the training classes

• Active learning for efficient data collection
• Reinforcement learning: (safe) exploration
• Build modular systems that know what they don’t know
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How do we measure the quality of
predictive uncertainty?
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Challenges

• Lack of ground truth
• Cost of down-stream decisions may be difficult to model
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1. Calibration

• Measures how well model’s predicted confidence alignswith observed accuracy

– Does predicted probability of correctness (confidence)match the observed frequency of correctness (accuracy)?– Weather forecasting: Of all days where model predicted rainwith 80% probability, what fraction did we observe rain?
– 80% implies perfect calibration– Less than 80% implies model is overconfident– Greater than 80% implies model is under-confident

– Calibration curve / Reliability diagrams– Expected calibration error (ECE)
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2. Robustness to dataset shift

• Does the system exhibit higher uncertainty on inputs faraway from training data?
– We expect p(y|x) to be more accurate when x ∼ pTRAIN(x),than on out-of-distribution (OOD) inputs

– Need to measure ability of model to reject OOD inputs.
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How do deep networks fare?
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Deep networks are poorly calibrated
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High confidence predictions on OOD inputs
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Predictive Uncertainty in Deep Learning:
Large-Scale Benchmark
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Popular methods

• (Vanilla) Maximum softmax probability [Hendrycks andGimpel, 2016]

• (Temp Scaling) Post-hoc calibration by temperature scalingusing i.i.d. validation set [Guo et al., 2017, Platt, 1999]• (Dropout) Monte-Carlo Dropout [Gal and Ghahramani, 2016,Srivastava et al., 2014] with rate p• (Deep Ensembles) Ensembles of M networks trainedindependently on the entire dataset using randominitialization [Lakshminarayanan et al., 2017]
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Datasets and Architectures

• Image classification (convolutional neural networks)
– MNIST– CIFAR-10– ImageNet

• Text classification (LSTMs)
• Criteo Kaggle Display Ads Challenge (multi-layer
perceptrons)

– dataset with class-imbalance
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Goals of this benchmark

Questions of interest:

• How trustworthy are the uncertainty estimates of differentmethods under dataset shift?
• Does calibration in the i.i.d. setting translate to calibrationunder dataset shift?
• How do uncertainty and accuracy of different methodsvary for different datasets and model architectures?

Release open-source TensorFlow code as well as predictions
• https://github.com/google-research/google-research/tree/master/uq benchmark 2019
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Dataset shift: ImageNet-C

Figure: Image source: [Hendrycks and Dietterich, 2019]
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Dataset shift: Varying intensity on ImageNet-C

Figure: Increasing intensity of corruption
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Dataset shift: Testing on completely different
dataset
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Accuracy decreases as dataset shift increases
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Uncertainty quality decreases significantly as
dataset shift increases

Model is overconfident even though it is way less accurate.
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Calibration under dataset shift
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Calibration under dataset shift
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Similar trends on text experiments
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Similar trends on Criteo experiments as well
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Take home messages from our benchmark

• Calibration under dataset shift is a major challenge

• Relative ordering of methods is mostly consistent (exceptfor MNIST) across our experiments.
• Deep ensembles [Lakshminarayanan et al., 2017] seem toperform the best across most metrics and be more robustto dataset shift

– Relatively small ensemble size (e.g. 5) may be sufficient.
• SVI performs best on MNIST but seems difficult to use onlarger datasets (e.g. ImageNet) and architectures(e.g. LSTMs).

– More work required to make it robust and scalable
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Part 2: Out-of-Distribution behavior of
Deep Generative Models
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So far: Discriminative models
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Discriminative vs Generative models

• p(y|x) is typically accurate when x ∼ pTRAIN(x), but canmake overconfident errors when asked to predict on OOD

• Use density model p(x) to decide when to trust p(y|x)[Bishop, 1994]
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Novelty Detection & Neural Network Validation
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Hybrids of Generative & Discriminative models

• Idea: use flows to compute exact density p(x) and p(y|x) ina single feed-forward pass

• Motivation: If density model p(x) can address dataset shift,
we can potentially use computationally simpler methods for
model uncertainty

• Works well in some cases
• The failure modes were very interesting, so we decided toinvestigate this in detail ...
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Generative models for CIFAR

Deep generative models where density p(x) can be computed:
• Flow-based models: GLOW [Kingma and Dhariwal, 2018]• Auto-regressive models: PixelCNNs [van den Oord et al.,2016]• Variational Auto-Encoders (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)

36



Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Model assigns high likelihood to constant
inputs too
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Phenomenon holds throughout training
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Ensembling does not fix the problem either

45



Explaining the failure mode for
Flow-based models
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Flows: one slide summary
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Explaining the observations using CV-GLOW
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Explaining the observations using CV-GLOW

63



Take home messages

• Deep generative models are attractive but have problemsdetecting out-of-distribution data.

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Novelty detection– Anomaly detection

• For flow-based models, the phenomenon can be explainedthrough the relative variances of the input distributions
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Recent Follow-up Work
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Better OOD detection for genomic sequences
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.
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Likelihood Ratio to distinguish
Background vs Semantics

• Input x consists of background xB and semanticcomponent xS. Examples:– Images: background versus objects– Text: stop words versus key words– Genomics: GC background versus motifs– Speech: background noise versus speaker

• Training a background model on perturbed inputs.Compute the likelihood ratio
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Likelihood ratio improves OOD detection for
PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .
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Likelihood ratio significantly improves OOD
detection on genomics data too

• Realistic benchmark + open-source code• https://github.com/google-research/google-research/tree/master/genomics ood
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Motivating question: why don’t we ever see
samples from the OOD set?
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Typical sets versus Mode

• Mode can be very atypical of the distribution in highdimensions

• High-dimensional Gaussian:– Mode is at µ– Typical samples lie near the shell

Figure: High dimensional Gaussian
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• Mode can be very atypical of the distribution in highdimensions• High-dimensional Gaussian:– Mode is at µ– Typical samples lie near the shell

Figure: High dimensional Gaussian
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Could similar phenomenon happen with
deep generative models too?
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Definition of typical sets

Testing for typicality
• If a batch x1, . . . , xM is in the typical set, then the averagenegative log likelihood should be close to the entropy.
• Can use tools from statistical hypothesis testing literature
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Testing for Typicality improves OOD detection

Figure: Effect of batch size on AUC of OOD detection 77



Closing Thoughts
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Challenges for Uncertainty Quantification

• Accuracy uncertainty quantification under dataset shift

• Scalable Bayesian inference
• Better understanding out-of-distribution behavior of deeppredictive models as well as deep generative models
• Model mis-specification
• Realistic benchmarks that reflect real-world challenges
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Papers available on my webpage (link)

Predictive uncertainty estimation in deep learning• Can you trust your model’s uncertainty? Evaluating predictive uncertainty
under dataset shift [Ovadia et al., 2019]• Simple and scalable predictive uncertainty estimation using deep
ensembles [Lakshminarayanan et al., 2017]

• Hybrid models with deep and invertible features [Nalisnick et al., 2019b]

Out-of-distribution robustness of deep generative models
• Do deep generative models know what they don’t know? [Nalisnick et al.,2019a]
• Likelihood ratios for out-of-distribution detection [Ren et al., 2019]
• Detecting out-of-distribution inputs to deep generative models using a
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