
Mondrian Forests: Efficient Online Random Forests

Balaji Lakshminarayanan
Gatsby Unit

University College London

Daniel M. Roy
Department of Engineering
University of Cambridge

Yee Whye Teh
Department of Statistics

University of Oxford

Abstract

Ensembles of randomized decision trees, usually referred to as random forests,
are widely used for classification and regression tasks in machine learning and
statistics. Random forests achieve competitive predictive performance and are
computationally efficient to train and test, making them excellent candidates for
real-world prediction tasks. The most popular random forest variants (such as
Breiman’s random forest and extremely randomized trees) operate on batches
of training data. Online methods are now in greater demand. Existing online
random forests, however, require more training data than their batch counterpart
to achieve comparable predictive performance. In this work, we use Mondrian
processes (Roy and Teh, 2009) to construct ensembles of random decision trees
we call Mondrian forests. Mondrian forests can be grown in an incremental/online
fashion and remarkably, the distribution of online Mondrian forests is the same as
that of batch Mondrian forests. Mondrian forests achieve competitive predictive
performance comparable with existing online random forests and periodically re-
trained batch random forests, while being more than an order of magnitude faster,
thus representing a better computation vs accuracy tradeoff.

1 Introduction
Despite being introduced over a decade ago, random forests remain one of the most popular machine
learning tools due in part to their accuracy, scalability, and robustness in real-world classification
tasks [3]. (We refer to [6] for an excellent survey of random forests.) In this paper, we introduce a
novel class of random forests—called Mondrian forests (MF), due to the fact that the underlying tree
structure of each classifier in the ensemble is a so-called Mondrian process. Using the properties of
Mondrian processes, we present an efficient online algorithm that agrees with its batch counterpart at
each iteration. Not only are online Mondrian forests faster and more accurate than recent proposals
for online random forest methods, but they nearly match the accuracy of state-of-the-art batch random
forest methods trained on the same dataset.

The paper is organized as follows: In Section 2, we describe our approach at a high-level, and in
Sections 3, 4, and 5, we describe the tree structures, label model, and incremental updates/predictions
in more detail. We discuss related work in Section 6, demonstrate the excellent empirical performance
of MF in Section 7, and conclude in Section 8 with a discussion about future work.

2 Approach
Given N labeled examples (x1, y1), . . . , (xN , yN) ∈ RD × Y as training data, our task is to predict
labels y ∈ Y for unlabeled test points x ∈ RD. We will focus on multi-class classification where
Y := {1, . . . ,K}, however, it is possible to extend the methodology to other supervised learning tasks
such as regression. LetX1:n := (x1, . . . ,xn), Y1:n := (y1, . . . , yn), and D1:n := (X1:n, Y1:n).

A Mondrian forest classifier is constructed much like a random forest: Given training data D1:N ,
we sample an independent collection T1, . . . , TM of so-called Mondrian trees, which we will
describe in the next section. The prediction made by each Mondrian tree Tm is a distribution
pTm(y|x,D1:N) over the class label y for a test point x. The prediction made by the Mondrian
forest is the average 1

M

∑M
m=1 pTm(y|x,D1:N) of the individual tree predictions. As M →∞, the

average converges at the standard rate to the expectation ET∼MT(λ,D1:N)[pT (y|x,D1:N)], where
MT (λ,D1:N) is the distribution of a Mondrian tree. As the limiting expectation does not depend on
M , we would not expect to see overfitting behavior as M increases. A similar observation was made
by Breiman in his seminal article [2] introducing random forests. Note that the averaging procedure
above is ensemble model combination and not Bayesian model averaging.

In the online learning setting, the training examples are presented one after another in a sequence
of trials. Mondrian forests excel in this setting: at iteration N + 1, each Mondrian tree T ∼
MT (λ,D1:N) is updated to incorporate the next labeled example (xN+1, yN+1) by sampling an
extended tree T ′ from a distribution MTx(λ, T,DN+1). Using properties of the Mondrian process,
we can choose a probability distribution MTx such that T ′ = T on D1:N and T ′ is distributed
according to MT (λ,D1:N+1), i.e.,

T ∼ MT (λ,D1:N)

T ′ | T,D1:N+1 ∼ MTx(λ, T,DN+1)
implies T ′ ∼ MT (λ,D1:N+1) . (1)

Therefore, the distribution of Mondrian trees trained on a dataset in an incremental fashion is the
same as that of Mondrian trees trained on the same dataset in a batch fashion, irrespective of the
order in which the data points are observed. To the best of our knowledge, none of the existing online
random forests have this property. Moreover, we can sample from MTx(λ, T,DN+1) efficiently: the
complexity scales with the depth of the tree, which is typically logarithmic in N .

While treating the online setting as a sequence of larger and larger batch problems is normally
computationally prohibitive, this approach can be achieved efficiently with Mondrian forests. In the
following sections, we define the Mondrian tree distribution MT (λ,D1:N), the label distribution
pT (y|x,D1:N), and the update distribution MTx(λ, T,DN+1).

3 Mondrian trees
For our purposes, a decision tree on RD will be a hierarchical, binary partitioning of RD and a rule
for predicting the label of test points given training data. More carefully, a rooted, strictly-binary
tree is a finite tree T such that every node in T is either a leaf or internal node, and every node is the
child of exactly one parent node, except for a distinguished root node, represented by ε, which has no
parent. Let leaves(T) denote the set of leaf nodes in T. For every internal node j ∈ T \ leaves(T),
there are exactly two children nodes, represented by left(j) and right(j). To each node j ∈ T, we
associate a block Bj ⊆ RD of the input space as follows: We let Bε := RD. Each internal node
j ∈ T\ leaves(T) is associated with a split

(
δj , ξj

)
, where δj ∈ {1, 2, . . . , D} denotes the dimension

of the split and ξj denotes the location of the split along dimension δj . We then define

Bleft(j) := {x ∈ Bj : xδj ≤ ξj} and Bright(j) := {x ∈ Bj : xδj > ξj}. (2)

We may write Bj =
(
`j1, uj1

]
× . . .×

(
`jD, ujD

]
, where `jd and ujd denote the `ower and upper

bounds, respectively, of the rectangular block Bj along dimension d. Put `j = {`j1, `j2, . . . , `jD}
and uj = {uj1, uj2, . . . , ujD}. The decision tree structure is represented by the tuple T = (T, δ, ξ).
We refer to Figure 1(a) for a simple illustration of a decision tree.

It will be useful to introduce some additional notation. Let parent(j) denote the parent of node j. Let
N(j) denote the indices of training data points at node j, i.e., N(j) = {n ∈ {1, . . . , N} : xn ∈ Bj}.
Let DN(j) = {XN(j), YN(j)} denote the features and labels of training data points at node j. Let
`xjd and uxjd denote the lower and upper bounds of training data points (hence the superscript x)
respectively in node j along dimension d. Let Bxj =

(
`xj1, u

x
j1

]
× . . .×

(
`xjD, u

x
jD

]
⊆ Bj denote the

smallest rectangle that encloses the training data points in node j.

3.1 Mondrian process distribution over decision trees

Mondrian processes, introduced by Roy and Teh [19], are families {Mt : t ∈ [0,∞)} of random,
hierarchical binary partitions of RD such thatMt is a refinement ofMs whenever t > s.1 Mondrian
processes are natural candidates for the partition structure of random decision trees, but Mondrian

1Roy and Teh [19] studied the distribution of {Mt : t ≤ λ} and refered to λ as the budget. See [18, Chp. 5]
for more details. We will refer to t as time, not be confused with discrete time in the online learning setting.

2

x1 > 0.37

x2 > 0.5

 , �,�F,F

�

�

F

F
x2

x10

1

1

Bj

(a) Decision Tree

x1 > 0.37

x2 > 0.5

 , �,�F,F

−

−

−

−

0

0.42

0.7

∞

�

�

F

F
x2

x10

1

1

Bx
j

(b) Mondrian Tree

Figure 1: Example of a decision tree in [0, 1]2 where x1 and x2 denote horizontal and vertical axis respectively:
Figure 1(a) shows tree structure and partition of a decision tree, while Figure 1(b) shows a Mondrian tree. Note
that the Mondrian tree is embedded on a vertical time axis, with each node associated with a time of split and
the splits are committed only within the range of the training data in each block (denoted by gray rectangles).
Let j denote the left child of the root: Bj = (0, 0.37]× (0, 1] denotes the block associated with red circles and
Bxj ⊆ Bj is the smallest rectangle enclosing the two data points.

processes on RD are, in general, infinite structures that we cannot represent all at once. Because we
only care about the partition on a finite set of observed data, we introduce Mondrian trees, which
are restrictions of Mondrian processes to a finite set of points. A Mondrian tree T can be represented
by a tuple (T, δ, ξ, τ), where (T, δ, ξ) is a decision tree and τ = {τj}j∈T associates a time of split
τj ≥ 0 with each node j. Split times increase with depth, i.e., τj > τparent(j). We abuse notation and
define τparent(ε) = 0.

Given a non-negative lifetime parameter λ and training data D1:n, the generative process for sampling
Mondrian trees from MT (λ,D1:n) is described in the following two algorithms:

Algorithm 1 SampleMondrianTree
(
λ,D1:n

)
1: Initialize: T = ∅, leaves(T) = ∅, δ = ∅, ξ = ∅, τ = ∅, N(ε) = {1, 2, . . . , n}
2: SampleMondrianBlock

(
ε,DN(ε), λ

)
. Algorithm 2

Algorithm 2 SampleMondrianBlock
(
j,DN(j), λ

)
1: Add j to T
2: For all d, set `xjd = min(XN(j),d), u

x
jd = max(XN(j),d) . dimension-wise min and max

3: Sample E from exponential distribution with rate
∑
d(u

x
jd − `xjd)

4: if τparent(j) + E < λ then . j is an internal node
5: Set τj = τparent(j) + E
6: Sample split dimension δj , choosing d with probability proportional to uxjd − `xjd
7: Sample split location ξj uniformly from interval [`xjδj , u

x
jδj

]

8: Set N(left(j)) = {n ∈ N(j) : Xn,δj ≤ ξj} and N(right(j)) = {n ∈ N(j) : Xn,δj > ξj}
9: SampleMondrianBlock

(
left(j),DN(left(j)), λ

)
10: SampleMondrianBlock

(
right(j),DN(right(j)), λ

)
11: else . j is a leaf node
12: Set τj = λ and add j to leaves(T)

The procedure starts with the root node ε and recurses down the tree. In Algorithm 2, we first
compute the `xε and uxε i.e. the lower and upper bounds of Bxε , the smallest rectangle enclosing
XN(ε). We sample E from an exponential distribution whose rate is the so-called linear dimension
of Bxε , given by

∑
d(u

x
εd − `xεd). Since τparent(ε) = 0, E + τparent(ε) = E. If E ≥ λ, the time of split

is not within the lifetime λ; hence, we assign ε to be a leaf node and the procedure halts. (Since
E[E] = 1/

(∑
d(u

x
jd − `xjd)

)
, bigger rectangles are less likely to be leaf nodes.) Else, ε is an internal

node and we sample a split (δε, ξε) from the uniform split distribution on Bxε . More precisely, we
first sample the dimension δε, taking the value d with probability proportional to uxεd − `xεd, and then
sample the split location ξε uniformly from the interval [`xεδε , u

x
εδε

]. The procedure then recurses
along the left and right children.

Mondrian trees differ from standard decision trees (e.g. CART, C4.5) in the following ways: (i)
the splits are sampled independent of the labels YN(j); (ii) every node j is associated with a split

3

time denoted by τj ; (iii) the lifetime parameter λ controls the total number of splits (similar to the
maximum depth parameter for standard decision trees); (iv) the split represented by an internal node
j holds only within Bxj and not the whole of Bj . No commitment is made in Bj \ Bxj . Figure 1
illustrates the difference between decision trees and Mondrian trees.

Consider the family of distributions MT (λ, F), where F ranges over all possible finite sets of data
points. Due to the fact that these distributions are derived from that of a Mondrian process on RD
restricted to a set F of points, the family MT (λ, ·) will be projective. Intuitively, projectivity implies
that the tree distributions possess a type of self-consistency. In words, if we sample a Mondrian
tree T from MT (λ, F) and then restrict the tree T to a subset F ′ ⊆ F of points, then the restricted
tree T ′ has distribution MT (λ, F ′). Most importantly, projectivity gives us a consistent way to
extend a Mondrian tree on a data set D1:N to a larger data set D1:N+1. We exploit this property
to incrementally grow a Mondrian tree: we instantiate the Mondrian tree on the observed training
data points; upon observing a new data point DN+1, we extend the Mondrian tree by sampling from
the conditional distribution of a Mondrian tree on D1:N+1 given its restriction to D1:N , denoted
by MTx(λ, T,DN+1) in (1). Thus, a Mondrian process on RD is represented only where we have
observed training data.

4 Label distribution: model, hierarchical prior, and predictive posterior

So far, our discussion has been focused on the tree structure. In this section, we focus on the predictive
label distribution, pT (y|x,D1:N), for a tree T = (T, δ, ξ, τ), dataset D1:N , and test point x. Let
leaf(x) denote the unique leaf node j ∈ leaves(T) such that x ∈ Bj . Intuitively, we want the
predictive label distribution at x to be a smoothed version of the empirical distribution of labels
for points in Bleaf(x) and in Bj′ for nearby nodes j′. We achieve this smoothing via a hierarchical
Bayesian approach: every node is associated with a label distribution, and a prior is chosen under
which the label distribution of a node is similar to that of its parent’s. The predictive pT (y|x,D1:N)
is then obtained via marginalization.

As is common in the decision tree literature, we assume the labels within each block are independent
ofX given the tree structure. For every j ∈ T, let Gj denote the distribution of labels at node j, and
let G = {Gj : j ∈ T} be the set of label distributions at all the nodes in the tree. Given T and G,
the predictive label distribution at x is p(y|x, T,G) = Gleaf(x), i.e., the label distribution at the node
leaf(x). In this paper, we focus on the case of categorical labels taking values in the set {1, . . . ,K},
and so we abuse notation and write Gj,k for the probability that a point in Bj is labeled k.

We model the collection Gj , for j ∈ T, as a hierarchy of normalized stable processes (NSP) [24]. A
NSP prior is a distribution over distributions and is a special case of the Pitman-Yor process (PYP)
prior where the concentration parameter is taken to zero [17].2 The discount parameter d ∈ (0, 1)
controls the variation around the base distribution; if Gj ∼ NSP(d,H), then E[Gjk] = Hk and
Var[Gjk] = (1− d)Hk(1−Hk). We use a hierarchical NSP (HNSP) prior over Gj as follows:

Gε|H ∼ NSP(dε, H), and Gj |Gparent(j) ∼ NSP(dj , Gparent(j)). (3)

This hierarchical prior was first proposed by Wood et al. [24]. Here we take the base distribution H
to be the uniform distribution over the K labels, and set dj = exp

(
−γ(τj − τparent(j))

)
.

Given training data D1:N , the predictive distribution pT (y|x,D1:N) is obtained by integrating over G,
i.e., pT (y|x,D1:N) = EG∼pT (G|D1:N)[Gleaf(x),y] = Gleaf(x),y, where the posterior pT (G|D1:N) ∝
pT (G)

∏N
n=1Gleaf(xn),yn . Posterior inference in the HNSP, i.e., computation of the posterior means

Gleaf(x), is a special case of posterior inference in the hierarchical PYP (HPYP). In particular, Teh
[22] considers the HPYP with multinomial likelihood (in the context of language modeling). The
model considered here is a special case of [22]. Exact inference is intractable and hence we resort to
approximations. In particular, we use a fast approximation known as the interpolated Kneser-Ney
(IKN) smoothing [22], a popular technique for smoothing probabilities in language modeling [13].
The IKN approximation in [22] can be extended in a straightforward fashion to the online setting,
and the computational complexity of adding a new training instance is linear in the depth of the tree.
We refer the reader to Appendix A for further details.

2Taking the discount parameter to zero leads to a Dirichlet process . Hierarchies of NSPs admit more tractable
approximations than hierarchies of Dirichlet processes [24], hence our choice here.

4

5 Online training and prediction
In this section, we describe the family of distributions MTx(λ, T,DN+1), which are used to incre-
mentally add a data point, DN+1, to a tree T . These updates are based on the conditional Mondrian
algorithm [19], specialized to a finite set of points. In general, one or more of the following three
operations may be executed while introducing a new data point: (i) introduction of a new split ‘above’
an existing split, (ii) extension of an existing split to the updated extent of the block and (iii) splitting
an existing leaf node into two children. To the best of our knowledge, existing online decision trees
use just the third operation, and the first two operations are unique to Mondrian trees. The complete
pseudo-code for incrementally updating a Mondrian tree T with a new data point D according to
MTx(λ, T,D) is described in the following two algorithms. Figure 2 walks through the algorithms
on a toy dataset.

Algorithm 3 ExtendMondrianTree(T, λ,D)

1: Input: Tree T = (T, δ, ξ, τ), new training instance D = (x, y)
2: ExtendMondrianBlock(T, λ, ε,D) . Algorithm 4

Algorithm 4 ExtendMondrianBlock(T, λ, j,D)

1: Set e` = max(`xj − x, 0) and eu = max(x− uxj , 0) . e` = eu = 0D if x ∈ Bxj
2: Sample E from exponential distribution with rate

∑
d(e

`
d + eud)

3: if τparent(j) + E < τj then . introduce new parent for node j
4: Sample split dimension δ, choosing d with probability proportional to e`d + eud
5: Sample split location ξ uniformly from interval [uxj,δ, xδ] if xδ > uxj,δ else [xδ, `

x
j,δ].

6: Insert a new node ̃ just above node j in the tree, and a new leaf j′′, sibling to j, where
7: δ̃ = δ, ξ̃ = ξ, τ̃ = τparent(j) + E, `x̃ = min(`xj ,x), ux̃ = max(uxj ,x)

8: j′′ = left(̃) iff xδ̃ ≤ ξ̃
9: SampleMondrianBlock

(
j′′,D, λ

)
10: else
11: Update `xj ← min(`xj ,x),uxj ← max(uxj ,x) . update extent of node j
12: if j /∈ leaves(T) then . return if j is a leaf node, else recurse down the tree
13: if xδj ≤ ξj then child(j) = left(j) else child(j) = right(j)
14: ExtendMondrianBlock(T, λ, child(j),D) . recurse on child containing D

In practice, random forest implementations stop splitting a node when all the labels are identical and
assign it to be a leaf node. To make our MF implementation comparable, we ‘pause’ a Mondrian
block when all the labels are identical; if a new training instance lies within Bj of a paused leaf
node j and has the same label as the rest of the data points in Bj , we continue pausing the Mondrian
block. We ‘un-pause’ the Mondrian block when there is more than one unique label in that block.
Algorithms 9 and 10 in the supplementary material discuss versions of SampleMondrianBlock and
ExtendMondrianBlock for paused Mondrians.

Prediction using Mondrian tree Let x denote a test data point. If x is already ‘contained’ in
the tree T , i.e., if x ∈ Bxj for some leaf j ∈ leaves(T), then the prediction is taken to be Gleaf(x).
Otherwise, we somehow need to incorporate x. One choice is to extend T by sampling T ′ from
MTx(λ, T,x) as described in Algorithm 3, and set the prediction to Gj , where j ∈ leaves(T′) is the
leaf node containing x. A particular extension T ′ might lead to an overly confident prediction; hence,
we average over every possible extension T ′. This integration can be carried out analytically and the
computational complexity is linear in the depth of the tree. We refer to Appendix B for further details.

6 Related work
The literature on random forests is vast and we do not attempt to cover it comprehensively; we provide
a brief review here and refer to [6] and [8] for a recent review of random forests in batch and online
settings respectively. Classic decision tree induction procedures choose the best split dimension and
location from all candidate splits at each node by optimizing some suitable quality criterion (e.g.
information gain) in a greedy manner. In a random forest, the individual trees are randomized to
de-correlate their predictions. The most common strategies for injecting randomness are (i) bagging
[1] and (ii) randomly subsampling the set of candidate splits within each node.

5

x2

x10

1

1

a

 b
x2

x10

1

1

a

 b

 c

x2

x10

1

1

a

 b

 c

x2

x10

1

1

a

 b

 c

 d x2

x10

1

1

a

 b

 c

 d x2

x10

1

1

a

 b

 c

 d

(a) (b) (c) (d) (e) (f)

x2 > 0.23

a b

−

−

−

−

−

0

1.01

2.42

3.97

∞

x1 > 0.75

x2 > 0.23

a b c

x1 > 0.75

x2 > 0.23

x1 > 0.47

a b cd

(g) (h) (i)

Figure 2: Online learning with Mondrian trees on a toy dataset: We assume that λ =∞, D = 2 and add one
data point at each iteration. For simplicity, we ignore class labels and denote location of training data with red
circles. Figures 2(a), 2(c) and 2(f) show the partitions after the first, second and third iterations, respectively,
with the intermediate figures denoting intermediate steps. Figures 2(g), 2(h) and 2(i) show the trees after the first,
second and third iterations, along with a shared vertical time axis.

At iteration 1, we have two training data points, labeled as a, b. Figures 2(a) and 2(g) show the partition
and tree structure of the Mondrian tree. Note that even though there is a split x2 > 0.23 at time t = 2.42, we
commit this split only within Bxj (shown by the gray rectangle).

At iteration 2, a new data point c is added. Algorithm 3 starts with the root node and recurses down the
tree. Algorithm 4 checks if the new data point lies within Bxε by computing the additional extent e` and eu. In
this case, c does not lie within Bxε . Let Rab and Rabc respectively denote the small gray rectangle (enclosing
a, b) and big gray rectangle (enclosing a, b, c) in Figure 2(b). While extending the Mondrian from Rab to Rabc,
we could either introduce a new split in Rabc outside Rab or extend the split in Rab to the new range. To
choose between these two options, we sample the time of this new split: we first sample E from an exponential
distribution whose rate is the sum of the additional extent, i.e.,

∑
d(e

`
d + eud), and set the time of the new split

to E + τparent(ε). If E + τparent(ε) ≤ τε, this new split in Rabc can precede the old split in Rab and a split is
sampled in Rabc outside Rab. In Figures 2(c) and 2(h), E + τparent(ε) = 1.01 + 0 ≤ 2.42, hence a new split
x1 > 0.75 is introduced. The farther a new data point x is from Bxj , the higher the rate

∑
d(e

`
d + eud), and

subsequently the higher the probability of a new split being introduced, since E[E] = 1/
(∑

d(e
`
d + eud)

)
. A

new split in Rabc is sampled such that it is consistent with the existing partition structure in Rab (i.e., the new
split cannot slice through Rab).

In the final iteration, we add data point d. In Figure 2(d), the data point d lies within the extent of the root
node, hence we traverse to the left side of the root and update Bxj of the internal node containing {a, b} to
include d. We could either introduce a new split or extend the split x2 > 0.23. In Figure 2(e), we extend the
split x2 > 0.23 to the new extent, and traverse to the leaf node in Figure 2(h) containing b. In Figures 2(f) and
2(i), we sample E = 1.55 and since τparent(j) + E = 2.42 + 1.55 = 3.97 ≤ λ =∞, we introduce a new split
x1 > 0.47.

Two popular random forest variants in the batch setting are Breiman-RF [2] and Extremely randomized
trees (ERT) [12]. Breiman-RF uses bagging and furthermore, at each node, a random k-dimensional
subset of the original D features is sampled. ERT chooses a k dimensional subset of the features and
then chooses one split location each for the k features randomly (unlike Breiman-RF which considers
all possible split locations along a dimension). ERT does not use bagging. When k = 1, the ERT
trees are totally randomized and the splits are chosen independent of the labels; hence the ERT-1
method is very similar to MF in the batch setting in terms of tree induction. (Note that unlike ERT,
MF uses HNSP to smooth predictive estimates and allows a test point to branch off into its own node.)
Perfect random trees (PERT), proposed by Cutler and Zhao [7] for classification problems, produce
totally randomized trees similar to ERT-1, although there are some slight differences [12].

Existing online random forests (ORF-Saffari [20] and ORF-Denil [8]) start with an empty tree and
grow the tree incrementally. Every leaf of every tree maintains a list of k candidate splits and
associated quality scores. When a new data point is added, the scores of the candidate splits at the
corresponding leaf node are updated. To reduce the risk of choosing a sub-optimal split based on
noisy quality scores, additional hyper parameters such as the minimum number of data points at a
leaf node before a decision is made and the minimum threshold for the quality criterion of the best
split, are used to assess ‘confidence’ associated with a split. Once these criteria are satisfied at a leaf
node, the best split is chosen (making this node an internal node) and its two children are the new
leaf nodes (with their own candidate splits), and the process is repeated. These methods could be

6

memory inefficient for deep trees due to the high cost associated with maintaining candidate quality
scores for the fringe of potential children [8].

There has been some work on incremental induction of decision trees, e.g. incremental CART [5],
ITI [23], VFDT [11] and dynamic trees [21], but to the best of our knowledge, these are focused on
learning decision trees and have not been generalized to online random forests. We do not compare
MF to incremental decision trees, since random forests are known to outperform single decision trees.

Bayesian models of decision trees [4, 9] typically specify a distribution over decision trees; such
distributions usually depend onX and lack the projectivity property of the Mondrian process. More
importantly, MF performs ensemble model combination and not Bayesian model averaging over
decision trees. (See [10] for a discussion on the advantages of ensembles over single models, and
[15] for a comparison of Bayesian model averaging and model combination.)

7 Empirical evaluation

The purpose of these experiments is to evaluate the predictive performance (test accuracy) of MF
as a function of (i) fraction of training data and (ii) training time. We divide the training data into
100 mini-batches and we compare the performance of online random forests (MF, ORF-Saffari [20])
to batch random forests (Breiman-RF, ERT-k, ERT-1) which are trained on the same fraction of the
training data. (We compare MF to dynamic trees as well; see Appendix F for more details.) Our
scripts are implemented in Python. We implemented the ORF-Saffari algorithm as well as ERT in
Python for timing comparisons. The scripts can be downloaded from the authors’ webpages. We
did not implement the ORF-Denil [8] algorithm since the predictive performance reported in [8] is
very similar to that of ORF-Saffari and the computational complexity of the ORF-Denil algorithm is
worse than that of ORF-Saffari. We used the Breiman-RF implementation in scikit-learn [16].3

We evaluate on four of the five datasets used in [20] — we excluded the mushroom dataset as even
very simple logical rules achieve > 99% accuracy on this dataset.4 We re-scaled the datasets such
that each feature takes on values in the range [0, 1] (by subtracting the min value along that dimension
and dividing by the range along that dimension, where range = max−min).

As is common in the random forest literature [2], we set the number of trees M = 100. For Mondrian
forests, we set the lifetime λ =∞ and the HNSP discount parameter γ = 10D. For ORF-Saffari, we
set num epochs = 20 (number of passes through the training data) and set the other hyper parameters
to the values used in [20]. For Breiman-RF and ERT, the hyper parameters are set to default values.
We repeat each algorithm with five random initializations and report the mean performance. The
results are shown in Figure 3. (The * in Breiman-RF* indicates scikit-learn implementation.)

Comparing test accuracy vs fraction of training data on usps, satimages and letter datasets, we
observe that MF achieves accuracy very close to the batch RF versions (Breiman-RF, ERT-k,
ERT-1) trained on the same fraction of the data. MF significantly outperforms ORF-Saffari
trained on the same fraction of training data. In batch RF versions, the same training data can
be used to evaluate candidate splits at a node and its children. However, in the online RF versions
(ORF-Saffari and ORF-Denil), incoming training examples are used to evaluate candidate splits just
at a current leaf node and new training data are required to evaluate candidate splits every time a
new leaf node is created. Saffari et al. [20] recommend multiple passes through the training data to
increase the effective number of training samples. In a realistic streaming data setup, where training
examples cannot be stored for multiple passes, MF would require significantly fewer examples than
ORF-Saffari to achieve the same accuracy.

Comparing test accuracy vs training time on usps, satimages and letter datasets, we observe that MF
is at least an order of magnitude faster than re-trained batch versions and ORF-Saffari. For
ORF-Saffari, we plot test accuracy at the end of every additional pass; hence it contains additional
markers compared to the top row which plots results after a single pass. Re-training batch RF using
100 mini-batches is unfair to MF; in a streaming data setup where the model is updated when a
new training instance arrives, MF would be significantly faster than the re-trained batch versions.

3The scikit-learn implementation uses highly optimized C code, hence we do not compare our runtimes with
the scikit-learn implementation. The ERT implementation in scikit-learn achieves very similar test accuracy as
our ERT implementation, hence we do not report those results here.

4https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.names

7

https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.names

Assuming trees are balanced after adding each data point, it can be shown that computational cost of
MF scales as O(N logN) whereas that of re-trained batch RF scales as O(N2 logN) (Appendix C).
Appendix E shows that the average depth of the forests trained on above datasets scales as O(logN).

It is remarkable that choosing splits independent of labels achieves competitive classification per-
formance. This phenomenon has been observed by others as well—for example, Cutler and Zhao
[7] demonstrate that their PERT classifier (which is similar to batch version of MF) achieves test
accuracy comparable to Breiman-RF on many real world datasets. However, in the presence of
irrelevant features, methods which choose splits independent of labels (MF, ERT-1) perform worse
than Breiman-RF and ERT-k (but still better than ORF-Saffari) as indicated by the results on the
dna dataset. We trained MF and ERT-1 using just the most relevant 60 attributes amongst the 180
attributes5—these results are indicated as MF† and ERT-1† in Figure 3. We observe that, as expected,
filtering out irrelevant features significantly improves performance of MF and ERT-1.

usps satimages letter dna

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF†

ERT-1†

101 102 103 104 1050.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari

101 102 103 1040.75

0.80

0.85

0.90

101 102 103 104 1050.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

101 102 103 1040.5

0.6

0.7

0.8

0.9

1.0

1.1

MF†

ERT-1†

Figure 3: Results on various datasets: y-axis is test accuracy in both rows. x-axis is fraction of training data
for the top row and training time (in seconds) for the bottom row. We used the pre-defined train/test split.
For usps dataset D = 256,K = 10, Ntrain = 7291, Ntest = 2007; for satimages dataset D = 36,K =
6, Ntrain = 3104, Ntest = 2000; letter dataset D = 16,K = 26, Ntrain = 15000, Ntest = 5000; for dna dataset
D = 180,K = 3, Ntrain = 1400, Ntest = 1186.

8 Discussion
We have introduced Mondrian forests, a novel class of random forests, which can be trained incre-
mentally in an efficient manner. MF significantly outperforms existing online random forests in
terms of training time as well as number of training instances required to achieve a particular test
accuracy. Remarkably, MF achieves competitive test accuracy to batch random forests trained on the
same fraction of the data. MF is unable to handle lots of irrelevant features (since splits are chosen
independent of the labels)—one way to use labels to guide splits is via recently proposed Sequential
Monte Carlo algorithm for decision trees [14]. The computational complexity of MF is linear in the
number of dimensions (since rectangles are represented explicitly) which could be expensive for
high dimensional data; we will address this limitation in future work. Random forests have been
tremendously influential in machine learning for a variety of tasks; hence lots of other interesting
extensions of this work are possible, e.g. MF for regression, theoretical bias-variance analysis of MF,
extensions of MF that use hyperplane splits instead of axis-aligned splits.

Acknowledgments
We would like to thank Charles Blundell, Gintare Dziugaite, Creighton Heaukulani, José Miguel
Hernández-Lobato, Maria Lomeli, Alex Smola, Heiko Strathmann and Srini Turaga for helpful
discussions and feedback on drafts. BL gratefully acknowledges generous funding from the Gatsby
Charitable Foundation. This research was carried out in part while DMR held a Research Fellowship
at Emmanuel College, Cambridge, with funding also from a Newton International Fellowship through
the Royal Society. YWT’s research leading to these results was funded in part by the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement no. 617411.

5https://www.sgi.com/tech/mlc/db/DNA.names

8

https://www.sgi.com/tech/mlc/db/DNA.names

References
[1] L. Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.
[2] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.
[3] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms.

In Proc. Int. Conf. Mach. Learn. (ICML), 2006.
[4] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model search. J. Am. Stat.

Assoc., pages 935–948, 1998.
[5] S. L. Crawford. Extensions to the CART algorithm. Int. J. Man-Machine Stud., 31(2):197–217,

1989.
[6] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for

classification, regression, density estimation, manifold learning and semi-supervised learning.
Found. Trends Comput. Graphics and Vision, 7(2–3):81–227, 2012.

[7] A. Cutler and G. Zhao. PERT - Perfect Random Tree Ensembles. Comput. Sci. and Stat., 33:
490–497, 2001.

[8] M. Denil, D. Matheson, and N. de Freitas. Consistency of online random forests. In Proc. Int.
Conf. Mach. Learn. (ICML), 2013.

[9] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith. A Bayesian CART algorithm. Biometrika,
85(2):363–377, 1998.

[10] T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier systems, pages
1–15. Springer, 2000.

[11] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. 6th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min. (KDD), pages 71–80. ACM, 2000.

[12] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Mach. Learn., 63(1):3–42,
2006.

[13] J. T. Goodman. A bit of progress in language modeling. Comput. Speech Lang., 15(4):403–434,
2001.

[14] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Top-down particle filtering for Bayesian
decision trees. In Proc. Int. Conf. Mach. Learn. (ICML), 2013.

[15] T. P. Minka. Bayesian model averaging is not model combination. MIT Media Lab note.
http://research.microsoft.com/en-us/um/people/minka/papers/bma.html, 2000.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.,
12:2825–2830, 2011.

[17] J. Pitman. Combinatorial stochastic processes, volume 32. Springer, 2006.
[18] D. M. Roy. Computability, inference and modeling in probabilistic programming. PhD thesis,

Massachusetts Institute of Technology, 2011. http://danroy.org/papers/Roy-PHD-2011.pdf.
[19] D. M. Roy and Y. W. Teh. The Mondrian process. In Adv. Neural Inform. Proc. Syst. (NIPS),

volume 21, pages 27–36, 2009.
[20] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In

Computer Vision Workshops (ICCV Workshops). IEEE, 2009.
[21] M. A. Taddy, R. B. Gramacy, and N. G. Polson. Dynamic trees for learning and design. J. Am.

Stat. Assoc., 106(493):109–123, 2011.
[22] Y. W. Teh. A hierarchical Bayesian language model based on Pitman–Yor processes. In Proc.

21st Int. Conf. on Comp. Ling. and 44th Ann. Meeting Assoc. Comp. Ling., pages 985–992.
Assoc. for Comp. Ling., 2006.

[23] P. E. Utgoff. Incremental induction of decision trees. Mach. Learn., 4(2):161–186, 1989.
[24] F. Wood, C. Archambeau, J. Gasthaus, L. James, and Y. W. Teh. A stochastic memoizer for

sequence data. In Proc. Int. Conf. Mach. Learn. (ICML), 2009.

9

http://research.microsoft.com/en-us/um/people/minka/papers/bma.html
http://danroy.org/papers/Roy-PHD-2011.pdf

Mondrian Forests: Efficient Online Random Forests
Supplementary Material

A Posterior inference and prediction using the HNSP

Recall that we use a hierarchical Bayesian approach to specify a smooth label distribution
pT (y|x,D1:N) for each tree T . The label prediction at a test point x will depend on where x
falls relative to the existing data in the tree T . In this section, we assume that x lies within one of the
leaf nodes in T , i.e., x ∈ Bxleaf(x), where leaf(x) ∈ leaves(T). If x does not lie within any of the leaf
nodes in T , i.e., x /∈ ∪j∈leaves(T)B

x
j , one could extend the tree by sampling T ′ from MTx(λ, T,x),

such that x lies within a leaf node in T ′ and apply the procedure described below using the extended
tree T ′. Appendix B describes this case in more detail.

Given training data D1:N , a Mondrian tree T and the hierarchical prior over G, the predictive label
distribution pT (y|x,D1:N) is obtained by integrating over G, i.e.

pT (y|x,D1:N) = EG∼pT (G|D1:N)[Gleaf(x),y] = Gleaf(x),y.

Hence, the prediction is given by Gleaf(x), the posterior mean at leaf(x). The posterior mean Gleaf(x)

can be computed using existing techniques, which we review in the rest of this section.

Posterior inference in the HNSP is a special case of posterior inference in hierarchical PYP (HPYP).
Teh [22] considers the HPYP with multinomial likelihood (in the context of language modeling)—the
model considered here (HNSP with multinomial likelihood) is a special case of [22]. Hence, we just
sketch the high level picture and refer the reader to [22] for further details. We first describe posterior
inference given N data points D1:N (batch setting), and later explain how to adapt inference to the
online setting. Finally, we describe the computation of the predictive posterior distribution.

Batch setting

Posterior inference is done using the Chinese restaurant process representation, wherein every node
of the decision tree is a restaurant; the training data points are the customers seated in the tables
associated with the leaf node restaurants; these tables are in turn customers at the tables in their
corresponding parent level restaurant; the dish served at each table is the class label. Exact inference is
intractable and hence we resort to approximations. In particular, we use the approximation known as
the interpolated Kneser-Ney (IKN) smoothing, a popular smoothing technique for language modeling
[13]. The IKN smoothing can be interpreted as an approximate inference scheme for the HPYP,
where the number of tables serving a particular dish in a restaurant is at most one [22]. More precisely,
if cj,k denotes the number of customers at restaurant j eating dish k and tabj,k denotes the number
of tables at restaurant j serving dish k, the IKN approximation sets tabj,k = min(cj,k, 1). The
counts cj,k and tabj,k can be computed in a single bottom-up pass as follows: for every leaf node
j ∈ leaves(T), cj,k is simply the number of training data points with label k at node j; for every
internal node j ∈ T \ leaves(T), we set cj,k = tableft(j),k + tabright(j),k. For a leaf node j, this
procedure is summarized in Algorithm 5. (Note that this pseudocode just serves as a reference; in
practice, these counts are updated in an online fashion, as described in Algorithm 6.)

Algorithm 5 InitializePosteriorCounts(j)

1: For all k, set cjk = #{n ∈ N(j) : yn = k}
2: Initialize j′ = j
3: while True do
4: if j′ /∈ leaves(T) then
5: For all k, set cj′k = tableft(j′),k + tabright(j′),k

6: For all k, set tabj′k = min(cj′k, 1) . IKN approximation
7: if j′ = ε then
8: return
9: else
10: j′ ← parent(j′)

10

Posterior inference: online setting

It is straightforward to extend inference to the online setting. Adding a new data point D = (x, y)
affects only the counts along the path from the root to the leaf node of that data point. We update the
counts in a bottom-up fashion, starting at the leaf node containing the data point, leaf(x). Due to the
nature of the IKN approximation, we can stop at the internal node j where cj,y = 1 and need not
traverse up till the root. This procedure is summarized in Algorithm 6.

Algorithm 6 UpdatePosteriorCounts(j, y)

1: cjy ← cjy + 1
2: Initialize j′ = j
3: while True do
4: if tabj′y = 1 then . none of the counts above need to be updated
5: return
6: else
7: if j′ /∈ leaves(T) then
8: cj′y = tableft(j′),y + tabright(j′),y

9: tabj′y = min(cj′y, 1) . IKN approximation
10: if j′ = ε then
11: return
12: else
13: j′ ← parent(j′)

Predictive posterior computation Given the counts cj,k and table assignments tabj,k, the predic-
tive probability (i.e., posterior mean) at node j can be computed recursively as follows:

Gjk =


cj,k − djtabj,k

cj,·
+
djtabj,·
cj,·

Gparent(j),k cj,· > 0,

Gparent(j),k cj,· = 0,
(4)

where cj,· =
∑
k cj,k, tabj,· =

∑
k tabj,k, and dj := exp

(
−γ(τj − τparent(j))

)
is the discount for

node j, defined in Section 4. Informally, the discount interpolates between the counts c and the prior.
If the discount dj ≈ 1, then Gj is more like its parent Gparent(j). If dj ≈ 0, then Gj weights the
counts more. These predictive probabilities can be computed in a single top-down pass as shown in
Algorithm 7.

Algorithm 7 ComputePosteriorPredictiveDistribution
(
T,G

)
1: . Description of top-down pass to compute posterior predictive distribution given by (4)
2: . Gjk denotes the posterior probability of y = k at node j
3: Initialize the ordered set J = {ε}
4: while J not empty do
5: Pop the first element of J
6: if j = ε then
7: Gparent(ε) = H

8: Set d = exp
(
−γ(τj − τparent(j))

)
9: For all k, set Gjk = c−1

j,·

(
cj,k − d tabj,k + d tabj,· Gparent(j),k

)
10: if j /∈ leaves(T) then
11: Append left(j) and right(j) to the end of the ordered set J

B Prediction using Mondrian tree

Let x denote a test data point. We are interested in the predictive probability of y at x, denoted by
pT (y|x,D1:N). As in typical decision trees, the process involves a top-down tree traversal, starting
from the root. If x is already ‘contained’ in the tree T , i.e., if x ∈ Bxj for some leaf j ∈ leaves(T),
then the prediction is taken to be Gleaf(x), which is computed as described in Appendix A. Otherwise,

11

we somehow need to incorporate x. One choice is to extend T by sampling T ′ from MTx(λ, T,x)
as described in Algorithm 3, and set the prediction to Gj , where j ∈ leaves(T′) is the leaf node
containing x. A particular extension T ′ might lead to an overly confident prediction; hence, we
average over every possible extension T ′. This expectation can be carried out analytically, using
properties of the Mondrian process, as we show below.
Let ancestors(j) denote the set of all ancestors of node j. Let path(j) = {j} ∪ ancestors(j), that is,
the set of all nodes along the ancestral path from j to the root. Recall that leaf(x) is the unique leaf
node in T such that x ∈ Bleaf(x). If the test point x ∈ Bxleaf(x) (i.e., x lies within the ‘gray rectangle’
at the leaf node), it can never branch off; else, it can branch off at one or more points along the path
from the root to leaf(x). More precisely, if x lies outside Bxj at node j, the probability that x will
branch off into its own node at node j, denoted by6 psj(x), is equal to the probability that a split exists
in Bj outside Bxj , which is

psj(x) = 1− exp
(
−∆jηj(x)

)
, where ηj(x) =

∑
d

(
max(xd − uxjd, 0) + max(`xjd − xd, 0)

)
,

and ∆j = τj − τparent(j). Note that psj(x) = 0 if x lies within Bxj (i.e., if `xjd ≤ xd ≤ uxjd for all d).
The probability of x not branching off before reaching node j is given by

∏
j′∈ancestors(j)(1−psj′(x)).

If x ∈ Bxleaf(x), the prediction is given by Gleaf(x). If there is a split in Bj outside Bxj , let ̃ denote
the new parent of j and child(̃) denote the child node containing just the test data point,; in this case,
the prediction is Gchild(̃). Averaging over the location where the test point branches off, we obtain

pT (y|x,D1:N) =
∑

j∈path(leaf(x))

(∏
j′∈ancestors(j)

(1− psj′(x))
)
Fj(x), (5)

where

Fj(x) = psj(x)E∆̃

[
Gchild(̃)

]
+ 1[j = leaf(x)](1− psj(x))Gleaf(x). (6)

The second term in Fj(x) needs to be computed only for the leaf node leaf(x) and is simply the
posterior mean of Gleaf(x) weighted by 1 − psleaf(x)(x). The posterior mean of Gleaf(x), given by
Gleaf(x), can be computed using (4). The first term in Fj(x) is simply the posterior mean of Gchild(̃),
averaged over ∆̃, weighted by psj(x). Since no labels are observed in child(̃), cchild(̃),· = 0, hence
from (4), we have Gchild(̃) = G̃. We compute G̃ using (4). We average over ∆̃ due to the fact
that the discount in (4) for the node ̃ depends on τ̃ − τparent(̃) = ∆̃. To average over all valid split
times τ̃, we compute expectation w.r.t. ∆̃ which is distributed according to a truncated exponential
with rate ηj(x), truncated to the interval [0,∆j].

The procedure for computing pT (y|x,D1:N) for any x ∈ RD is summarized in Algorithm 8. The
predictive probability assigned by a Mondrian forest is the average of the predictive probability of the
M trees, i.e., 1

M

∑
m pTm(y|x,D1:N).

C Computational complexity

We discuss the computational complexity associated with a single Mondrian tree. The complexity of
a forest is simply M times that of a single tree; however, this computation can be trivially parallelized
since there is no interaction between the trees. Assume that the N data points are processed one by
one. Assuming the data points form a balanced binary tree after each update, the computational cost of
processing the nth data point is at mostO(log n) (add the data point into its own leaf, update posterior
counts for HNSP in bottom-up pass from leaf to root). The overall cost to process N data points is
O(
∑N
n=1 log n) = O(logN !), which for largeN tends toO(N logN) (using Stirling approximation

for the factorial function). For offline RF and ERT, the expected complexity with n data points
is O(n log n). The complexity of the re-trained version is O(

∑N
n=1 n log n) = O(log

∏N
n=1 n

n),
which for large N tends toO(N2 logN) (using asymptotic expansion of the hyper factorial function).

6The superscript s in psj(x) is used to denote the fact that this split ‘separates’ the test data point x into its
own leaf node.

12

Algorithm 8 Predict
(
T,x

)
1: . Description of prediction using a Mondrian tree, given by (5)
2: Initialize j = ε and pNotSeparatedYet = 1
3: Initialize s = 0K . s is K-dimensional vector where sk = pT (y = k|x,D1:N)
4: while True do
5: Set ∆j = τj − τparent(j) and ηj(x) =

∑
d

(
max(xd − uxjd, 0) + max(`xjd − xd, 0)

)
6: Set psj(x) = 1− exp

(
−∆jηj(x)

)
7: if psj(x) > 0 then
8: . Let x branch off into its own node child(̃), creating a new node ̃ which is the parent

of j and child(̃). Gchild(̃) = G̃ from (4) since cchild(̃),· = 0.
9: Compute expected discount d̄ = E∆[exp(−γ∆)] where ∆ is drawn from a truncated

exponential with rate ηj(x), truncated to the interval [0,∆j].
10: For all k, set c̃,k = tab̃,k = min(cj,k, 1)

11: For all k, set G̃k = c−1
̃,·

(
c̃,k − d̄ tab̃,k + d̄ tab̃,· Gparent(̃),k

)
. Algorithm 7 and (6)

12: For all k, update sk ← sk + pNotSeparatedYet p
s
j(x)G̃k

13: if j ∈ leaves(T) then
14: For all k, update sk ← sk + pNotSeparatedYet(1− psj(x))Gjk . Algorithm 7 and (6)
15: return predictive probability s where sk = pT (y = k|x,D1:N)
16: else
17: pNotSeparatedYet ← pNotSeparatedYet(1− psj(x))
18: if xδj ≤ ξj then j ← left(j) else j ← right(j) . recurse to the child where x lies

D Pseudocode for paused Mondrians

In this section, we discuss versions of SampleMondrianBlock and ExtendMondrianBlock for paused
Mondrians. For completeness, we also provide the updates necessary for the IKN approximation.

Algorithm 9 SampleMondrianBlock
(
j,DN(j), λ

)
version that depends on labels

1: Add j to T
2: For all d, set `xjd = min(XN(j),d), u

x
jd = max(XN(j),d) . dimension-wise min and max

3: if AllLabelsIdentical(YN(j)) then
4: Set τj = λ . pause Mondrian
5: else
6: Sample E from exponential distribution with rate

∑
d(u

x
jd − `xjd)

7: Set τj = τparent(j) + E

8: if τj < λ then
9: Sample split dimension δj with probability of choosing d proportional to uxjd − `xjd
10: Sample split location ξj along dimension δj from an uniform distribution over U [`xjd, u

x
jd]

11: Set N(left(j)) = {n ∈ N(j) : Xn,δj ≤ ξj} and N(right(j)) = {n ∈ N(j) : Xn,δj > ξj}
12: SampleMondrianBlock

(
left(j),DN(left(j)), λ

)
13: SampleMondrianBlock

(
right(j),DN(right(j)), λ

)
14: else
15: Set τj = λ and add j to leaves(T) . j is a leaf node
16: InitializePosteriorCounts(j) . Algorithm 5

13

Algorithm 10 ExtendMondrianBlock(T, λ, j,D) version that depends on labels

1: if AllLabelsIdentical(YN(j)) then . paused Mondrian leaf
2: Update extent `xj ← min(`xj ,x),uxj ← max(uxj ,x)
3: Append D to DN(j) . append x to XN(j) and y to YN(j)

4: if y = unique(YN(j)) then
5: UpdatePosteriorCounts(j, y) . Algorithm 6
6: return . continue pausing
7: else
8: Remove j from leaves(T)
9: SampleMondrianBlock

(
j,DN(j), λ

)
. un-pause Mondrian

10: else
11: Set e` = max(`xj − x, 0) and eu = max(x− uxj , 0) . e` = eu = 0D if x ∈ Bxj
12: Sample E from exponential distribution with rate

∑
d(e

`
d + eud)

13: if τparent(j) + E < τj then . introduce new parent for node j
14: Create new Mondrian block ̃ where `x̃ = min(`xj ,x) and ux̃ = max(uxj ,x)

15: Sample δ̃ with Pr(δ̃ = d) proportional to e`d + eud
16: if xδ̃ > uxj,δ̃ , then sample ξ̃ from U [uxj,δ̃ , xδ̃], else sample ξ̃ from U([xδ̃ , `

x
j,δ̃

])

17: if j = ε then . set ̃ as the new root
18: ε← ̃
19: else . set ̃ as child of parent(j)
20: if j = left(parent(j)), then left(parent(j))← ̃, else right(parent(j))← ̃

21: if xδ̃ > ξ̃ then
22: Set left(̃) = j and SampleMondrianBlock

(
right(̃),D, λ

)
. create new leaf for x

23: else
24: Set right(̃) = j and SampleMondrianBlock

(
left(̃),D, λ

)
. create new leaf for x

25: else
26: Update `xj ← min(`xj ,x),uxj ← max(uxj ,x) . update extent of node j
27: if j /∈ leaves(T) then . return if j is a leaf node, else recurse down the tree
28: if xδj ≤ ξj then child(j) = left(j) else child(j) = right(j)
29: ExtendMondrianBlock(T, λ, child(j),D) . recurse on child containing x

E Depth of trees

We computed the average depth of the trees in the forest, where depth of a leaf node is weighted by
fraction of data points at that leaf node. The hyper-parameter settings and experimental setup are
described in Section 7. Table 1 reports the average depth (and standard deviations) for Mondrian
forests trained on different datasets. The values suggest that the depth of the forest scales as logN
rather than N .

Dataset Ntrain log2Ntrain depth
usps 7291 12.8 19.1 ± 1.3

satimages 3104 11.6 17.4 ± 1.6
letter 15000 13.9 23.2 ± 1.8
dna 1400 10.5 12.0 ± 0.3

Table 1: Average depth of Mondrian forests trained on different datasets.

F Comparison to dynamic trees

Dynamic trees [21] approximate the Bayesian posterior over decision trees in an online fashion.
Specifically, dynamic trees maintain a particle approximation to the true posterior; the prediction
at a test point is a weighted average of the predictions made by the individual particles. While this
averaging procedure appears similar to online random forests at first sight, there is a key difference:
MF (and other random forests) performs ensemble model combination whereas dynamic trees use
Bayesian model averaging. In the limit of infinite data, the Bayesian posterior would converge to a

14

single tree [15], whereas MF would still average predictions over multiple trees. Hence, we expect
MF to outperform dynamic trees in scenarios where a single decision tree is insufficient to explain
the data.

To experimentally validate our hypothesis, we evaluate the empirical performance of dynamic trees
using the dynaTree7 R package provided by the authors of the paper. Note that while dynamic
trees can use ‘linear leaves’ (strong since prediction at a leaf depends on X) or ‘constant leaves’ for
regression tasks, they use ‘multinomial leaves’ for classification tasks which corresponds to a ‘weak
learner’. We set the number of particles to 100 (equals the number of trees used in MF) and the
number of passes, R = 2 (their code does not support R = 1) and set the remaining parameters to
their default values. Fig. 4 compares the performance of dynamic trees to MF and other random forest
variants. (The performance of all methods other than dynamic trees is identical to that of Fig. 3.)

usps satimages letter dna
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*
DynaTree*

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF†

ERT-1†

Figure 4: Results on various datasets: y-axis is test accuracy in both rows. x-axis is fraction of training data.
The setup is identical to that of Fig. 3. MF achieves significantly higher test accuracies than dynamic trees on
usps, satimages and letter datasets and MF† achieves similar test accuracy as dynamic trees on the dna dataset.

We observe that MF achieves significantly higher test accuracies than dynamic trees on usps, satimages
and letter datasets. On dna dataset, dynamic trees outperform MF (indicating the usefulness of using
labels to guide splits) — however, MF with feature selection (MF†) achieves similar performance as
dynamic trees. All the batch random forest methods are superior to dynamic trees which suggests
that decision trees are not sufficient to explain these real world datasets and that model combination
is helpful.

7http://cran.r-project.org/web/packages/dynaTree/index.html

15

http://cran.r-project.org/web/packages/dynaTree/index.html

	Introduction
	Approach
	Mondrian trees
	Mondrian process distribution over decision trees

	Label distribution: model, hierarchical prior, and predictive posterior
	Online training and prediction
	Related work
	Empirical evaluation
	Discussion
	Posterior inference and prediction using the HNSP
	Prediction using Mondrian tree
	Computational complexity
	Pseudocode for paused Mondrians
	Depth of trees
	Comparison to dynamic trees

