Mondrian Forests:
 Efficient Online Random Forests

Balaji Lakshminarayanan

Joint work with Daniel M. Roy and Yee Whye Teh

Outline

Background and Motivation

Mondrian Forests
Randomization mechanism
Online training
Experiments

Conclusion

Introduction

- Input: attributes $X=\left\{x_{n}\right\}_{n=1}^{N}$, labels $Y=\left\{y_{n}\right\}_{n=1}^{N}$ (i.i.d)
- $x_{n} \in \mathcal{X}$ and $y_{n} \in\{1, \ldots, K\}$ (classification)
- Goal: Predict y_{*} for test data x_{*}

Introduction

- Input: attributes $X=\left\{x_{n}\right\}_{n=1}^{N}$, labels $Y=\left\{y_{n}\right\}_{n=1}^{N}$ (i.i.d)
- $x_{n} \in \mathcal{X}$ and $y_{n} \in\{1, \ldots, K\}$ (classification)
- Goal: Predict y_{*} for test data x_{*}
- Recipe for prediction: Use a random forest
- Ensemble of randomized decision trees
- State-of-the-art for lots of real world prediction tasks

Introduction

- Input: attributes $X=\left\{x_{n}\right\}_{n=1}^{N}$, labels $Y=\left\{y_{n}\right\}_{n=1}^{N}$ (i.i.d)
- $x_{n} \in \mathcal{X}$ and $y_{n} \in\{1, \ldots, K\}$ (classification)
- Goal: Predict y_{*} for test data x_{*}
- Recipe for prediction: Use a random forest
- Ensemble of randomized decision trees
- State-of-the-art for lots of real world prediction tasks
- 'An empirical comparison of supervised learning algorithms' [Caruana and Niculescu-Mizil, 2006]
- 'Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?' [Fernández-Delgado et al., 2014]

Introduction

- Input: attributes $X=\left\{x_{n}\right\}_{n=1}^{N}$, labels $Y=\left\{y_{n}\right\}_{n=1}^{N}$ (i.i.d)
- $x_{n} \in \mathcal{X}$ and $y_{n} \in\{1, \ldots, K\}$ (classification)
- Goal: Predict y_{*} for test data x_{*}
- Recipe for prediction: Use a random forest
- Ensemble of randomized decision trees
- State-of-the-art for lots of real world prediction tasks
- 'An empirical comparison of supervised learning algorithms' [Caruana and Niculescu-Mizil, 2006]
- 'Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?' [Fernández-Delgado et al., 2014]
- What is a decision tree?

Example: Classification tree

- Hierarchical axis-aligned binary partitioning of input space
- Rule for predicting label within each block

\mathcal{T} : list of nodes, feature-id + location of splits for internal nodes θ : Multinomial parameters at leaf nodes

Prediction using decision tree

- Example:
- Multi-class classification: $\theta=\left[\theta_{r}, \theta_{b}, \theta_{g}\right]$
- Prediction = smoothed empirical histogram in node j
- Label counts in left node [$n_{r}=2, n_{b}=0, n_{g}=0$]
- $\theta \sim \operatorname{Dirichlet}(\alpha / 3, \alpha / 3, \alpha / 3)$
- Prediction $=$ Posterior mean of $\theta=\left[\frac{2+\alpha / 3}{2+\alpha}, \frac{\alpha / 3}{2+\alpha}, \frac{\alpha / 3}{2+\alpha}\right]$

Prediction using decision tree

- Example:
- Multi-class classification: $\theta=\left[\theta_{r}, \theta_{b}, \theta_{g}\right]$
- Prediction $=$ smoothed empirical histogram in node j
- Label counts in left node [$n_{r}=2, n_{b}=0, n_{g}=0$]
- $\theta \sim \operatorname{Dirichlet}(\alpha / 3, \alpha / 3, \alpha / 3)$
- Prediction $=$ Posterior mean of $\theta=\left[\frac{2+\alpha / 3}{2+\alpha}, \frac{\alpha / 3}{2+\alpha}, \frac{\alpha / 3}{2+\alpha}\right]$
- Likelihood for $n^{\text {th }}$ data point $=p\left(y_{n} \mid \theta_{j}\right)$ assuming x_{n} lies in leaf node j of \mathcal{T}
- Prior over θ_{j} : independent or hierarchical
- Prediction for x_{*} falling in $j=\mathbb{E}_{\theta_{j} \mid \mathcal{T}, X, Y}\left[p\left(y_{*} \mid \theta_{j}\right)\right]$, where

$$
p\left(\theta_{j} \mid \mathcal{T}, X, Y\right) \propto \underbrace{p\left(\theta_{j} \mid \ldots\right)}_{\text {prior }} \underbrace{\prod_{n \in N(j)} p\left(y_{n} \mid \theta_{j}\right)}_{\text {likelihood of data points in node j }}
$$

- Smoothing is done independently for each tree

Random forest (RF)

- Generate randomized trees $\left\{\mathcal{T}_{m}\right\}_{1}^{M}$
- Prediction for x_{*} :

$$
p\left(y_{*} \mid x_{*}\right)=\frac{1}{M} \sum_{m} p\left(y_{*} \mid x_{*}, \mathcal{T}_{m}\right)
$$

- Model combination and not Bayesian model averaging

Random forest (RF)

- Generate randomized trees $\left\{\mathcal{T}_{m}\right\}_{1}^{M}$
- Prediction for x_{*} :

$$
p\left(y_{*} \mid x_{*}\right)=\frac{1}{M} \sum_{m} p\left(y_{*} \mid x_{*}, \mathcal{T}_{m}\right)
$$

- Model combination and not Bayesian model averaging
- Advantages of RF
- Excellent predictive performance (test accuracy)
- Fast to train (in batch setting) and test
- Trees can be trained in parallel

Disadvantages of RF

- Not possible to train incrementally
- Re-training batch version periodically is slow $\mathcal{O}\left(N^{2} \log N\right)$
- Existing online RF variants [Saffari et al., 2009, Denil et al., 2013] require
- lots of memory / computation or
- need lots of training data before they can deliver good test accuracy (data inefficient)

Disadvantages of RF

- Not possible to train incrementally
- Re-training batch version periodically is slow $\mathcal{O}\left(N^{2} \log N\right)$
- Existing online RF variants [Saffari et al., 2009, Denil et al., 2013] require
- lots of memory / computation or
- need lots of training data before they can deliver good test accuracy (data inefficient)

Mondrian forests = Mondrian process + Random forests

- Can operate in either batch mode or online mode
- Online speed $\mathcal{O}(N \log N)$
- Data efficient (predictive performance of online mode equals that of batch mode!)

Outline

Background and Motivation

Mondrian Forests

Randomization mechanism
Online training
Experiments

Conclusion

Popular batch RF variants

How to generate individual trees in RF?

- Breiman-RF [Breiman, 2001]: Bagging + Randomly subsample features and choose best location amongst subsampled features

Popular batch RF variants

How to generate individual trees in RF?

- Breiman-RF [Breiman, 2001]: Bagging + Randomly subsample features and choose best location amongst subsampled features
- Extremely Randomized Trees [Geurts et al., 2006] (ERT-k): Randomly sample k (feature-id, location) pairs and choose the best split amongst this subset
- no bagging
- ERT-1 does not use labels Y to guide splits!

Mondrian process [Roy and Teh, 2009]

- MP (λ, \mathcal{X}) specifies a distribution over hierarchical axis-aligned binary partitions of $\mathcal{X}\left(\right.$ e.g. $\left.\mathbb{R}^{D},[0,1]^{D}\right)$
- λ is complexity parameter of the Mondrian process

Mondrian process [Roy and Teh, 2009]

- MP (λ, \mathcal{X}) specifies a distribution over hierarchical axis-aligned binary partitions of $\mathcal{X}\left(\right.$ e.g. $\left.\mathbb{R}^{D},[0,1]^{D}\right)$
- λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

Generative process: $\operatorname{MP}\left(\lambda,\left\{\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right\}\right)$

1. Draw Δ from exponential with rate $u_{1}-\ell_{1}+u_{2}-\ell_{2}$
2. IF $\Delta>\lambda$ stop,

Generative process: $\operatorname{MP}\left(\lambda,\left\{\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right\}\right)$

1. Draw Δ from exponential with rate $u_{1}-\ell_{1}+u_{2}-\ell_{2}$
2. IF $\Delta>\lambda$ stop, ELSE, sample a split

- split dimension: choose dimension d with prob $\propto u_{d}-\ell_{d}$
- split location: choose uniformly from $\left[\ell_{d}, u_{d}\right]$

Generative process: $\operatorname{MP}\left(\lambda,\left\{\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right\}\right)$

1. Draw Δ from exponential with rate $u_{1}-\ell_{1}+u_{2}-\ell_{2}$
2. IF $\Delta>\lambda$ stop, ELSE, sample cut

- Choose dimension d with probability $\propto u_{d}-\ell_{d}$
- Choose cut location uniformly from [ℓ_{d}, u_{d}]
- Recurse on left and right subtrees with parameter $\lambda-\Delta$

Self-consistency of Mondrian process

- Simulate $\mathcal{T} \sim \operatorname{MP}\left(\lambda,\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right)$

Self-consistency of Mondrian process

- Simulate $\mathcal{T} \sim \operatorname{MP}\left(\lambda,\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right)$
- Restrict \mathcal{T} to a smaller rectangle $\left[\ell_{1}^{\prime}, u_{1}^{\prime}\right] \times\left[\ell_{2}^{\prime}, u_{2}^{\prime}\right]$

Self-consistency of Mondrian process

- Simulate $\mathcal{T} \sim \operatorname{MP}\left(\lambda,\left[\ell_{1}, u_{1}\right],\left[\ell_{2}, u_{2}\right]\right)$
- Restrict \mathcal{T} to a smaller rectangle $\left[\ell_{1}^{\prime}, u_{1}^{\prime}\right] \times\left[\ell_{2}^{\prime}, u_{2}^{\prime}\right]$

- Restriction has distribution $\operatorname{MP}\left(\lambda,\left[\ell_{1}^{\prime}, u_{1}^{\prime}\right],\left[\ell_{2}^{\prime}, u_{2}^{\prime}\right]\right)$!

Mondrian trees

- Use X to define lower and upper limits within each node and use MP to sample splits

Mondrian trees

- Use X to define lower and upper limits within each node and use MP to sample splits
- Difference between Mondrian tree and usual decision tree
- split in node j is committed only within extent of training data in node j
- node j is associated with 'time of split' $t_{j}>0$ (split time increases with depth and will be useful in online training)
- splits are chosen independent of the labels Y

Outline

Background and Motivation

Mondrian Forests

Randomization mechanism
Online training
Experiments

Conclusion

Mondrian trees: online learning

- As dataset grows, we extend the Mondrian tree \mathcal{T} by simulating from a conditional Mondrian process MTx

Mondrian trees: online learning

- As dataset grows, we extend the Mondrian tree \mathcal{T} by simulating from a conditional Mondrian process MTx

$$
\begin{gathered}
\mathcal{T} \sim \operatorname{MT}\left(\lambda, \mathcal{D}_{1: n}\right) \\
\mathcal{T}^{\prime} \mid \mathcal{T}, \mathcal{D}_{1: n+1} \sim \operatorname{MTx}\left(\lambda, \mathcal{T}, \mathcal{D}_{n+1}\right)
\end{gathered} \Longrightarrow \mathcal{T}^{\prime} \sim \operatorname{MT}\left(\lambda, \mathcal{D}_{1: n+1}\right)
$$

- Distribution of batch and online trees are the same!
- Order of the data points does not matter

Mondrian trees: online learning

- As dataset grows, we extend the Mondrian tree \mathcal{T} by simulating from a conditional Mondrian process MTx

$$
\begin{aligned}
\mathcal{T} & \sim \operatorname{MT}\left(\lambda, \mathcal{D}_{1: n}\right) \\
\mathcal{T}^{\prime} \mid \mathcal{T}, \mathcal{D}_{1: n+1} & \sim \operatorname{MTx}\left(\lambda, \mathcal{T}, \mathcal{D}_{n+1}\right)
\end{aligned} \Longrightarrow \mathcal{T}^{\prime} \sim \operatorname{MT}\left(\lambda, \mathcal{D}_{1: n+1}\right)
$$

- Distribution of batch and online trees are the same!
- Order of the data points does not matter
- MTx can perform one or more of the following 3 operations
- insert new split above an existing split
- extend existing split to new range
- split leaf further
- Computational complexity MTx is linear in depth of tree

Online training cartoon

Start with data points a and b

Online training cartoon

Adding new data point c : update visible range

Online training cartoon

Adding new data point c : introduce new split (above an existing split). New split in $R_{a b c}$ should be consistent with $R_{a b}$.

Online training cartoon

Examples of splits that are not self-consistent.

Online training cartoon

Adding new data point d : traverse to left child and update range

Online training cartoon

Adding new data point d : extend the existing split to new range

Online training cartoon

Adding new data point d : split leaf further

c

Key differences between Mondrian forests and existing online random forests

- Splits extended in a self-consistent fashion
- Splits not extended to unobserved regions
- New split can be introduced anywhere in the tree (as long as it's consistent with subtree below)

Prediction and Hierarchical smoothing

- Extend Mondrian to range of test data
- Test data point can potentially branch off and form separate leaf node of its own!
- Points far away from range of training data are more likely to brach off
- We analytically average over every possible extension
- Hierarchical smoothing for posterior mean of $\theta \mid \mathcal{T}$
- Independent prior would predict from prior if test data branches off into its own leaf node
- Interpolated Kneser Ney approximation: fast
- Can be interpreted as approximate posterior inference assuming Hierarchical Normalized Stable process prior
- Smoothing done independently for each tree

Outline

Background and Motivation

Mondrian Forests

Randomization mechanism
Online training
Experiments

Conclusion

Experimental setup

- Competitors
- Periodically retrained RF, ERT
- Online RF [Saffari et al., 2009]

Experimental setup

- Competitors
- Periodically retrained RF, ERT
- Online RF [Saffari et al., 2009]
- Datasets:

Name	D	\#Classes	\#Train	\#Test
Satellite images	36	6	3104	2000
Letter	16	26	15000	5000
USPS	256	10	7291	2007
DNA	180	3	1400	1186

- Training data split into 100 mini batches (unfair to MF)
- Number of trees $=100$

Letter

Fraction of training data

Time (s)

Figure: Test accuracy

- Data efficiency: Online MF very close to batch RF (ERT, Breiman-RF) and significantly outperforms ORF-Saffari
- Speed: MF much faster than periodically re-trained batch RF and ORF-Saffari

USPS

Figure: Test accuracy

Satellite Images

Figure: Test accuracy

So, what's the catch?

DNA

Figure: Test accuracy

- Irrelevant features: Choosing splits independent of labels (MF, ERT-1) harmful in presence of irrelevant features
- Removing irrelevant features (use only the 60 most relevant features ${ }^{1}$) improves test accuracy (MF^{\dagger}, ERT-1 ${ }^{\dagger}$)

Conclusion

- MF: Alternative to RF that supports incremental learning
- Computationally faster compared to existing online RF and periodically re-trained batch RF
- Data efficient compared to existing online RF
- Future work
- Mondrian forests for regression
- Mondrian forests for high dimensional data with lots of irrelevant features

Thank you!

code, paper: http://www.gatsby.ucl.ac.uk/~balaji

Questions?

References I

目
Breiman，L．（2001）．
Random forests．
Mach．Learn．，45（1）：5－32．
國 Caruana，R．and Niculescu－Mizil，A．（2006）．
An empirical comparison of supervised learning algorithms．
In Proc．Int．Conf．Mach．Learn．（ICML）．
國 Denil，M．，Matheson，D．，and de Freitas，N．（2013）．
Consistency of online random forests．
In Proc．Int．Conf．Mach．Learn．（ICML）．
Fernández－Delgado，M．，Cernadas，E．，Barro，S．，and Amorim，D． （2014）．
Do we need hundreds of classifiers to solve real world classification problems？
Journal of Machine Learning Research，15：3133－3181．

References II

围 Geurts, P., Ernst, D., and Wehenkel, L. (2006).
Extremely randomized trees.
Mach. Learn., 63(1):3-42.
Roy, D. M. and Teh, Y. W. (2009).
The Mondrian process.
In Adv. Neural Inform. Proc. Syst. (NIPS).
Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009). On-line random forests.
In Computer Vision Workshops (ICCV Workshops). IEEE.
國 Teh, Y. W. (2006).
A hierarchical Bayesian language model based on Pitman-Yor processes.
In Proc. 21st Int. Conf. on Comp. Ling. and 44th Ann. Meeting Assoc. Comp. Ling., pages 985-992. Assoc. for Comp. Ling.

Extra slides

Hierarchical prior over θ

- G_{j} parametrizes $p(y \mid x)$ in B_{j}^{x}
- Normalized stable process (NSP): special case of PYP where concentration $=0$
- $d_{j} \in(0,1)$ is discount for node j
- $G_{\epsilon} \mid H \sim \operatorname{NSP}\left(d_{\epsilon}, H\right)$,

$$
\begin{aligned}
& G_{j}\left|G_{j} \sim \operatorname{NSP}\left(d_{j 0}, G_{j}\right),{ }^{\left(G_{j 1} \mid\right.}\right| G_{j} \sim \operatorname{NSP}\left(d_{j 1}, G_{j}\right)
\end{aligned}
$$

- $\mathbb{E}\left[G_{\epsilon}(s)\right]=H(s)$
- $\operatorname{Var}\left[G_{\epsilon}(s)\right]=\left(1-d_{H}\right) H(s)(1-H(s))$
- Closed under Marginalization: $G_{0} \mid H \sim \operatorname{NSP}\left(d_{\epsilon} d_{0}, H\right)$
- $d_{j}=e^{-\gamma \Delta_{j}}$ where $\Delta_{j}=t_{j}-t_{\text {parent }(j)}$ (time difference between split times)

Posterior inference for NSP

- Special case of approximate inference for PYP [Teh, 2006]
- Chinese restaurant process representation
- Interpolated Kneser-Ney smoothing
- fast approximation
- Restrict number of tables serving a dish to at most 1
- popular smoothing technique in language modeling

Interpolated Kneser-Ney smoothing

- Prediction for x_{*} lying in node j is given by

$$
\begin{aligned}
\bar{G}_{j k} & =p\left(y_{*}=k \mid x_{*} \in B_{j}^{X}, X, Y, \mathcal{T}\right) \\
& = \begin{cases}\frac{c_{j, k}-d_{j} \operatorname{tab}_{j, k}}{c_{j, \cdot}}+\frac{d_{j} \operatorname{tab}_{j, \cdot}}{c_{j,}} \bar{G}_{\text {parent }(j), k} & c_{j, \cdot}>0 \\
\bar{G}_{\text {parent }(j), k} & c_{j, \cdot}=0\end{cases}
\end{aligned}
$$

- $c_{j, k}=$ number of points in node j with label k
- $\operatorname{tab}_{j, k}=\min \left(c_{j, k}, 1\right)$ and $d_{j}=\exp \left(-\gamma\left(t_{j}-t_{\text {parent }(j)}\right)\right)$

