
Particle Gibbs for Bayesian Additive Regression Trees

Balaji Lakshminarayanan Daniel M. Roy Yee Whye Teh
Gatsby Unit

University College London
Department of Statistical Sciences

University of Toronto
Department of Statistics

University of Oxford

Abstract

Additive regression trees are flexible non-
parametric models and popular off-the-shelf
tools for real-world non-linear regression. In
application domains, such as bioinformat-
ics, where there is also demand for proba-
bilistic predictions with measures of uncer-
tainty, the Bayesian additive regression trees
(BART) model, introduced by Chipman et al.
(2010), is increasingly popular. As data sets
have grown in size, however, the standard
Metropolis–Hastings algorithms used to per-
form inference in BART are proving inade-
quate. In particular, these Markov chains
make local changes to the trees and suffer
from slow mixing when the data are high-
dimensional or the best-fitting trees are more
than a few layers deep. We present a novel
sampler for BART based on the Particle Gibbs
(PG) algorithm (Andrieu et al., 2010) and
a top-down particle filtering algorithm for
Bayesian decision trees (Lakshminarayanan
et al., 2013). Rather than making local
changes to individual trees, the PG sampler
proposes a complete tree to fit the residual.
Experiments show that the PG sampler out-
performs existing samplers in many settings.

1 Introduction

Ensembles of regression trees are at the heart of many
state-of-the-art approaches for nonparametric regres-
sion (Caruana and Niculescu-Mizil, 2006), and can be
broadly classified into two families: randomized inde-
pendent regression trees, wherein the trees are grown
independently and predictions are averaged to reduce
variance, and additive regression trees, wherein each

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

tree fits the residual not explained by the remainder of
the trees. In the former category are bagged decision
trees (Breiman, 1996), random forests (Breiman, 2001),
extremely randomized trees (Geurts et al., 2006), and
many others, while additive regression trees can be
further categorized into those that are fit in a serial
fashion, like gradient boosted regression trees (Fried-
man, 2001), and those fit in an iterative fashion, like
Bayesian additive regression trees (BART) (Chipman
et al., 2010) and additive groves (Sorokina et al., 2007).

Among additive approaches, BART is extremely pop-
ular and has been successfully applied to a wide vari-
ety of problems including protein-DNA binding, credit
risk modeling, automatic phishing/spam detection, and
drug discovery (Chipman et al., 2010). Additive re-
gression trees must be regularized to avoid overfitting
(Friedman, 2002): in BART, over-fitting is controlled
by a prior distribution preferring simpler tree struc-
tures and non-extreme predictions at leaves. At the
same time, the posterior distribution underlying BART
delivers a variety of inferential quantities beyond predic-
tions, including credible intervals for those predictions
as well as a measures of variable importance. At the
same time, BART has been shown to achieve predictive
performance comparable to random forests, boosted
regression trees, support vector machines, and neural
networks (Chipman et al., 2010).

The standard inference algorithm for BART is an iter-
ative Bayesian backfitting Markov Chain Monte Carlo
(MCMC) algorithm (Hastie et al., 2000). In particular,
the MCMC algorithm introduced by Chipman et al.
(2010) proposes local changes to individual trees. This
sampler can be computationally expensive for large
datasets, and so recent work on scaling BART to large
datasets (Pratola et al., 2013) considers using only a
subset of the moves proposed by Chipman et al. (2010).
However, this smaller collection of moves has been ob-
served to lead to poor mixing (Pratola, 2013) which
in turn produces an inaccurate approximation to the
posterior distribution. While a poorly mixing Markov
chain might produce a reasonable prediction in terms
of mean squared error, BART is often used in scenarios

Particle Gibbs for Bayesian Additive Regression Trees

where its users rely on posterior quantities, and so there
is a need for computationally efficient samplers that
mix well across a range of hyper-parameter settings.

In this work, we describe a novel sampler for BART
based on (1) the Particle Gibbs (PG) framework pro-
posed by Andrieu et al. (2010) and (2) the top-down
sequential Monte Carlo algorithm for Bayesian deci-
sion trees proposed by Lakshminarayanan et al. (2013).
Loosely speaking, PG is the particle version of the
Gibbs sampler where proposals from the exact condi-
tional distributions are replaced by conditional ver-
sions of a sequential Monte Carlo (SMC) algorithm.
The complete sampler follows the Bayesian backfitting
MCMC framework for BART proposed by Chipman
et al. (2010); the key difference is that trees are sam-
pled using PG instead of the local proposals used by
Chipman et al. (2010). Our sampler, which we re-
fer to as PG-BART, approximately samples complete
trees from the conditional distribution over a tree fit-
ting the residual. As the experiments bear out, the
PG-BART sampler explores the posterior distribution
more efficiently than samplers based on local moves.
Of course, one could easily consider non-local moves in
a Metropolis–Hastings (MH) scheme by proposing com-
plete trees from the tree prior, however these moves
would be rejected, leading to slow mixing, in high-
dimensional and large data settings. The PG-BART
sampler succeeds not only because non-local moves are
considered, but because those non-local moves have
high posterior probability. Another advantage of the
PG sampler is that it only requires one to be able to
sample from the prior and does not require evaluation
of tree prior in the acceptance ratio unlike (local) MH1—
hence PG can be computationally efficient in situations
where the tree prior is expensive (or impossible) to
compute, but relatively easier to sample from.

The paper is organized as follows: in section 2, we
review the BART model; in section 3, we review the
MCMC framework proposed by Chipman et al. (2010)
and describe the PG sampler in detail. In section 4,
we present experiments that compare the PG sampler
to existing samplers for BART.

2 Model and notation

In this section, we briefly review decision trees and
the BART model. We refer the reader to the paper
of Chipman et al. (2010) for further details about the
model. Our notation closely follows their’s, but also
borrows from Lakshminarayanan et al. (2013).

1The tree prior term cancels out in the MH acceptance
ratio if complete trees are sampled. However, sampling
complete trees from the tree prior would lead to very low
acceptance rates as discussed earlier.

2.1 Problem setup

We assume that the training data consist of N i.i.d. sam-
ples X = {xn}Nn=1, where xn ∈ RD, along with corre-
sponding labels Y = {yn}Nn=1, where yn ∈ R. We focus
only on the regression task in this paper, although the
PG sampler can also be used for classification by build-
ing on the work of Chipman et al. (2010) and Zhang
and Härdle (2010).

2.2 Decision tree

For our purposes, a decision tree is a hierarchical binary
partitioning of the input space with axis-aligned splits.
The structure of the decision tree is a finite, rooted,
strictly binary tree T, i.e., a finite collection of nodes
such that 1) every node η has exactly one parent node,
except for a distinguished root node ε which has no
parent, and 2) every node η is the parent of exactly
zero or two children nodes, called the left child η0 and
the right child η1. Denote the leaves of T (those nodes
without children) by leaves(T). Each node of the tree
η ∈ T is associated with a block Bη ⊂ RD of the input
space as follows: At the root, we have Bε = RD, while
each internal node η ∈ T \ leaves(T) with two children
represents a split of its parent’s block into two halves,
with κη ∈ {1, . . . , D} denoting the dimension of the
split, and τη denoting the location of the split. In
particular,

Bη0 = Bη ∩ {z ∈ RD : zκη ≤ τη} and

Bη1 = Bη ∩ {z ∈ RD : zκη > τη}. (1)

We call the tuple T = (T,κ, τ) a decision tree. Note
that the blocks associated with the leaves of the tree
form a partition of RD.

A decision tree used for regression is referred to as
a regression tree. In a regression tree, each leaf node
η ∈ leaves(T) is associated with a real-valued parameter
µη ∈ R. Let µ = {µη}η∈leaves(T) denote the collection
of all parameters. Given a tree T and a data point
x, let leafT (x) be the unique leaf node η ∈ leaves(T)
such that x ∈ Bη, and let g(· ; T ,µ) be the response
function associated with T and µ, given by

g(x; T ,µ) := µleafT (x). (2)

2.3 Likelihood specification for BART

BART is a sum-of-trees model, i.e., BART assumes that
the label y for an input x is generated by an additive
combination of m regression trees. More precisely,

y =

m∑
j=1

g(x; Tj ,µj) + e, (3)

Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh

where e ∼ N (0, σ2) is an independent Gaussian noise
term with zero mean and variance σ2. Hence, the
likelihood for a training instance is

`(y|{Tj ,µj}mj=1, σ
2,x) = N

(
y|

m∑
j=1

g(x; Tj ,µj), σ2
)
,

and the likelihood for the entire training dataset is

`(Y |{Tj ,µj}mj=1, σ
2,X) =

∏
n

`(yn|{Tj ,µj}mj=1, σ
2,xn).

2.4 Prior specification for BART

The parameters of the BART model are the noise
variance σ2 and the regression trees (Tj ,µj) for j =
1, . . . ,m. The conditional independencies in the prior
are captured by the factorization

p({Tj ,µj}mj=1, σ
2|X) = p(σ2)

m∏
j=1

p(µj |Tj)p(Tj |X).

The prior over decision trees p(Tj = {Tj , κj , τj}|X)
can be described by the following generative process
(Chipman et al., 2010; Lakshminarayanan et al., 2013):
Starting with a tree comprised only of a root node ε,
the tree is grown by deciding once for every node η
whether to 1) stop and make η a leaf, or 2) split, making
η an internal node, and add η0 and η1 as children. The
same stop/split decision is made for the children, and
their children, and so on. Let ρη be a binary indicator
variable for the event that η is split. Then every node
η is split independently with probability

p(ρη = 1) =
αs

(1 + depth(η))βs

× 1[valid split exists below η in X], (4)

where the indicator 1[...] forces the probability to be
zero when every possible split of η is invalid, i.e., one
of the children nodes contains no training data.2 Infor-
mally, the hyperparameters αs ∈ (0, 1) and βs ∈ [0,∞)
control the depth and number of nodes in the tree.
Higher values of αs lead to deeper trees while higher
values of βs lead to shallower trees.

In the event that a node η is split, the dimension κη
and location τη of the split are assumed to be drawn
independently from a uniform distribution over the set
of all valid splits of η. The decision tree prior is thus

p(T |X) =
∏

η∈T\leaves(T)

p(ρη = 1)U(κη)U(τη|κη)

×
∏

η∈leaves(T)

p(ρη = 0), (5)

2Note that p(ρη = 1) depends on X and the split dimen-
sions and locations at the ancestors of η in T due to the
indicator function for valid splits. We elide this dependence
to keep the notation simple.

where U(·) denotes the probability mass function of the
uniform distribution over dimensions that contain at
least one valid split, and U(·|κη) denotes the probability
density function of the uniform distribution over valid
split locations along dimension κη in block Bη.

Given a decision tree T , the parameters associated with
its leaves are independent and identically distributed
normal random variables, and so

p(µ|T) =
∏

η∈leaves(T)

N (µη|mµ, σ
2
µ). (6)

The mean mµ and variance σ2
µ hyperparameters are

set indirectly: Chipman et al. (2010) shift and rescale
the labels Y such that ymin = −0.5 and ymax = 0.5,
and set mµ = 0 and σµ = 0.5/k

√
m, where k > 0 is

an hyperparameter. This adjustment has the effect
of keeping individual node parameters µη small; the
higher the values of k and m, the greater the shrinkage
towards the mean mµ.

The prior p(σ2) over the noise variance is an inverse
gamma distribution. The hyperparameters ν and q
indirectly control the shape and rate of the inverse
gamma prior over σ2. Chipman et al. (2010) compute
an overestimate of the noise variance σ̂2, e.g., using the
least-squares variance or the unconditional variance of
Y , and, for a given shape parameter ν, set the rate
such that Pr(σ ≤ σ̂) = q, i.e., the qth quantile of the
prior over σ is located at σ̂.

Chipman et al. (2010) recommend the default values:
ν = 3, q = 0.9, k = 2,m = 200 and αs = 0.95, βs =
2.0. Unless otherwise specified, we use this default
hyperparameter setting in our experiments.

2.5 Sequential generative process for trees

Lakshminarayanan et al. (2013) present a sequential
generative process for the tree prior p(T |X), where
a tree T is generated by starting from an empty tree
T(0) and sampling a sequence T(1), T(2), . . . of partial
trees.3 This sequential representation is used as the
scaffolding for their SMC algorithm. Due to space
limitations, we can only briefly review the sequential
process. The interested reader should refer to the
paper by Lakshminarayanan et al. (2013): Let T(t) =
T(t),κ(t), τ(t), E(t) denote the partial tree at stage t,
where E(t) denotes the ordered set containing the list
of nodes eligible for expansion at stage t. At stage t,
the generative process samples T(t) from Prt(· | T(t−1))
as follows: the first element4 of E, say η, is popped
and is stochastically assigned to be an internal node or
a leaf node with probability given by (4). If η is chosen

3Note that T(t) denotes partial tree at stage t, whereas
Tj denotes the jth tree in the ensemble.

Particle Gibbs for Bayesian Additive Regression Trees

ε

(a) T(0): E(0) = {ε}

ε : x1 > 0.5

0 1

(b) T(1): E(1) = {0, 1}

ε : x1 > 0.5

0 1

(c) T(2): E(2) = {1}

ε : x1 > 0.5

0 1 : x2 > 0.3

10 11

(d) T(3): E(3) = {10, 11}

ε : x1 > 0.5

0 1 : x2 > 0.3

10 11

(e) T(6): E(6) = {}

Figure 1: Sequential generative process for decision trees: Nodes eligible for expansion are denoted by the ordered set E
and shaded in gray. At iteration 0, we start with the empty tree and E = {ε}. At iteration 1, we pop ε from E and assign
it to be an internal node with split dimension κε = 1 and split location τε = 0.5 and append the child nodes 0 and 1 to E.
At iteration 2, we pop 0 from E and set it to a leaf node. At iteration 3, we pop 1 from E and set it to an internal node,
split dimension κ1 = 2 and threshold τ1 = 0.3 and append the child nodes 10 and 11 to E. At iterations 4 and 5 (not
shown), we pop nodes 10 and 11 respectively and assign them to be leaf nodes. At iteration 6, E = {} and the process
terminates. By arranging the random variables ρ and κ, τ (if applicable) for each node in the order of expansion, the tree
can be encoded as a sequence.

to be an internal node, we sample the split dimension
κη and split location τη uniformly among the valid
splits, and append η0 and η1 to E. Thus, the tree is
expanded in a breadth-wise fashion and each node is
visited just once. The process terminates when E is
empty. Figure 1 presents a cartoon of the sequential
generative process.

3 Posterior inference for BART

In this section, we briefly review the MCMC framework
proposed in (Chipman et al., 2010), discuss limitations
of existing samplers and then present our PG sampler.

3.1 MCMC for BART

Given the likelihood and the prior, our goal is to com-
pute the posterior distribution

p({Tj ,µj}mj=1, σ
2|Y,X) ∝

`(Y |{Tj ,µj}mj=1, σ
2,X) p({Tj ,µj}mj=1, σ

2|X). (7)

Chipman et al. (2010) proposed a Bayesian backfitting
MCMC to sample from the BART posterior. At a
high level, the Bayesian backfitting MCMC is a Gibbs
sampler that loops through the trees, sampling each
tree Tj and associated parameters µj conditioned on
σ2 and the remaining trees and their associated param-
eters {Tj′ ,µj′}j′ 6=j , and samples σ2 conditioned on all

the trees and parameters {Tj ,µj}mj=1. Let T (i)
j , µ

(i)
j ,

and σ2(i) respectively denote the values of Tj , µj and
σ2 at the ith MCMC iteration. Sampling σ2 condi-
tioned on {Tj ,µj}mj=1 is straightforward due to conju-
gacy. To sample Tj ,µj conditioned on the other trees

4Lakshminarayanan et al. (2013) discuss a more general
version where more than one node may be expanded in
an iteration. We restrict our attention in this paper to
node-wise expansion: one node is expanded per iteration
and the nodes are expanded in a breadth-wise fashion.

{Tj′ ,µj′}j′ 6=j , we first sample Tj |{Tj′ ,µj′}j′ 6=j , σ2 and
then sample µj |Tj , {Tj′ ,µj′}j′ 6=j , σ2. (Note that µj is
integrated out while sampling Tj .) More precisely, we
compute the residual

Rj = Y −∑m
j′=1,j′ 6=j g(X; Tj′ , µj′). (8)

Using the residual R
(i)
j as the target, Chipman et al.

(2010) sample T (i)
j by proposing local changes to T (i−1)

j .
Finally, µj is sampled from a Gaussian distribution
conditioned on Tj , {Tj′ ,µj′}j′ 6=j , σ2. The procedure is
summarized in Algorithm 1.

3.2 Existing samplers for BART

To sample Tj , Chipman et al. (2010) use the MCMC al-
gorithm proposed by Chipman et al. (1998). This algo-
rithm, which we refer to as CGM. CGM is a Metropolis-
within-Gibbs sampler that randomly chooses one of the
following four moves: grow (which randomly chooses a
leaf node and splits it further into left and right chil-
dren), prune (which randomly chooses an internal node
where both the children are leaf nodes and prunes the
two leaf nodes, thereby making the internal node a leaf
node), change (which changes the decision rule at a
randomly chosen internal node), swap (which swaps
the decision rules at a parent-child pair where both the
parent and child are internal nodes). There are two
issues with the CGM sampler: (1) the CGM sampler
makes local changes to the tree, which is known to af-
fect mixing when computing the posterior over a single
decision tree (Wu et al., 2007). Chipman et al. (2010)
claim that the default hyper-parameter values encour-
age shallower trees and hence mixing is not affected
significantly. However, if one wishes to use BART on
large datasets where individual trees are likely to be
deeper, the CGM sampler might suffer from mixing is-
sues. (2) The change and swap moves in CGM sampler
are computationally expensive for large datasets that

Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh

Algorithm 1 Bayesian backfitting MCMC for posterior inference in BART

1: Inputs: Training data (X, Y), BART hyperparameters (ν, q, k,m, αs, βs)

2: Initialization: For all j, set T (0)
j = {T(0)

j = {ε}, τ (0)
j = κ

(0)
j = ∅} and sample µ

(0)
j

3: for i = 1 : max iter do
4: Sample σ2(i)|T (i−1)

1:m ,µ
(i−1)
1:m . sample from inverse gamma distribution

5: for j = 1 : m do

6: Compute residual R
(i)
j . using (8)

7: Sample T (i)
j |R

(i)
j , σ2(i), T (i−1)

j . using CGM, GrowPrune or PG

8: Sample µ
(i)
j |R

(i)
j , σ2(i), T (i)

j . sample from Gaussian distribution

involve deep trees (since they involve re-computation of
all likelihoods in the subtree below the top-most node
affected by the proposal). For computational efficiency,
Pratola et al. (2013) propose using only the grow and
prune moves; we will call this the GrowPrune sampler.
However, as we illustrate in section 4, the GrowPrune
sampler can inefficiently explore the posterior in scenar-
ios where there are multiple possible trees that explain
the observations equally well. In the next section, we
present a novel sampler that addresses both of these
concerns.

3.3 PG sampler for BART

Recall that Chipman et al. (2010) sample T (i)
j using

R
(i)
j as the target by proposing local changes to T (i−1)

j .
It is natural to ask if it is possible to sample a com-

plete tree T (i)
j rather than just local changes. Indeed,

this is possible by marrying the sequential representa-
tion of the tree proposed by Lakshminarayanan et al.
(2013) (see section 2.5) with the Particle Markov Chain
Monte Carlo (PMCMC) framework (Andrieu et al.,
2010) where an SMC algorithm (particle filter) is used
as a high-dimensional proposal for MCMC. The PG
sampler is implemented using the so-called conditional
SMC algorithm (instead of the Metropolis-Hastings
samplers described in Section 3.2) in line 7 of Algo-
rithm 1. At a high level, the conditional SMC algorithm
is similar to the SMC algorithm proposed by Lakshmi-
narayanan et al. (2013), except that one of the particles

is clamped to the current tree T (i−1)
j .

Before describing the PG sampler, we derive the con-
ditional posterior Tj |{Tj′ ,µj′}j′ 6=j , σ2, Y,X. Let N(η)
denote the set of data point indices n ∈ {1, . . . , N}
such that xn ∈ Bη. Slightly abusing the notation, let
RN(η) denote the vector containing residuals of data
points in node η. Given R := Y −∑j′ 6=j g(X; Tj′ , µj′),
it is easy to see that the conditional posterior over
Tj ,µj is given by

p(Tj ,µj |{Tj′ ,µj′}j′ 6=j , σ2, Y,X)

∝ p(Tj |X)
∏

η∈leaves(Tj)

∏
n∈N(η)

N (Rn|µη, σ2)N (µη|mµ, σ
2
µ).

Let π(Tj) denote the conditional posterior over Tj . Inte-
grating out µ and using (5) for p(Tj |X), the conditional
posterior π(Tj) is

π(Tj) = p(Tj |{Tj′ ,µj′}j′ 6=j , σ2, Y,X)

∝ p(Tj |X)
∏

η∈leaves(Tj)

p(RN(η)|σ2,mµ, σ
2
µ), (9)

where p(RN(η)|σ2,mµ, σ
2
µ) denotes the marginal likeli-

hood at a node η, given by

p(RN(η)|σ2,mµ, σ
2
µ)

=

∫
µη

∏
n∈N(η)

N (Rn|µη, σ2)N (µη|mµ, σ
2
µ)dµη. (10)

The goal is to sample from the (conditional) posterior
distribution π(Tj). Lakshminarayanan et al. (2013)
presented a top-down particle filtering algorithm that
approximates the posterior over decision trees. Since
this SMC algorithm can sample complete trees, it is
tempting to substitute an exact sample from π(Tj) with
an approximate sample from the particle filter. How-
ever, Andrieu et al. (2010) observed that this naive
approximation does not leave the joint posterior dis-
tribution (7) invariant, and so they proposed instead
to generate a sample using a modified version of the
SMC algorithm, which they called the conditional-SMC
algorithm, and demonstrated that this leaves the joint
distribution (7) invariant. (We refer the reader to the
paper by Andrieu et al. (2010) for further details about
the PMCMC framework.) By building off the top-
down particle filter for decision trees, we can define a
conditional-SMC algorithm for sampling from π(Tj).
The conditional-SMC algorithm is an MH kernel with
π(Tj) as its stationary distribution. To reduce clutter,
let T ∗ denote the old tree and T denote the tree we
wish we to sample. The conditional-SMC algorithm
samples T from a C-particle approximation of π(T),

which can be written as
∑C
c=1 w(c)δT (c) where T (c)

denotes the cth tree (particle) and the weights sum to
1, that is,

∑
c w(c) = 1.

Particle Gibbs for Bayesian Additive Regression Trees

SMC proposal: Each particle T (c) is the end product
of a sequence of partial trees T(0)(c), T(1)(c), T(2)(c), . . . ,
and the weight w(c) reflects how well the cth tree ex-
plains the residual R. One of the particles, say the
first particle, without loss of generality, is clamped to
the old tree T ∗ at all stages of the particle filter, i.e.,
T(t)(1) = T ∗(t). At stage t, the remaining C − 1 parti-
cles are sampled from the sequential generative process
Prt(· | T(t−1)(c)) described in section 2.5. Unlike state
space models where the length of the latent state se-
quence is fixed, the sampled decision tree sequences
may be of different length and could potentially be
deeper than the old tree T ∗. Hence, whenever E(t) = ∅,
we set Pr(t)(T(t)|T(t−1)) = δT(t−1)

, i.e., T(t) = T(t−1).
SMC weight update: Since the prior is used as the
proposal, the particle weight w(t)(c) is multiplicatively
updated with the ratio of the marginal likelihood of
T(t)(c) to the marginal likelihood of T(t−1)(c). The
marginal likelihood associated with a (partial) tree T
is a product of the marginal likelihoods associated with
the leaf nodes of T defined in (10). Like Lakshmi-
narayanan et al. (2013), we treat the eligible nodes E(t)

as leaf nodes while computing the marginal likelihood
for a partial tree T(t). Plugging in (10), the SMC weight
update is given by (11) in Algorithm 2.

Resampling: The resampling step in the conditional-
SMC algorithm is slightly different from the typical
SMC resampling step. Recall that the first particle is
always clamped to the old tree. The remaining C − 1
particles are resampled such that the probability of
choosing particle c is proportional to its weight w(t)(c).
We used multinomial resampling in our experiments,
although other resampling strategies are possible.

When none of the trees contain eligible nodes, the
conditional-SMC algorithm stops and returns a sam-
ple from the particle approximation. Without loss of
generality, we assume that the Cth particle is returned.
The PG sampler is summarized in Algorithm 2.

The computational complexity of the conditional-SMC
algorithm in Algorithm 2 is similar to that of the top-
down algorithm (Lakshminarayanan et al., 2013, §3.2).
Even though the PG sampler has a higher per-iteration
complexity in general compared to GrowPrune and
CGM samplers, it can mix faster since it can propose
a completely different tree that explains the data. The
GrowPrune sampler requires many iterations to explore
multiple modes (since a prune operation is likely to
be rejected around a mode). The CGM sampler can
change the decisions at internal nodes; however, it is
inefficient since a change in an internal node that leaves
any of the nodes in the subtree below empty will be
rejected. We demonstrate the competitive performance
of PG in the experimental section.

4 Experimental evaluation

In this section, we present experimental comparisons
between the PG sampler and existing samplers for
BART. Since the main contribution of this work is a
different inference algorithm for an existing model, we
just compare the efficiency of the inference algorithms
and do not compare to other models. BART has been
shown to demonstrate excellent prediction performance
compared to other popular black-box non-linear re-
gression approaches; we refer the interested reader to
Chipman et al. (2010).

We implemented all the samplers in Python and ran
experiments on the same desktop machine so that the
timing results are comparable. The scripts can be
downloaded from the authors’ webpages. We set the
number of particles C = 10 for computational efficiency
and max-stages = 5000, following Lakshminarayanan
et al. (2013), although the algorithm always terminated
much earlier.

4.1 Hypercube-D dataset

We investigate the performance of the samplers on a
dataset where there are multiple trees that explain the
residual (conditioned on other trees). This problem is
equivalent to posterior inference over a decision tree
where the labels are equal to the residual. Hence, we
generate a synthetic dataset where multiple trees are
consistent with the observed labels. Intuitively, a local
sampler can be expected to mix reasonably well when
the true posterior consists of shallow trees; however,
a local sampler will lead to an inefficient exploration
when the posterior consists of deep trees. Since the
depth of trees in the true posterior is at the heart of the
mixing issue, we create synthetic datasets where the
depth of trees in the true posterior can be controlled.

We generate the hypercube-D dataset as follows: for
each of the 2D vertices of [−1, 1]D, we sample 10 data
points. The x location of a data point is generated as
x = v+ ε where v is the vertex location and ε is a ran-
dom offset generated as ε ∼ N (0, 0.12ID). Each vertex
is associated with a different function value and the
function values are generated from N (0, 32). Finally
the observed label is generated as y = f + e where
f denotes the true function value at the vertex and
e ∼ N (0, 0.012). Figure 2 shows a sample hypercube-
2 dataset. As D increases, the number of trees that
explains the observations increases.

We fix m = 1, αs = 0.95 and set remaining BART
hyperparameters to the default values. Since the true
tree has 2D leaves, we set5 βs such that the expected

5The values of βs for D = 2, 3, 4, 5 and 7 are
1.0, 0.5, 0.4, 0.3 and 0.25 respectively.

Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh

Algorithm 2 Conditional-SMC algorithm used in the PG-BART sampler

1: Inputs: Training data: features X, ‘target’ R . R denotes residual in BART
2: Number of particles C
3: Old tree T ∗ (along with the partial tree sequence T ∗(0), T ∗(1), T ∗(2), . . .)
4: Initialize: For c = 1 : C, set T(0)(c) = E(0)(c) = {ε} and τ(0)(c) = κ(0)(c) = ∅
5: For c = 1 : C, set weights w(0)(c) = p(RN(ε)|σ2,mµ, σ

2
µ) and W(0) =

∑
c w(0)(c)

6: for t = 1 : max-stages do
7: Set T(t)(1) = T ∗(t) . clamp the first particle to the partial tree of T ∗ at stage t
8: for c = 2 : C do
9: Sample T(t)(c) from Pr(t)(· | T(t−1)(c)) where T(t)(c) := (T(t)(c),κ(t)(c), τ(t)(c), E(t)(c)) . section 2.5

10: for c = 1 : C do
11: . If E(t−1)(c) is non-empty, let η denote the node popped from E(t−1)(c).

12: Update weights:

w(t)(c) =

w(t−1)(c) if E(t−1)(c) is empty or η is stopped,

w(t−1)(c)

∏
η′=η0,η1 p(RN(η′)|σ2,mµ, σ

2
µ)

p(RN(η)|σ2,mµ, σ2
µ)

if η is split. (11)

13: Compute normalization: W(t) =
∑
c w(t)(c)

14: Normalize weights: (∀c)w(t)(c) = w(t)(c)/W(t)

15: Set j1 = 1 and for c = 2 : C, resample indices jc from
∑
c′ w(t)(c

′)δc′ . resample all particles except the
first

16: (∀c) T(t)(c)← T(t)(jc); w(t)(c)←W(t)/C
17: if (∀c)E(t)(c) = ∅ then exit for loop

return T(t)(C) = (T(t)(C),κ(t)(C), τ(t)(C)) . return a sample from the approximation
∑
c′ w(t)(c

′)δT(t)(c′) to
line 7 of Algorithm 1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

-3.193
2.640
1.278
-5.742

Figure 2: Hypercube-2 dataset: see main text for details.

number of leaves is roughly 2D. We run 2000 iterations
of MCMC. Figure 3 illustrates the posterior trace plots
for D = 4. (See supplemental material for additional
posterior trace plots.) We observe that PG converges
much faster to the posterior in terms of number of leaves
as well as the test MSE. We observe that GrowPrune
sampler tends to overestimate the number of leaves; the
low value of train MSE indicates that the GrowPrune
sampler is stuck close to a mode and is unable to explore
the true posterior. Pratola (2013) has reported similar
behavior of GrowPrune sampler on a different dataset
as well.

0 500 1000 1500 2000
−103

−102

−101
log-likelihood

0 500 1000 1500 2000
0

10

20

30

40

50

60
Mean # leaves

0 500 1000 1500 2000
0

100

101

102
Training MSE

CGM-MCMC
Grow Prune
PG

0 500 1000 1500 2000
0

1

2

3

4

5

6

7
Precision σ−2

0 500 1000 1500 2000
0

100

101

102
Test MSE

0 500 1000 1500 2000
−101

−100

0
Test log p(y|x)

Figure 3: Results on Hypercube-4 dataset.

We compare the algorithms by computing effective sam-
ple size (ESS). ESS is a measure of how well the chain
mixes and is frequently used to assess performance of
MCMC algorithms; we compute ESS using R-CODA
(Plummer et al., 2006). We discard the first 1000 itera-
tions as burn-in and use the remaining 1000 iterations
to compute ESS. Since the per iteration cost of gener-
ating a sample differs across samplers, we additionally
report ESS per unit time. The ESS (computed using
log-likelihood values) and ESS per second (ESS/s) val-

Particle Gibbs for Bayesian Additive Regression Trees

D CGM GrowPrune PG
2 751.66 473.57 259.11
3 762.96 285.2 666.71
4 14.01 11.76 686.79
5 2.92 1.35 667.27
7 1.16 1.78 422.96

Table 1: Comparison of ESS for CGM, GrowPrune and
PG samplers on Hypercube-D dataset.

D CGM GrowPrune PG
2 157.67 114.81 7.69
3 93.01 26.94 11.025
4 0.961 0.569 5.394
5 0.130 0.071 1.673
7 0.027 0.039 0.273

Table 2: Comparison of ESS/s (ESS per second) for CGM,
GrowPrune and PG samplers on Hypercube-D dataset.

ues are shown in Tables 1 and 2 respectively. When the
true tree is shallow (D = 2 and D = 3), we observe that
CGM sampler mixes well and is computationally effi-
cient. However, as the depth of the true tree increases
(D = 4, 5, 7), PG achieves much higher ESS and ESS/s
compared to CGM and GrowPrune samplers.

4.2 Real world datasets

In this experiment, we study the effect of the data
dimensionality on mixing. Even when the trees are
shallow, the number of trees consistent with the labels
increases as the data dimensionality increases. Using
the default BART prior (which promotes shallower
trees), we compare the performance of the samplers on
real world datasets of varying dimensionality.

We consider the CaliforniaHouses, YearPredictionMSD
and CTslices datasets used by Johnson and Zhang
(2013). For each dataset, there are three training sets,
each of which contains 2000 data points, and a single
test set. The dataset characteristics are summarized
in Table 3.

Dataset Ntrain Ntest D
CaliforniaHouses 2000 5000 6

YearPredictionMSD 2000 51630 90
CTslices 2000 24564 384

Table 3: Characteristics of datasets.

We run each sampler using the three training datasets
and report average ESS and ESS/s. All three samplers
achieve very similar MSE to those reported by Johnson
and Zhang (2013). The average number of leaves in the

posterior trees was found to be small and very similar
for all the samplers. Tables 4 and 5 respectively present
results comparing ESS and ESS/s of the different sam-
plers. As the data dimensionality increases, we observe
that PG outperforms existing samplers.

Dataset CGM GrowPrune PG
CaliforniaHouses 18.956 34.849 76.819

YearPredictionMSD 29.215 21.656 76.766
CTslices 2.511 5.025 11.838

Table 4: Comparison of ESS for CGM, GrowPrune and
PG samplers on real world datasets.

Dataset CGM GrowPrune PG
×10−3 ×10−3 ×10−3

CaliforniaHouses 1.967 48.799 16.743
YearPredictionMSD 2.018 7.029 14.070

CTslices 0.080 0.615 2.115

Table 5: Comparison of ESS/s for CGM, GrowPrune and
PG samplers on real world datasets.

5 Discussion

We have presented a novel PG sampler for BART. Un-
like existing samplers which make local moves, PG can
propose complete trees. Experimental results confirm
that PG dramatically increases mixing when the true
posterior consists of deep trees or when the data di-
mensionality is high. While we have presented PG only
for the BART model, it is applicable to extensions of
BART that use a different likelihood model as well. PG
can also be used along with other priors for decision
trees, e.g., those of Denison et al. (1998), Wu et al.
(2007) and Lakshminarayanan et al. (2014). Backward
simulation (Lindsten and Schön, 2013) and ancestral
sampling (Lindsten et al., 2012) have been shown to sig-
nificantly improve mixing of PG for state-space models.
Extending these ideas to PG-BART is a challenging
and interesting future direction.

Acknowledgments

BL gratefully acknowledges generous funding from
the Gatsby Charitable Foundation. This research
was carried out in part while DMR held a Research
Fellowship at Emmanuel College, Cambridge, with
funding also from a Newton International Fellowship
through the Royal Society. YWT’s research leading to
these results has received funding from EPSRC (grant
EP/K009362/1) and the ERC under the EU’s FP7
Programme (grant agreement no. 617411).

Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh

References

C. Andrieu, A. Doucet, and R. Holenstein. Particle
Markov chain Monte Carlo methods. J. R. Stat. Soc.
Ser. B Stat. Methodol., 72(3):269–342, 2010.

L. Breiman. Bagging predictors. Mach. Learn., 24(2):
123–140, 1996.

L. Breiman. Random forests. Mach. Learn., 45(1):5–32,
2001.

R. Caruana and A. Niculescu-Mizil. An empirical com-
parison of supervised learning algorithms. In Proc.
Int. Conf. Mach. Learn. (ICML), 2006.

H. A. Chipman, E. I. George, and R. E. McCulloch.
Bayesian CART model search. J. Am. Stat. Assoc.,
pages 935–948, 1998.

H. A. Chipman, E. I. George, and R. E. McCulloch.
BART: Bayesian additive regression trees. Ann. Appl.
Stat., 4(1):266–298, 2010.

D. G. T. Denison, B. K. Mallick, and A. F. M. Smith.
A Bayesian CART algorithm. Biometrika, 85(2):
363–377, 1998.

J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist, 29(5):1189–
1232, 2001.

J. H. Friedman. Stochastic gradient boosting. Compu-
tational Statistics & Data Analysis, 38(4):367–378,
2002.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely
randomized trees. Mach. Learn., 63(1):3–42, 2006.

T. Hastie, R. Tibshirani, et al. Bayesian backfitting
(with comments and a rejoinder by the authors).
Statistical Science, 15(3):196–223, 2000.

R. Johnson and T. Zhang. Learning nonlinear func-
tions using regularized greedy forest. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 36(5):942-954, 2013.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Top-
down particle filtering for Bayesian decision trees. In
Proc. Int. Conf. Mach. Learn. (ICML), 2013.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh.
Mondrian forests: Efficient online random forests. In
Adv. Neural Information Proc. Systems, 2014.

F. Lindsten and T. B. Schön. Backward simulation
methods for monte carlo statistical inference. Foun-
dations and Trends in Machine Learning, 6(1):1–143,
2013.

F. Lindsten, T. Schön, and M. I. Jordan. Ancestor sam-
pling for particle Gibbs. In Adv. Neural Information
Proc. Systems, pages 2591–2599, 2012.

M. Plummer, N. Best, K. Cowles, and K. Vines.
CODA: Convergence diagnosis and output analysis
for MCMC. R news, 6(1):7–11, 2006.

M. Pratola. Efficient Metropolis-Hastings proposal
mechanisms for Bayesian regression tree models.
arXiv preprint arXiv:1312.1895, 2013.

M. T. Pratola, H. A. Chipman, J. R. Gattiker, D. M.
Higdon, R. McCulloch, and W. N. Rust. Parallel
Bayesian additive regression trees. arXiv preprint
arXiv:1309.1906, 2013.

D. Sorokina, R. Caruana, and M. Riedewald. Additive
groves of regression trees. In Machine Learning:
ECML 2007, pages 323–334. Springer, 2007.

Y. Wu, H. Tjelmeland, and M. West. Bayesian CART:
Prior specification and posterior simulation. J. Com-
put. Graph. Stat., 16(1):44–66, 2007.

J. L. Zhang and W. K. Härdle. The Bayesian additive
classification tree applied to credit risk modelling.
Computational Statistics & Data Analysis, 54(5):
1197–1205, 2010.

Particle Gibbs for Bayesian Additive Regression Trees

Supplementary material

A Results on hypercube−D dataset

0 500 1000 1500 2000
−103

−102

−101
log-likelihood

0 500 1000 1500 2000
0

2

4

6

8

10

12
Mean # leaves

0 500 1000 1500 2000
0

100

101
Training MSE

CGM-MCMC
Grow Prune
PG

0 500 1000 1500 2000
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Precision σ−2

0 500 1000 1500 2000
0

100

101
Test MSE

0 500 1000 1500 2000
−101

−100

0
Test log p(y|x)

Figure 4: Results on Hypercube-2 dataset.

0 500 1000 1500 2000
−103

−102

−101

−100
log-likelihood

0 500 1000 1500 2000
0

5

10

15

20

25
Mean # leaves

0 500 1000 1500 2000
0

100

101

102
Training MSE

CGM-MCMC
Grow Prune
PG

0 500 1000 1500 2000
0

1

2

3

4

5

6
Precision σ−2

0 500 1000 1500 2000
0

100

101

102
Test MSE

0 500 1000 1500 2000
−101

−100

0
Test log p(y|x)

Figure 5: Results on Hypercube-3 dataset.

	Introduction
	Model and notation
	Problem setup
	Decision tree
	Likelihood specification for BART
	Prior specification for BART
	Sequential generative process for trees

	Posterior inference for BART
	MCMC for BART
	Existing samplers for BART
	PG sampler for BART

	Experimental evaluation
	Hypercube-D dataset
	Real world datasets

	Discussion
	Results on hypercube-D dataset

