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ABSTRACT

Supervised latent Dirichlet allocation (Supervised-LDA) [1] is a
probabilistic topic model that can be used for classification. One of
the advantages of Supervised-LDA over unsupervised LDA is that
it can potentially learn topics that are inline with the class label.
The variational Bayes algorithm proposed in [1] for inference in
Supervised-LDA suffers from high computational complexity. To
address this issue, we develop computationally efficient inference
methods for Supervised-LDA. Specifically, we present collapsed
variational Bayes and MAP inference for parameter estimation in
Supervised-LDA. Additionally, we present computationally efficient
inference methods to determine the label of unlabeled data. We pro-
vide an empirical evaluation of the classification performance and
computational complexity (training as well as classification run-
time) of different inference methods for the Supervised-LDA model
and a classifier based on probabilistic latent semantic analysis.

Index Terms— Supervised Latent Dirichlet Allocation, Bayesian
inference, Classification

1. INTRODUCTION

Latent Dirichlet allocation (LDA) [2] is an unsupervised latent vari-
able model originally applied in the field of document modeling due
to its ability to decompose documents into topics and uncover topics
decomposition into words in a concise manner. As an unsupervised
model, LDA can be used to perform dimensionality reduction by
mapping the high dimensional bag-of-words representation to lower
dimensional topic representation.

Recently, there has been a growing interest in supervised exten-
sions of LDA for applications such as image classification [1, 3, 4],
document classification [5–7], movie rating prediction [8], named
entity mining [7, 9], and credit attribution in multi-labeled corpora
[10]. In this paper, we focus on the supervised LDA model intro-
duced in [1] (henceforth referred to as Supervised-LDA). The mo-
tivations for supervised topic models are multi fold. Supervised
topic models can help in identifying topics specific to a particular
class. In addition, probabilistic models are flexible, allowing simul-
taneous modeling of various types of information, for instance, the
Supervised-LDA model can be readily extended to handle multiple-
labels and additional information such as annotations or tags.

Despite the ability of topic models to produce a concise repre-
sentation, parameter estimation in topic models remains a challeng-
ing task. In most cases, exact inference is intractable and hence,
approximate inference methods are required. Inference methods for
topic models can be broadly categorized into sampling based ap-
proaches and deterministic approximations. Recent work stresses
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the importance of properly adapting the priors (hyperparameters)
in LDA-based models [11, 12]. This can be addressed by optimiz-
ing the prior parameterization instead of using a fixed prior, a task
which increases the computational complexity associated with in-
ference in LDA-based models. Understanding the tradeoff between
computational complexity and classification performance of the dif-
ferent inference methods for Supervised-LDA is key to identifying
the most suitable inference algorithm for a particular application.
While we present results only for the Supervised-LDA model, we
believe that similar trends will hold for other labeled/discriminative
topic models as well. For an excellent comparison of different in-
ference methods such as variational Bayes (VB), collapsed Gibbs
sampling (CGS), collapsed variational Bayes (CVB) and maximum
a-posteriori (MAP) inference for (unsupervised) LDA, we refer to
[12].

Previous work in the Supervised-LDA model employed VB for
inference [1]. We derive the MAP and CVB inference solutions
for Supervised-LDA and study the effect of the choice of inference
method for Supervised-LDA. While the extension of [12] to the su-
pervised case might appear straightforward at first sight, several new
aspects arise in the supervised case:

• Model based classification:The classification stage is com-
pletely new relative to LDA and requires the development of
efficient inference techniques for classification of test docu-
ments.

• Classification accuracy: Supervised-LDA is evaluated in
terms of classification accuracy rather than perplexity. It is
not obvious which inference method leads to the best classi-
fication accuracy.

• Train vs Test computational complexity:While the training
complexity of Supervised-LDA is similar to that of LDA,
model based classification approach for Supervised-LDA re-
quires significant additional computation in the test stage than
LDA, and can be computationally intensive when the number
of classes is large. We introduce a new classification approach
to solve this problem.

In this work, we address the following question: Which inference
method provides a good trade-off between classification accuracy
and computational complexity for the Supervised-LDA model?

2. PROBLEM STATEMENT

The training data is assumed to be a collection ofM documents
along with their corresponding labels. The collection ofNi words
for the ith document is denoted bywi = {wi1, . . . , wiNi

} and
the label associated with theith document is denoted byyi.
The entire corpus can then be represented by(W,Y) where



Table 1. List of symbols
C Number of classes
M Number of training documents
Ni Number of words inith training document
K Number of topics
V Vocabulary size
W All the words in the training documents
wi 1×Ni vector containing the words

in documenti
zi 1×Ni vector containing topic assignments

of corresponding words inwi

Y Labels of the training documents
θ K ×M matrix whoseith column represents

the ‘topic-multinomial’ parameter for the
ith training document

φ K × V matrix whereφkv denotes the
probability ofvth word givenkth topic

α C ×K matrix whereαc,· denotes the
Dirichlet prior for classc

β 1× V vector which denotes the Dirichlet
prior for each row ofφ

Y = (y1, y2, . . . , yM ) and W = (w1,w2, . . . ,wM ). We
assume that each document belongs to one ofC classes, i.e.,
yi ∈ {1, 2, . . . , C}. We refer the reader to Table 1 for an ex-
planation of the symbols used. The task is to learn a model for
(W,Y) so that we are able to classify a new test documentwt.
Next, we discuss the details of the Supervised-LDA model used in
this paper.

3. DESCRIPTION OF THE MODEL – SUPERVISED LDA

Supervised-LDA [1] is a natural extension to the original LDA
model [2]. The graphical model for Supervised-LDA is shown in
Fig. 1 and the generative process is explained in Algorithm 1.

Algorithm 1 Generative process

for k = 1 to K do
Drawφk,· ∼ Dirichlet(β)

end for
for i = 1 toM do

Drawyi ∼ P (y), Ni

Drawθi ∼ Dirichlet(αyi,·)
for j = 1 toNi do

Drawzij ∼ Discrete(θi)
Drawwij ∼ Discrete(φzij ,·)

end for
end for

The key difference between Supervised-LDA and LDA is that
for each training document, we first draw the labely and then
choose a class-dependent Dirichlet prior for the topic proportions.
The Dirichlet prior over the document specific topic proportions is
represented as aC × K matrix α, where thecth row of α matrix
corresponds to the Dirichlet prior for classc. Note that we consider
bothα andβ (defined in Table 1) to be asymmetric Dirichlet priors.
The number of words in each document,Ni, is an ancillary variable
and we assume that it is independent of the classc. The Supervised-

α β φk· K

yi θi zij wij Ni M

Fig. 1. Graphical model for Supervised-LDA

LDA model may also be viewed as a special case of models such
as Labeled-LDA model [10] and Dirichlet-Multinomial Regression
model [13].

4. PARAMETER ESTIMATION IN SUPERVISED-LDA

Parameter estimation in Supervised-LDA is based on the maximum
marginal likelihood principle. The marginal likelihood of the data,
i.e., the likelihood of(W,Y) conditioned on the hyperparameters,
is given by

p(W,Y|α,β) =

∫

θ

∫

φ

∑

Z

p(W,Y,Z,θ,φ|α,β) dθdφ,

whereZ corresponds to the topic assignments of all the words in
the training corpus. The above integral is intractable. Determin-
istic approaches (such as VB) replace the integral with a tractable
lower bound. Sampling based approaches (such as CGS) approxi-
mate this integral (expectation) using an empirical (sample-based)
average. The MAP estimation procedure approximates the integral
by using point estimates ofφ andθ (Z can be marginalized out)1.

To the best of our knowledge, only VB inference has been ex-
plored earlier for the Supervised-LDA model [1]. We derive the
update equations for MAP and CVB0 inference methods for the
Supervised-LDA model. Not surprisingly, if we set all theY to be
equal (to1) in our update equations, we recover the update equations
for (unsupervised) LDA.

4.1. MAP estimation

The MAP estimate ofθ andφ is given by

θ
∗,φ∗ = argmax

θ,φ
p(W,θ,Y,φ|α,β) (1)

As shown in Appendix A, the objective function for MAP is given
by

log p(W,θ,Y,φ|α,β)

=

M
∑

i=1

(

V
∑

v=1

[

nvi log(φ
⊤
θ)vi

]

+ logP (yi)

+
K
∑

k=1

(αyi,k − 1) log θik − logB(αyi,·)
)

+

K
∑

k=1

(

V
∑

v=1

(βv − 1) log φkv − logB(β)
)

, (2)

1See Table 1 in [14] for a list of inference methods in graphicalmodels.



whereB(·) denotes the multinomial beta function. Parameter esti-
mation is performed by maximizing (2) w.r.t.θ, φ, α, andβ in a
coordinate ascent fashion. The updates forθik andφkl are given by,

θik ∝ max(gik, 0), φkv ∝ max(hkv, 0) (3)

where
∑

k θik = 1,
∑

v φkv = 1 and

gik = θ̂ik

V
∑

v=1

[

φkv
nvi

∑K
k′=1 φk′v θ̂ik′

]

+ (αyi,k − 1),

hkv = φ̂kv

M
∑

i=1

[

θik
nvi

∑K
k′=1 θik′ φ̂k′v

]

+ (βv − 1). (4)

Note thatθ̂, φ̂ denote the values ofθ,φ from the previous iteration.

4.1.1. Connection to NNMF

Note that (2) resembles the objective function of KL-divergence
minimizing non-negative matrix factorization (NNMF) [15], with
additional regularization terms onθ,φ. The equivalence between
EM updates for Probabilistic Latent Semantic Analysis (PLSA) [16]
and KL-divergence minimizing NNMF updates in the unregularized
case (i.e.,α = 1,β = 1 in (2)), has been observed in [17]. In the
EM algorithm for MAP solution in LDA [12], the E-step involves
the computation ofγwjk = P (zij |wij , θi) and the M-step involves
maximization w.r.t.θ andφ. To ensure thatγwjk ’s are valid prob-
abilities, [12] impose the constraintα > 1,β > 1 in their MAP
solution. Even ifα < 1,β < 1, γwjk can be valid probabilities if
gik ≥ 0 andhkl ≥ 0 in (4). Another subtle difference exists. In (2),
the hyperparameters are optimized using Maximum likelihood (ML)
estimation for Dirichlet distribution whereas in the MAP solution
by [12], the hyperparameters are optimized using ML for Polya dis-
tribution. The Polya distribution accounts for the number of words
in the document (and hence the number of topic variables), whereas
the Dirichlet distribution estimatesα using theθ′is and hence, does
not account for document length in the hyperparameter estimation.

4.2. Collapsed Variational Bayes (CVB0)

In this section, we present the collapsed variational updates for
Supervised-LDA. As in LDA, the collapsed variational distribution
is assumed to factorize as follows2 [12,14]:

q(Z,θ,φ) = q(θ,φ|Z)
∏

i

∏

j

q(zij), (5)

whereq(zij) is a multinomial distribution with parameters given by
q(zij = k) = γijk. The log marginal likelihood is lower bounded
by the negative collapsed variational free energy [14,18], i.e.,

log p(W,Y|α,β) ≥ Eq[log p(W,Y|α,β)] +H[q], (6)

where the RHS denotes the negative collapsed variational free en-
ergy. Maximizing the zeroth order Taylor approximation to the neg-
ative collapsed variational free energy (hence the name CVB0), the
updates forγijk are obtained as

γijk ∝ (n
\ij
ki + αyi,k)

n
\ij
kv + βv

n
\ij
k· + 1⊤β

(7)

2To keep the notation uncluttered, we do not mention the variational pa-
rameters explicitly.

wheren\ij
kv =

∑

(i′,j′)/∈(i,j),w
i′j′=v γi′j′k , n\ij

ki =
∑

j′ 6=j γij′k,

andn
\ij
k· =

∑

(i′,j′)/∈(i,j) γi′j′k. Further details are available in
Appendix B.

Note that in VB, a fully factorized variational distribution is as-
sumed, i.e.,q(Z,θ,φ) =

∏

i q(θi)
∏

ij q(zij)
∏

k q(φk·) and pa-
rameter estimation is performed by coordinate ascent on the negative
variational free energy [1]. Upon convergence, the parameter esti-
mates are computed usinĝφkv ∝ (nkv + βv), where

∑

v φ̂kv = 1.
Note that while MAP is inherently parallelizable i.e., theθi’s for the
documents can be updated in parallel, the collapsed inference meth-
ods are not inherently parallelizable.

5. CLASSIFICATION

For a test documentwt, model-based classification is made using
the MAP rule, i.e.,

y∗
t = argmax

yt
p(yt|wt) = argmax

yt
p(yt,wt). (8)

5.1. Classification using VB

VB can be used to classify a test document as follows [1]

y∗
t = argmax

c
p(wt, yt = c).

Since the RHS is intractable, they compare the variational lower
bounds forlog p(wt, yt = c). The variational lower bound is com-
puted as follows:

log p(wt, yt = c) ≥ Eq[log p(wt, yt = c)] +H[q], (9)

whereq denotes the fully factorized variational distributionq(θt, zt) =
q(θt)

∏Nt

j=1 q(ztj). This approach requires recomputation of the
variational lower bound for each possible value ofyt, and can be
computationally demanding whenC is large. Next, we present the
classification rules for MAP and CVB0.

5.2. Classification using MAP

We expressp(yt|wt) as follows

y∗
t = argmax

yt

∫

θt

p(θt|wt)p(yt|θt) dθt. (10)

Since the integral in (10) cannot be computed in closed-form, we
propose to approximate it as follows

y∗
t ≈ argmax

yt
p(yt|θ

∗
t )

∫

θt

p(θt|wt) dθt (11)

= argmax
yt

p(yt|θ
∗
t ), (12)

where,

θ∗t = argmax
θt

p(θt|wt), (13)

= argmax
θt

log p(wt|θt) + log p(θt). (14)

The approximation in (11) may be interpreted as a zeroth order ver-
sion of Laplace approximation of the integral in (10) aroundθ∗t . Ad-
ditionally, obtaining a singleθ∗t (rather thanC) enables us to think of
Supervised-LDA as a supervised dimensionality reduction method.



Note thatθ∗t can be obtained by using an optimization similar to
(2). Sinceyt is unobserved for test data, we havelog p(θt) which is
a mixture of Dirichlet distributions, instead oflog p(θi|yi) used in
training (2). We treatyt as a latent variable and derive an EM algo-
rithm to computeθ∗t . The update rule is given byθtk ∝ max(gtk, 0),
where

∑

k θtk = 1, and

gtk =

V
∑

l=1

[

nlt
φklθ̂t(k)

∑K
u=1 φulθ̂t(u)

]

+

C
∑

c=1

P (yt=c|θ̂t)(αck − 1). (15)

Note thatθ̂t denotes the value from the previous iteration. Note the
similarity of (15) to (4). Sinceyt is not observed, the(αck−1) term
is weighted byP (yt=c|θ̂t).

5.3. Classification using CVB0

We consider two classification rules for CVB0. First, we classifyy∗
t

using

y∗
t = argmax

c
p(wt, yt = c).

Since the RHS is intractable, we use the collapsed variational lower
bound forlog p(wt, yt = c). The collapsed variational lower bound
is computed using (9), where the expectation is w.r.t the collapsed
variational distribution,q(θt, zt) = q(θt|zt)

∏Nt

j=1 q(ztj). We refer
to this classifier as CVB0-1. Note that this can be computationally
intensive whenC is large. We introduce a second approach to alle-
viate this problem,

γtjk ∝ (n
\ij
kt +

C
∑

c=1

P (yt = c|n̂·t) αc,k) φ̂kv, (16)

wheren\tj
kt =

∑

j′ 6=j γtj′k, n̂·t denotes the value ofn·t from the

previous iteration and̂φ denotes the estimate ofφ computed from the
training data. We will refer to the second approximation as CVB0-2.

6. EXPERIMENTAL RESULTS

In the first experiment, we compare the classification accuracy and
runtime achieved by MAP, CVB0, VB and PLSA for the Supervised-
LDA model. We implemented CGS and observed that the runtime
associated with CGS is significantly larger than the runtime asso-
ciated with the other methods. In CGS, we need to compute the
topic probabilities for each occurrence of a word (and not just every
unique occurrence as in the other methods) as well as draw multiple
topic samples before estimating the hyperparameters. Hence, we do
not include the results obtained using CGS here.

6.1. Implementation details

All the methods were implemented in Matlab. We used similar vec-
torization techniques in all of our implementations. We plan to make
our code publicly available in the near future.

6.1.1. Hyperparameter optimization for MAP

We restrictedα ≥ 1, but did not impose any constraint onβ. In
our experiments, we used a log-barrier method with Newton update
equations [19] to compute the optimumα, β in (2).

6.1.2.Hyperparameter optimization for CVB0

We used the fixed point updates in [20] to compute the ML estimates
of Polya distribution.

6.1.3. Hyperparameter optimization for VB

As done by [1], we optimizeα, but setβ to 1.

6.1.4. PLSA-NN

As observed by [21], PLSA is equivalent to LDA when all the hyper-
parameters are set to1. Hence, we used the same update equations
as that of the MAP estimation, except that the hyperparameters are
held constant at1. Once theθ’s have been obtained for the training as
well as the test data, we use ak-nearest neighbor (k-NN) classifier
with Euclidean distance metric for classifying the test documents.
Following [22], we set the number of nearest neighbors,k = 10.

6.2. Datasets

In this section, we describe the datasets used in our experiments.
LabelMe:The first image classification dataset was used in [3]. The
dataset consists of 1600 images from theLabelMetoolbox. There
are totally eight classes. For each image, the Scale-invariant fea-
ture transform (SIFT) vectors are computed and then the SIFT vec-
tors are clustered to obtain the codebook (size=158) representation.
Each image contains 2401 SIFT vectors. The pre-processed dataset
in bag-of-words format was made publicly available by [3]. More
details regarding the dataset are available in [3]. We used three ran-
dom train-test data splits for cross validation, each time dividing the
data into 800 training documents and 800 test documents.
MSRC-v2:We evaluate our algorithms on a subset of the MSRC-v2
dataset3. We used images belonging to eight groups (i.e., class la-
bels), namely,‘book’, ‘grass, cow’, ‘tree, grass,
sky’, ‘bike, building’, ‘sign’, ‘water, boat’,
‘aeroplane, grass, sky’, ‘road, building’ re-
sulting in a total of 240 images. We divided each image into8 × 8
blocks and we cluster the blocks usingk-means algorithm to create
a codebook of size 160. Using this codebook, we create the bag-
of-words representation for each image. Again, we use 50% of the
dataset for training and 50% of the dataset for testing. While we
realize that it might be possible to use more sophisticated features,
our goal here is to compare inference methods for classification
rather than find good feature vector representations. Note that quite
some overlap exists between the classes themselves.

6.3. Simulation details

We vary the number of topics and report the classification accuracy
and runtime in each case. Note that, in practice, we are interested
only in the performance at the optimalK (chosen based on a valida-
tion set) for each method. For each train-test data split, we try three
random initializations and report the best classification accuracy and
the total runtime. The total runtime is the sum of the runtimes for
each random initialization, which is the sum of the time for train-
ing and the time for testing. We compute the mean and standard
deviation of the results based on the 3 random train-test splits. The
error bars in our graphs denote the variation amongst 3 random train-
test splits for cross-validation. We train the model till the fractional
change in log likelihood, given byabs[(llnew− llold)/llnew], is less

3http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Fig. 2. LabelMe dataset:Comparison of classification accuracy ob-
tained using MAP, CVB0-1, CVB0-2, VB and PLSA-NN.
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Fig. 3. MSRC-v2 dataset:Comparison of classification accuracy
obtained using MAP, CVB0-1, CVB0-2, VB and PLSA-NN.

than a threshold (10−6 in our experiments), with an additional limit
on the maximum number of iterations (300 in our experiments).

6.4. Effect of the inference method on classification accuracy

The classification accuracy comparison is shown in Fig. 2 and Fig. 3
for the LabelMe and MSRC-v2 datasets respectively. We can ob-
serve that MAP provides comparable performance to VB, CVB0 in
terms of classification accuracy in the LabelMe dataset. However, in
the MSRC-v2 dataset, CVB0 outperforms MAP and performs quite
similar to VB. The CVB0-2 classifier provides comparable perfor-
mance to CVB0-1 classifier.

6.5. Computational complexity

The runtime comparison for the LabelMe and MSRC-v2 datasets are
shown in Fig. 4 and Fig. 5 respectively. We observe that MAP pro-
vides considerable advantage in terms of runtime. The CVB0-2 clas-
sifier is significantly faster than CVB0-1. We observe the trend MAP
< CVB0-2< CVB0-1< VB. To gain further insight, we consider
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Fig. 4. LabelMe dataset:Comparison of run time of MAP, CVB0-1,
CVB0-2, VB and PLSA-NN.
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Fig. 5. MSRC-v2 dataset:Comparison of run time of MAP, CVB0-
1, CVB0-2, VB and PLSA-NN.

the computational complexity of the updates and the implementa-
tion aspects. During the classification stage, CVB0-2 and MAP are
roughly O(C) times faster than VB and CVB0-1. The computa-
tional complexity in the training stage for Supervised-LDA is similar
to that of LDA (see Section 5 in [12] for a related discussion). Let
U =

∑

i Ui, whereUi = |{v ∈ {1, 2, . . . , V }, nvi 6= 0}|, i.e.,Ui

denotes the number of unique words in theith document. Note that
usuallyU < VM . LetN =

∑

i Ni, whereNi denotes the number
of words in theith document, as defined in Table 1. The training
complexity per iteration isO(KU) for MAP, CVB0 and VB and
O(KN) for CGS. As mentioned earlier, MAP updates for different
documents can be parallelized while the collapsed inference meth-
ods such as CVB and CGS are not inherently parallelizable. VB is
slower than CVB0-1 due to expensive digamma computations. In
our experiments (not reported here), we have observed that CGS is
slower than VB due to the large number of iterations required.

The computational complexity of PLSA and MAP seems to
be comparable in these datasets. However, for classification using
PLSA, we need to compute the nearest neighbor for the test data,
which can be computationally intensive for large scale applications.



7. CONCLUSION

We presented MAP and CVB0 inference methods for the Supervised-
LDA model. We introduced a computationally efficient classifica-
tion algorithm for MAP and CVB0 that is scalable for datasets
involving large number of classes. Additionally, this classification
algorithm allows us to use Supervised-LDA as a supervised dimen-
sionality reduction tool. We provided an empirical comparison of
the classification accuracy and runtime of MAP, CVB0 to VB. The
results indicate that, with proper hyperparameter tuning, CVB0 and
VB can yield similar classification performance, while MAP yields
a slightly lower performance. However, MAP is computationally
very efficient and can provide speed-ups of over an order of magni-
tude compared to VB and CVB0. Based on our results, we advocate
CVB0 parameter estimation with the CVB0-2 classifier for the
Supervised-LDA model, since it provides a good tradeoff between
classification accuracy and run time. Future work will explore the
extension of our inference methods to more complex topic models
that can handle annotations and multiple labels.
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A. DERIVATION OF MAP OBJECTIVE FUNCTION

Based on the structure of the graphical model, we have

p(W,θ,Y,φ|α,β) = p(φ|β)
M
∏

i=1

p(wi, θi, yi|α,φ). (17)

Next, we derive the expressions for each term on the RHS of (17).
Let zi denote the respective topic assignments for each word in the
vectorwi. For each document, we can marginalize out all possible
topic assignments, i.e.,

p(wi, θi, yi|α,φ) =
(

∑

zi

P (wi|zi,φ)P (zi|θi)
)

p(θi|yi,α)P (yi).

The first term in the RHS of the above equation can be simplified as

∑

zi

P (wi|zi,φ)P (zi|θi) = exp(

V
∑

v=1

nvi log(φ
⊤
θ)vi), (18)

wherenvi denotes the number of times wordv occurs in theith

training document. Using the fact thatp(θi|yi,α) andp(φk,·|β) are
Dirichlet distributions, we obtain (2).

B. DERIVATION OF CVB0 UPDATES

The RHS of (6) can be expanded as follows

Eq(Z)[Eq(θ,φ|Z)[log p(W,Y,Z,θ,φ|α,β)] +H[q(θ,φ|Z)]] +H[q(Z)].

Maximizing the above expression w.r.tγijk, we obtain

γijk ∝ exp(Eq(Z\ij)[log(n
\ij
ki + αyi,k) + log(n

\ij
kv + βv)

− log(n
\ij
k· + 1

⊤
β)])

where
∑

k γijk = 1. Using the zeroth order Taylor approximation
in the above expectations [12], we obtain (7).


