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Abstract

The need for consistent treatment of uncer-
tainty has recently triggered increased interest
in probabilistic deep learning methods. How-
ever, most current approaches have severe lim-
itations when it comes to inference, since many
of these models do not even permit to evalu-
ate exact data likelihoods. Sum-product net-
works (SPNs), on the other hand, are an ex-
cellent architecture in that regard, as they al-
low to efficiently evaluate likelihoods, as well
as arbitrary marginalization and conditioning
tasks. Nevertheless, SPNs have not been
fully explored as serious deep learning models,
likely due to their special structural require-
ments, which complicate learning. In this pa-
per, we make a drastic simplification and use
random SPN structures which are trained in a
“classical deep learning manner”, i.e. employ-
ing automatic differentiation, SGD, and GPU
support. The resulting models, called RAT-
SPNs, yield prediction results comparable to
deep neural networks, while still being inter-
pretable as generative model and maintaining
well-calibrated uncertainties. This property
makes them highly robust under missing input
features and enables them to naturally detect
outliers and peculiar samples.

1 INTRODUCTION

Uncertainty matters. An intelligent system applied in the
real world should both be able to deal with uncertain in-
puts, as well as express its uncertainty over outputs. Es-
pecially the latter is a crucial point in automatic decision-
making processes, such as medical diagnosis and plan-
ning systems for autonomous agents. Therefore, it is

no surprise that probabilistic approaches have recently
gained great momentum in deep learning, having led to
a variety of innovative probabilistic models such as vari-
ational autoencoders (VAEs) [14], deep generative mod-
els [27], generative adversarial nets (GANs) [11], neu-
ral auto-regressive density estimators (NADEs) [15], and
Pixel-CNNs/RNNs [33]. However, most of these proba-
bilistic deep learning systems have limited capabilities
when it comes to inference.

Implicit probabilistic models like GANs, even when suc-
cessful in capturing the data distribution, do not allow to
evaluate the likelihood of a test sample. Similar prob-
lems arise in deep generative models and VAEs, which
typically employ a jointly trained inference network to
infer the posterior over a latent variable space. While
these techniques mark a milestone in variational learn-
ing, inference in these models and – ironically – also
their inference networks is limited to drawing samples,
forcing users to retreat to Monte Carlo estimates. Auto-
regressive density estimators like NADEs and Pixel-
CNNs/RNNs somewhat alleviate these limitations, as
they permit exact and efficient evaluation of model like-
lihoods. Moreover, they permit certain marginalization
and conditioning tasks, as long as the task is consistent
with the variable ordering assumed in the model. In-
ference tasks not consistent with this variables ordering,
however, remain intractable. Uria et al. [32] address this
problem by training an ensemble of NADEs with shared
network structure. This approach, however, introduces
the delicate problem of approximately training a super-
exponential ensemble of NADEs. Thus, auto-regressive
models still fall short when fully fledged inference is re-
quired.

To this end, sum-product networks (SPNs) [25] are a
promising remedy, as they are a class of probabilistic
model which permits exact and efficient inference. More
precisely, SPNs are able to compute any marginalization
and conditioning query in time linear of the model’s rep-
resentation size. Nevertheless, although SPNs can be de-



scribed in a nutshell as “deep mixture models” [21], they
have received rather limited attention in the deep learn-
ing community, despite their attractive inference prop-
erties. We conjecture that there are three reasons why
SPNs have been under-used in deep learning so far.

First, the structure of SPNs needs to obey certain con-
straints, requiring either careful structure design by hand
or learning the structure from data [6, 9, 20, 28, 34, 1,
31]. These structural requirements are somewhat op-
posed to the usual homogeneous model structures em-
ployed in deep learning, i.e. combining modules like ma-
trix multiplication and element-wise non-linearities in
an almost unconstrained way. Second, the parameter
learning schemes proposed so far are usually inspired
by graphical models [25, 36, 21] or tailored to SPNs
[8]. This peculiar learning style probably hindered a
wide application of SPNs in the connectionist approach
so far, which typically relies on automatic differentiation
and SGD. Third, there seems to be a folklore that SPNs
are “somewhat weak function approximators”, i.e. it is
widely believed that SPNs are significantly inferior to
solve prediction tasks to an extent we expect from deep
neural networks. Indeed, in [17], a class of distribu-
tions was identified which can be tractably represented
by a neural net, but not by an SPN. However, as also
mentioned in [17], this example is a somewhat academic
one, and we should not jump to conclusion concerning
SPNs’ fitness in practical problems. Furthermore, the
notion of SPNs used here was a restricted one, i.e. us-
ing uni-variate leaves, and the example could actually be
circumvented by extending SPNs to multi-variate leaves
[24]. In that way, the tractable representation of the neg-
tive example in [17] could (trivially) by incorporated in
the SPN framework. In general, SPNs inherit univer-
sal approximation properties from mixture models, as a
mixture model is simply a “shallow” SPN with a single
sum node. Consequently, SPNs are able to approximate
any prediction function via probabilistic inference in an
asymptotic sense.

In this paper, we investigate the fitness of SPNs as deep
learning models from a practical point of view. To this
end, we introduce a particularly simple way to con-
struct SPNs, waiving the necessity for structure learn-
ing and simplifying their use as connectionist model.
These SPNs are obtained by first constructing a ran-
dom region graph [6, 20] laying out the overall net-
work structure, and subsequently populating the region
graph with tensors of SPN nodes. This architecture –
which we call Random Tensorized SPNs (RAT-SPNs) – is
naturally implemented in deep learning frameworks like
as TensorFlow [7] and easily optimized end-to-end us-
ing automatic differentiation, SGD, and automatic GPU-
parallelization. To avoid overfitting, we adopt the well-

known dropout heuristic [29], which yields an elegant
probabilistic interpretation in our models as marginaliza-
tion of missing features (dropout at inputs) and as injec-
tion of discrete noise (dropout at sum nodes). We trained
RAT-SPNs on several real-world classification data sets,
showing that their prediction performances are compara-
ble to traditional deep neural networks. At the same time,
RAT-SPNs maintain a complete joint distribution over
both inputs and outputs, which allows us to treat uncer-
tainty in a consistent manner. We show that RAT-SPNs
are dramatically more robust in the presence of missing
features than neural networks. Furthermore, we demon-
strate that RAT-SPNs also provide well-calibrated uncer-
tainty estimates over their inputs, i.e., the model “knows
what it does not know”. This property can be naturally
exploited for anomaly and out-of-domain detection.

The paper is organized as follows. Section 2 reviews
SPNs and required background. In section 3, we intro-
duce RAT-SPNs and discuss implementation and train-
ing. Experimental results are presented in section 4 and
section 5 concludes the paper.

2 RELATED WORK

We denote random variables (RVs) by upper-case letters,
e.g. X , Y , and their values by corresponding lower-case
letters, e.g. x, y. Similarly, we denote sets of RVs by
upper-case boldface letters, e.g. X, Y and their com-
bined values by corresponding lower-case letters, e.g. x,
y. An SPN S over X is a probabilistic model defined via
a directed acyclic graph (DAG) containing three types
of nodes: input distributions, sums and products. All
leaves of the SPN are distribution functions over some
subset Y ⊆ X. Inner nodes are either weighted sums
or products, denoted by S and P, respectively, i.e., S =∑

N∈ch(S) wS,NN and P =
∏

N∈ch(P) N, where ch(N)
denotes the children of N. The sum weights wS,N are as-
sumed to be non-negative and normalized, i.e.,wS,N ≥ 0,∑

N wS,N = 1.

The scope of an input distribution N is defined as the
set of RVs Y for which N is a distribution function,
i.e. sc(N) := Y. The scope of an inner (sum or
product) node N is recursively defined as sc(N) =⋃

N′∈ch(N) sc(N
′). To allow efficient inference, SPNs

should satisfy two structure constraints [5, 25], namely
completeness and decomposability. An SPN is com-
plete if for each sum S it holds that sc(N′) = sc(N′′),
for all N′,N′′ ∈ ch(S). An SPN is decomposable if
it holds for each product P that sc(N′) ∩ sc(N′′) = ∅,
for all N′ 6= N′′ ∈ ch(P). In that way, all nodes in an
SPN recursively define a distribution over their respec-
tive scopes: the leaves are distributions by definition,
sum nodes are mixtures of their child distributions, and



products are factorized distributions, i.e., assuming (con-
ditional) independence among the scopes of their chil-
dren.

Besides representing probability distributions, the cru-
cial advantage of SPNs is that they allow efficient infer-
ence: In particular, any marginalization task reduces to
the corresponding marginalizations at the leaves (each
leaf marginalizing only over its scope), and evaluat-
ing the internal nodes in a bottom-up pass [24]. Thus,
marginalization in SPNs follows essentially the same
procedure as evaluating the likelihood of a sample – both
scale linearly in the SPN’s representation size. Condi-
tioning is tackled in a similar manner.

Learning the parameters of SPNs, i.e. the sum weights
and the parameters of input distributions, can be ad-
dressed in various ways. By interpreting the sum
nodes as discrete latent variables [25, 37, 21], SPNs can
be trained using the classical expectation-maximization
(EM) algorithm [21]. Zhao et al. [38] derived a concave-
convex procedure, which interestingly coincides with the
EM updates for sum-weights. Moreover, SPN parame-
ters can be treated in the Bayesian framework, as pro-
posed in [26, 36, 31]. Trapp et al. [30] introduced a
safe semi-supervised learning scheme for discriminative
and generative parameter learning, providing guarantees
for the performance in the semi-supervised case. Vergari
et al. [35] employed SPNs as probabilistic autoencoders
and unsupervised representation learners. The structure
of SPNs can be crafted by hand [25, 22] or learned from
data. Most structure learners [28, 34, 1, 18] are variations
of the divide-and-conquer scheme known as LearnSPN
[9]. This schemed recursively splits the data via clus-
tering (determining sum nodes) and independence tests
(determining product nodes).

In general, most approaches to learning SPNs are moti-
vated by techniques borrowed from the graphical model
literature. However, from their definition it is evident that
SPNs can also be interpreted as a special kind of neural
networks. In this paper, we aim to follow through this
interpretation and investigate how SPNs perform when
treated as connectionist model. To this end, we make a
drastic simplification by simply picking a scalable ran-
dom structure and optimizing its parameters in a deep
learning manner.

3 RANDOM TENSORIZED
SUM-PRODUCT NETWORKS

In order to construct random-and-tensorized SPNs (RAT-
SPNs) we use a region graph [25, 6, 20] as an abstract
representation of the network structure. Given a set of
RVs X, a region R is defined as any non-empty sub-

Algorithm 1 Construct SPN from Region Graph
1: procedure CONSTRUCTSPN(R, C, S, I)
2: Make empty SPN
3: for R ∈ R do
4: if R is a leaf region then
5: Equip R with I distribution nodes
6: else if R is the root region then
7: Equip R with C sum nodes
8: else
9: Equip R with S sum nodes

10: for P = {R1,R2} ∈ R do
11: Let NR be the nodes for region R
12: for N1 ∈ NR1 ,N2 ∈ NR2 do
13: Introduce product P = N1 × N2

14: Let P be a child for each N ∈ NR1∪R2

15: return SPN

set of X. Given any region R, a K-partition P of R
is a collection of K non-empty, non-overlapping sub-
sets R1, . . . ,RK of R, whose union is again R, i.e.,
P = {R1, . . . ,RK}, ∀k : Rk 6= ∅, ∀k 6= l : Rk ∩Rl =
∅,

⋃
k Rk = X. In this paper, we consider only 2-

partitions, which causes all product nodes in our SPNs to
have exactly two children. This assumption, frequently
made in the SPN literature, simplifies SPN design and
seems not to impair performance.

A region graph R over X is a DAG whose nodes are re-
gions and partitions such that i) X is a region in R and
has no parents (root region), ii) all other regions have at
least one parent, iii) all children of regions are partitions
and all children of partitions are regions (i.e.,R is bipar-
tite), iv) if P is a child of R, then

⋃
R′∈P R′ = R and

v) if R is a child of P , then R ∈ P . From this definition
it follows that a region graph dictates a hierarchical par-
tition of the overall scope X. We denote regions which
have no child partitions as leaf regions.

Given a region graph, we can construct a corresponding
SPN, as illustrated in Algorithm 1. In this paper we as-
sume a classification problem with C classes (for density
estimation we simply set C = 1), where each class con-
ditional distributions corresponds to a root of the RAT-
SPN, i.e. the kth root represents p(X |C = k). By mul-
tiplying the SPN roots with a prior p(C), we get a full
joint distribution p(X, C). Further, I is the number of
input distributions per leaf region, and S is the number
of sum nodes in regions, which are neither leaf nor root
regions. It is easy to verify that Algorithm 1 always leads
to a complete and decomposable SPN.

In this paper we construct random regions graphs, with
the simple procedure depicted in Algorithm 2. We ran-
domly divide the root region into two sub-regions of



Figure 1: Example RAT-SPN over 7 RVs {X1 . . . X7}, using parameters C = 3, D = 2, R = 2, S = 2, and I = 2 in
Algorithm 2 and Algorithm 1.

Algorithm 2 Random Region Graph
1: procedure RANDOMREGIONGRAPH(X, D,R)
2: Create an empty region graphR
3: Insert X inR
4: for r = 1 . . . R do
5: SPLIT(R,X, D)

1: procedure SPLIT(R,R, D)
2: Draw balanced partition P = {R1,R2} of R
3: Insert R1,R2 inR
4: Insert P inR
5: if D > 1 then
6: if |R1| > 1 then SPLIT(R,R1, D − 1)

7: if |R2| > 1 then SPLIT(R,R2, D − 1)

equal size and proceed recursively down to depth D, re-
sulting in an SPN of depth 2D. This recursive splitting
mechanism is repeated R times. Figure 1 shows an ex-
ample SPN with C = 3, S = 2, and I = 3, follow-
ing Algorithm 2 and subsequently Algorithm 1. Note
that this construction scheme yields SPNs where input
distributions, sums, and products can be naturally orga-
nized in alternating layers. Similar to classical multilayer
perceptrons (MLPs), each layer takes inputs from its di-
rectly preceding layer only. Unlike MLPs, however, lay-
ers in RAT-SPNs are connected block-wise sparsely in a
random fashion. Thus, layers in MLPs and RAT-SPNs
are hardly comparable; however, we suggest to under-
stand each pair of sum and product layer to be roughly
corresponding to one layer in an MLP: sum layers play

the role of (block-wise sparse) matrix multiplication and
product layers as non-linearities (or, more precisely, bi-
linearities of their inputs). The input layer, containing
the SPN’s leaf distributions, can be interpreted as a non-
linear feature extractors.

3.1 TRAINING AND IMPLEMENTATION

Let X = {(x1, y1), . . . , (xN , yN )} be a training set of
inputs xn and class labels yn. Furthermore, let Sc be the
cth output of the RAT-SPN and w all SPN parameters.
We train RAT-SPNs by minimizing the objective

O(w) = λCE(w) + (1− λ) nLL(w), (1)

where CE(w) is the cross-entropy

CE(w) = − 1

N

∑
n

log
Syn(xn)∑
y′ Sy′(xn)

(2)

and nLL(w) is the normalized negative log-likelihood

nLL(w) = − 1

N |X|
∑
n

logSyn
. (3)

When setting λ = 1, we purely optimize cross-entropy
(discriminative setting), while for λ = 0 we perform
maximum likelihood training (generative setting). For
0 < λ < 1, we have a continuum of hybrid objectives,
trading off the generative and discriminative character of
the model.

We implemented RAT-SPNs in Python/TensorFlow,
where the nodes of a region are represented by a ma-
trix with rows corresponding to samples in a mini-batch



(containing 100 samples throughout our experiments)
and columns corresponding to the number of distribu-
tions in the region (either I , S or C). All computation
are performed in the log-domain, using the well known
log-sum-exp trick, readily provided in Tensorflow. Sum-
weights, which we require to be non-negative and nor-
malized, are re-parameterized via log-softmax layers.
Product tensors are implemented by taking outer prod-
ucts (actually sums in the log-domain) of the two matri-
ces below, realized by broadcasting. Throughout our ex-
periments, we used Adam [13] in its default settings. As
input distributions, we used Gaussian distributions with
isotropic covariances, i.e. each input distribution further
decomposes into a product of single dimensional Gaus-
sians. We tried to optimize the variances jointly with
the means which, however, delivered worse results than
merely setting all variances uniformly to 1. While RAT-
SPNs are implemented and trained in a seemingless way,
they still yield hundreds of tensors. This, together with
performing computations in the log-domain, causes that
RAT-SPNs are an order of magnitude slower than ReLU-
MLPs of similar sizes. This disadvantage is mainly an
effect of the simplicity of our implementation, just em-
ploying native Tensorflow operations and a few dozens
of python code. The advantage of this implementation,
however, is that combinations of RAT-SPNs with other
deep learning methods can be done in a simple plug and
play manner. Moreover, we are confident that with suffi-
cient engineering effort RAT-SPNs could be trained and
run at comparable speed as MLPs.

3.2 PROBABILISTIC DROPOUT

The size of RAT-SPNs can be easily controlled via the
structural parameters D, R, S and I . RAT-SPNs with
many parameters, however, tend to overfit just like regu-
lar neural networks, which requires regularization. One
of the classical techniques that boosted deep learning
models is the well-known dropout heuristic [29], setting
inputs and/or hidden units to zero with a certain probabil-
ity p, and rescaling the remaining units by 1

p . In the fol-
lowing we modify the dropout heuristic for RAT-SPNs,
exploiting their probabilistic nature.

3.2.1 Dropout at Inputs: Marginalizing out Inputs

Dropout at inputs essentially marks input features as
missing at random. In the probabilistic paradigm,
we would simply marginalize over these missing fea-
tures. Fortunately, this is an easy exercise in SPNs, as
we only need to set the distributions corresponding to
the dropped-out features to 1. As we operate in the
log-domain, this means to set the corresponding log-
distribution nodes to 0. This is in fact quite similar to

standard dropout, except that we are not compensating
by 1

p , and blocks of units are dropped out (i.e., all log-
distributions whose scope corresponds to a missing input
feature are jointly set to 0).

3.2.2 Dropout at Sums: Injection of Discrete Noise

As discussed in [25, 37, 21], sum nodes in SPNs can be
interpreted as marginalized latent variables, akin to the
latent variable interpretation in mixture models. In par-
ticular, [21] introduced so-called augmented SPNs which
explicitly incorporate these latent variables in the SPN
structure. The augmentation introduces indicator nodes
representing the states of the latent variables, which can
switch the children of sum nodes on or off by connecting
them via an additional product. This mechanism estab-
lishes the explicit interpretation of sum children as con-
ditional distributions.

In RAT-SPNs, we can equally well interpret a whole re-
gion as a single latent variable, and the weights of each
sum node in this region as the conditional distribution
of this variable. Indeed, the argumentation in [21] also
holds when introducing a set of indicators for a single la-
tent variable which is shared by all sum nodes in one re-
gion. While the latent variables are not observed, we can
employ a simple probabilistic version of dropout, by in-
troducing artificial observations for them. For example,
if the sum nodes in a particular region have K children
(i.e. the corresponding variable Z has K states), then we
could introduce artificial information that Z assumes a
state in some subset of {1, . . . ,K}. By doing this for
each latent variable in the network, we essentially se-
lect a small sub-structure of the whole SPN to explain
the data – this argument is very similar to the original
dropout proposal [29]. Implementing dropout at sum-
layers is again straightforward: we select a subset of all
product nodes which are connected to the sums in one re-
gion and set them to 0 (actually −∞ in the log-domain).

4 EXPERIMENTS

4.1 EXPLORING THE CAPACITY OF RAT-SPNS

In our first experiment, we aim to empirically investigate
the capacity of RAT-SPNs, by simply trying to overfit
data with various model sizes. To this end, we fit RAT-
SPNs on MNIST train data, using every combination of
split depth D ∈ {1, 2, 3, 4}, number of split repetitions
R ∈ {10, 20, 40, 80} and number of distributions per re-
gion S = I ∈ {5, 10, 20, 40}. In this paper, we fol-
low a data-agnostic setting, i.e. we deliberately do not
exploit the neighborhood correlations present in images.
Consequently, our models will perform the same for any
permutation of pixels. The natural baselines in the data-
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Figure 2: Capacity study by overfitting on MNIST for
RAT-SPNs and MLPs (ReLU). The y-axis the training
accuracy after 200 epochs, as a function of the number of
parameters. The ’depth’ refers to the number of hidden
layers in MLP and to split depth D in RAT-SPNs. (Best
viewed in color).

agnostic setting are MLPs, where we take ReLU acti-
vations for the hidden units and linear activations for
the output layer. We ran MLPs with every combination
of number of layers in {1, 2, 3, 4} and number of hid-
den units in {100, 250, 500, 1000, 2000}. For both RAT-
SPNs and MLPs, we used Adam with its default param-
eters to optimize cross-entropy. Figure 2 summarizes the
training accuracy of both models after 200 epochs as a
function of the number of parameters in the respective
model. As one can see see, RAT-SPNs can scale to mil-
lions of parameters, and furthermore, they are easily able
to overfit the MNIST training set to the same extent as
MLPs. For numbers of layers 2, 3, 4 it seems that RAT-
SPNs are suited slightly better to fit the data. This is in
fact an artifact of SGD optimization: MLPs still jitter
around 100% during the last epochs, while the accuracy
of RAT-SPNs remains stable.

These overfitting results give evidence that RAT-SPNs
are capacity-wise at least as powerful as ReLU-MLPs. In
the next experiment, we investigated whether RAT-SPNs
are also on par with MLPs concerning generalization on
classification tasks. Subsequently, we show that RAT-
SPNs exhibit superior performance when dealing with
missing features and are able to identify outliers reliably.

RAT-SPN MLP vMLP

A
cc
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y

MNIST 98.19 98.32 98.09
(8.5M) (2.64M) (5.28M)

F-MNIST 89.52 90.81 89.81
(0.65M) (9.28M) (1.07M)

20-NG 47.8 49.05 48.81
(0.37M) (0.31M) (0.16M)

C
ro

ss
-E

nt
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py

MNIST 0.0852 0.0874 0.0974
(17M) (0.82M) (0.22M)

F-MNIST 0.3525 0.2965 0.325
(0.65M) (0.82M) (0.29M)

20-NG 1.6954 1.6180 1.6263
(1.63M) (0.22M) (0.22M)

Table 1: Classification results for MNIST, fashion
MNIST (F-MNIST) and 20 News Groups (20-NG) using
RAT-SPNs, MLPs and ’Vanilla MLPs’ (vMLP, trained
without Xavier-initialization and batch normalization).
Best test values for accuracy and Cross-Entropy are re-
ported, as well as the corresponding number of parame-
ters in the model (in parenthesis).

4.2 GENERALIZATION OF RAT-SPNS

When trained without regularization, RAT-SPNs achieve
less than 97% on the test set of MNIST, which is rather
inferior even for data-agnostic models. Therefore, we
trained them with our probabilistic dropout variant as in-
troduced in section 3.2. We cross-validated D ∈ {2, 3},
R ∈ {20, 40} and number of distributions per region
S = I ∈ {10, 20, 30, 40}, dropout rates for inputs in
{1.0, 0.75, 0.5, 0.25} and dropout rates for sum-layers in
{1.0, 0.75, 0.5, 0.25}. A dropout rate of p means that a
fraction of p features is kept on average.

For comparison, we trained ReLU-MLPs with number
of hidden layers in {1, 2, 3, 4}, number of hidden units
in {100, 250, 500, 1000, 2000}, input dropout rates in
{1.0, 0.75, 0.5, 0.25} and dropout rates for hidden layers
in {1.0, 0.75, 0.5, 0.25}. No dropout was applied to the
output layer. We trained MLPs in two variants, namely
’vanilla’ (vMLPs), meaning that besides dropout no ad-
ditional optimization tricks were applied, and a vari-
ant (MLP) also employing Xavier-initialization [10] and
batch normalization [12]. While the latter should be con-
sidered the default variant to train MLPs, note that help-
ful heuristics like Xavier-initialization and batch normal-
ization have evolved over decades, while similar tech-
niques for RAT-SPNs are not available. Thus, vMLPs
might serve as a fairer comparison.

We trained on MNIST, fashion-MNIST1 and 20 News
1Fashion-MNIST is a dataset in the same format as MNIST,



860 840 820 800 780 760
test log-likelihood

92

94

96

98
te

st
 a

cc
ur

ac
y

0.2

0.4

0.6

0.8

te
st

 c
ro

ss
-e

nt
ro

py

=
1.

0

=
0.

8

=
0.

6

=
0.

4

=
0.

2

=
0.

0

Figure 3: A RAT-SPN is a joint model over both inputs
and classes and allows to evaluate the likelihood over the
inputs. By varying λ we can control the trade-off be-
tween generative behavior (measured in log-likelihood)
and discriminative behavior (measured in accuracy or
cross-entropy).

Groups (20-NG). The 20-NG dataset is a text corpus of
18846 news documents that belong to 20 different news
groups or classes. We first split the news documents into
13568 instances for training, 1508 for validation, and
3770 for testing. The text was pre-processed into a bag-
of-words representation by keeping the top 1000 most
relevant words according to their Tf-IDF. Then, 50 top-
ics were extracted using LDA [2] and employed as the
new feature representation for classification.

Table 1 summarizes the classification accuracy and
cross-entropy on the test set, as well as the size of the
models in terms of number of parameters. As one can
see, RAT-SPNs are on par with MLPs, and only slightly
outperformed in terms of traditional classification tasks.
However, as shown in the following sections, the real po-
tential of probabilistic deep learning models actually lies
beyond classical benchmark results.

4.3 HYBRID POST-TRAINING

Recall that SPNs define a full joint distribution over both
inputs X and class variable C, and that our objective (1)
with trade-off parameter λ allows us to trade off between
cross-entropy (λ = 1) and log-likelihood (λ = 0). When
λ = 1, we cannot hope that the distribution over X is
faithful to the underlying data. By setting λ < 1, how-
ever, we can obtain interesting hybrid models, yielding
both a discriminative and generative behavior. To this
end, we use the RAT-SPN with highest validation accu-
racy from the previous experiment, and post-train it for
another 20 epochs, for various values of 0 ≤ λ ≤ 1. This
yields a natural trade-off between the log-likelihood over

but with the task of classifying fashion items rather than digits;
github.com/zalandoresearch/fashion-mnist
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Figure 4: Classification accuracy [%] of hybrid RAT-
SPNs and MLP as a function of percentage p of missing
features, varying from 0.0 (no features missing) to 0.99
(99% of features missing).

inputs X and predictive performance regarding classifi-
cation accuracy/cross-entropy. Figure 3 shows this trade-
off. As one can see, by sacrificing little predictive perfor-
mance, we can drastically improve the generative charac-
ter of SPNs. The benefit of this is shown in the following.

4.4 SPNS ARE ROBUST UNDER MISSING
FEATURES

When input features in X are missing at random, the
probabilistic paradigm dictates to marginalize these [16].
As SPNs allow marginalization simply and efficiently,
we expect that RAT-SPNs should be able to robustly treat
missing features, especially the “more generative” they
are (corresponding to smaller λ). To this end, we ran-
domly discard a fraction of p pixels in the MNIST test
data – independently for each sample – and classify the
data using RAT-SPNs trained with various values of λ,
marginalizing missing features. This is the same proce-
dure we used for probabilistic dropout during training,
cf. section 3.2. Similarly, we might expect MLPs to per-
form robustly under missing features during test time, by
applying (classical) dropout.

Figure 4 summarizes the classification results when vary-
ing p between 0.0 and 0.99. As one can see, RAT-SPNs
with smaller λ are more stable under even large fractions
of missing features. A particularly interesting choice is
λ = 0.2: here the corresponding RAT-SPN starts with an
accuracy 97.58% for no missing features and degrades
very gracefully: for a large fraction of missing features
(> 60%) the advantage over MLPs is dramatic. Note
that this result is consistent with other hybrid learning
schemes applied in graphical models [23]. Purely dis-
criminative RAT-SPNs and MLPs are roughly on par
concerning robustness against missing features.



Figure 5: Outliers (samples with log-likelihood < −2000) and inliers (samples with log-likelihood > −850) on
MNIST (top) and fashion-MNIST (bottom) for RAT-SPN post-trained with λ = 0.2. Samples on the left half were
classified correctly, samples on the right half were classified incorrectly. The upper rows are outliers, the lower rows
are inliers, for MNIST and fashion-MNIST, respectively. The predictions for wrong MNIST digits are (depicted as
correct→predicted): (top-row) 4→2, 7→3, 5→3, 2→9, 4→7, 5→3, 4→6, 6→2, 9→3, 2→6; (bottom-row) 4→9,
2→8, 4→2, 9→4, 2→7, 2→7, 2→8, 6→0, 4→9, 9→8.

4.5 SPNS KNOW WHAT THEY DON’T KNOW

Besides being robust against missing features, an impor-
tant feature of (hybrid) generative models is that they
are naturally able to detect outliers and peculiarities by
monitoring the likelihood over inputs X. To this end, we
evaluated the likelihoods on the test set for both MNIST
and fashion-MNIST, using the respective RAT-SPN post-
trained with λ = 0.2. We selected two thresholds of
−2000 and −850 by visual inspection of the likelihood
histograms. These two values determine roughly the
5% percentiles of most likely/unlikely samples. In both
these sets, we selected – following the original order in
MNIST – the first 10 samples which are correctly and
incorrectly classified, respectively. Thus yields 4 groups
of 10 samples each: outlier/correct, outlier/incorrect, in-
lier/correct, inlier/incorrect.

These samples are shown in Figure 5. Albeit qualitative,
these results are interesting: One can visually confirm
that the outlier MNIST digits are indeed peculiar, both
the correctly and the incorrectly classified ones. Among
the outlier/incorrect group are 2 digits (top row, right, 3rd
and 8th), which are not recognizable to the authors either.
The inlier/incorrect digits can be interpreted, to a certain
extent, as the ambiguous ones, e.g. two ’2’s (bottom row,
right, 5th and 6th) are similar to ’7’ (and indeed classified
as such), or a digit (bottom row, right, 8th) which could
either be ’6’ or ’0’. For fashion-MNIST, one can clearly
see that the outliers are all low in contrast and fill the
whole image. In one images (top row, right, 9th) the
background has not been removed.

For a more objective analysis, we use a variant of trans-
fer testing recently proposed by Bradshaw et al. [3]. This
technique is quite simple: we feed a classifier trained
on one domain (e.g. MNIST) with examples from a re-
lated but different domain, e.g. street view house num-

bers (SVHN) [19] or the handwritten digits of SEMEION
[4], converted to MNIST format (28 × 28 pixels, grey
scale). While we would expect that most classifiers per-
form poorly in such setting, an important property of an
AI system would be to be aware that it is confronted with
out-of-domain data and be able to communicate this ei-
ther to other parts of the system or a human user. While
Bradshaw et al. applied transfer testing to conditional
models in order to assess output uncertainties, we follow
an arguably natural approach and assess input uncertain-
ties in RAT-SPNs, i.e. their likelihoods over X.

Figure 6, top, shows histograms of the log-likelihoods
of the RAT-SPN post-trained with λ = 0.2, when fed
with MNIST test data (in-domain), SVHN test data (out-
of-domain) and SEMEION (out-of-domain). The re-
sult is striking: the histogram shows that the likelihood
over inputs provides a strong signal (note the y-axis log-
scale) whether a sample comes from in-domain or out-
of-domain. That is, RAT-SPNs have an additional com-
munication channel to inform us whether we ought trust
their predictions. An MLP does not have such a mean, as
it does not represent a full joint distribution. However, a
potential objection could be that this positive results for
SPNs (or more generally, joint models) might actually
stem in some way from the discriminative character of
the model, rather than from its generative nature. After
all, in order to compute SPN likelihoods in Figure 6, we
simply had to sum over the SPN outputs, re-weighted
by a class prior (assumed uniform here). Perhaps the
strong outlier-detection signal merely stems from aver-
aging predictive outputs? Thus, as a sanity check we
perform the likewise computations in our trained MLPs.
One might suspect, that the result, although not inter-
pretable as log-probability, still yields a decent signal to
detect outliers. In need of a name for this rather odd
quantity, we name it mock-likelihood. Figure 6, bottom,
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Figure 6: Histograms of test log-likelihoods for MNIST,
SVHN and SEMEION data for RAT-SPN (top) and cor-
responding computations performed for MLP (“mock-
likelihood”) (bottom). Both models were trained on
MNIST. The likelihoods of RAT-SPNs yield a strong
signal whether a sample is in-domain or out-of-domain,
while the “mock-likelihood” does not discriminate well
between these cases.

shows histograms of this mock-likelihood: although his-
tograms are more spread for out-of-domain data, they are
highly overlapping, yielding no clear signal for out-of-
domain vs. in-domain.

5 CONCLUSION

We introduced a particularly simple but effective way to
train SPNs: simply pick a random structure and train
them in end-to-end fashion like neural networks. This
makes the application of SPNs within the deep learn-
ing framework seamless and allows the application of
common deep learning tools such automatic differenti-
ation and easy use of GPUs. As a modest technical
contribution, we adapted the well-known dropout heuris-
tic and equipped it with a sound probabilistic interpre-
tation within RAT-SPNs. RAT-SPNs show classifica-
tion performance on par with traditional neural networks
on several classification tasks. Moreover, RAT-SPNs
demonstrate their full power when used as a generative
model, showing remarkable robustness against missing
features through exact and efficient inference and com-
pelling results in anomaly/out-of-domain detection. In
future work, the hybrid properties of RAT-SPNs could
allow promising directions like new variants of semi-
supervised or active learning. While this paper is held
in the data-agnostic regime, in future we will investigate
SPNs tailored to structured data sources.
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