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Abstract

Current approaches to amortizing Bayesian in-
ference focus solely on approximating the pos-
terior distribution. Typically, this approxima-
tion is in turn used to calculate expectations for
one or more target functions. In this paper, we
address the inefficiency of this computational
pipeline when the target function(s) are known
upfront. To this end, we introduce a method
for amortizing Monte Carlo integration. Our
approach operates in a similar manner to amor-
tized inference, but tailors the produced amorti-
zation artifacts to maximize the accuracy of the
resulting expectation calculation(s). We show
that while existing approaches have fundamen-
tal limitations in the level of accuracy that can
be achieved for a given run time computational
budget, our framework can, at least in theory,
produce arbitrary small errors for a wide range
of target functions with O(1) computational
cost at run time. Furthermore, our framework
allows not only for amortizing over possible
datasets, but also over possible target functions.

1 Introduction

At its core, Bayesian modeling is rooted in the calculation
of expectations: the eventual aim of modeling is typically
to make a decision, or to construct predictions for unseen
data, both of which take the form of an expectation under
the posterior (Robert, 2007). The eventual aim of the
vast majority of Bayesian inference problems can thus
be summarized in the form of one or more expectations
Ep(x|y) [f(x)], where f(x) is a target function and p(x|y)
is the posterior distribution on x for some data y, which
we typically only know up to a normalizing constant p(y).
Sometimes f(x) is not known up front, or we care about
many different f(x), such that it is convenient to just
approximate p(x|y) upfront, e.g. in the form of Monte

Carlo samples, and then later use this to calculate esti-
mates, rather than address the target expectations directly.

However, it is often the case in practice that a particular
target function, or class of target functions, is known a
priori. For example, in decision-based settings f(x) takes
the form of a loss function. It has been well established in
the literature that in such target-aware settings the afore-
mentioned pipeline of first approximating p(x|y) and then
using this as a basis for calculating Ep(x|y) [f(x)] is sub-
optimal as it ignores relevant information in f(x) (Owen,
2013; Lacoste–Julien et al., 2011). As we will later show,
the potential gains in such situations can be substantial.

Although it is all too often overlooked, how to adjust for
target-aware settings has been well studied in the fixed-
dataset context (Hesterberg, 1988; Wolpert, 1991; Oh
& Berger, 1992; Evans & Swartz, 1995; Lacoste–Julien
et al., 2011). In this paper, we extend these ideas to amor-
tized inference settings (Stuhlmüller et al., 2013; Kingma
& Welling, 2014; Ritchie et al., 2016; Paige & Wood,
2016; Le et al., 2017, 2018; Maddison et al., 2017; Naes-
seth et al., 2018), wherein one looks to “compile away”
the cost of inference across different possible datasets by
learning an artifact that can be used to assist the inference
process at run time for a given dataset.

Typically, this amortization artifact takes the form of a
parametrized proposal, q(x;ϕ(y)), which takes in data y
and regresses these to proposal parameters ϕ(y), gener-
ally using a deep neural network. Though the exact pro-
cess varies with context, the inference network is usually
trained either by drawing latent-data sample pairs from a
fixed joint distribution p(x, y) (Ritchie et al., 2016; Paige
& Wood, 2016; Le et al., 2017), or as part of a stochas-
tic variational inference scheme (Hoffman et al., 2013;
Kingma & Welling, 2014; Rezende et al., 2014). Once
trained, it provides an efficient means of approximately
sampling from the posterior of a particular dataset, e.g.
using importance sampling.

Our first contribution is highlighting that the shortcomings
of existing amortized inference approach for target-aware



problems are analogous to those of the single-dataset set-
ting: even if the inference network fully encapsulates the
true posterior, the resulting estimator is still sub-optimal.

Our second is in introducing AMCI, a framework for
performing amortized Monte Carlo integration. Though
still based around learning amortized proposals distribu-
tions, AMCI varies from standard amortized inference
approaches in three respects. Firstly it operates in a
target-aware fashion, incorporating information about
f(x) into the amortization artifacts, increasing the ef-
ficiency at run time. Secondly, rather than relying
purely on self-normalization, AMCI employs two sep-
arate proposals for estimating the unnormalized target
integral Ep(x) [f(x)p(y|x)] and the marginal likelihood
Ep(x) [p(y|x)]. This means that it can, at least in principle,
return single sample estimates with arbitrarily low mean
squared error, unlike standard approaches whose attain-
able MSE is lower bounded for a given f(x) and number
of samples (Owen, 2013). Finally, to account for cases in
which multiple possible target functions may be of inter-
est, AMCI also allows for amortization of parametrized
functions f(x; θ) through the use of pseudo prior p(θ).

2 Background

2.1 Importance sampling

Importance Sampling (IS) is a common sampling method
that forms the key building block for many more advanced
inference schemes. The standard Importance Sampling
(IS) approach requires the target distribution p(x) to be a
normalized probability distribution.

µ := Ep(x) [f(x)] =

∫
f(x)

p(x)

q(x)
q(x)dx

≈ µ̂ :=
1

N

∑N

n=1
f(xn)wn where xn ∼ q(x) (1)

and wn :=p(xn)/q(xn) is known as an importance weight.

When the target distribution is not normalized we can
self-normalise the estimate by dividing by the unbiased
normalising constant estimate Ẑ := 1

N

∑N
n=1 wn. This

approach is called self-normalized importance sampling
(SNIS). For example, to estimate an expectation over a
posterior p(x|y), one typically uses SNIS as follows

Ep(x|y)[f(x)]=

∫ f(x)p(x,y)
q(x) q(x)dx∫ p(x,y)
q(x) q(x)dx

≈
∑N
n f(xn)wn∑N

n wn
(2)

where xn ∼ q(x), and wn := p(xn, y)/q(xn).

2.2 Optimal importance sampling proposal

For a general unknown target, the optimal proposal is
the posterior q(x|y) = p(x|y) (see e.g. (Rainforth, 2017,

5.3.2.2)). However, this no longer holds if we have some
information about f(x). In this target-aware scenario, the
optimal behavior turns out to depend on whether one is
performing SNIS or standard IS.

For the non self-normalized case the optimal proposal
can be shown to be q(x) ∝ p(x|y)|f(x)| (Owen, 2013).
In the particular case where f(x) ≥ 0 ∀x, this ac-
tually leads to a zero-variance estimator as we have
q(x) = p(x|y)f(x)/µ and hence according to Eq. (1)
µ̂ := (1/N)ΣNn=1f(xn)wn = µ for any value ofN , even
a single sample. This result can be achieved whenever
f(x) is upper or lower bounded for a known bound b, by
for example, setting g(x) = b − f(x) such that g(x) ≥
0 ∀x and noting that Ep(x|y) [f(x)] = b− Ep(x|y) [g(x)].

In the self-normalized case, the optimal proposal in-
stead transpires to be q(x) = |f(x) − µ|p(x) (Hester-
berg, 1988). In this case one can no longer achieve
a zero variance estimator for finite N and nonconstant
f(x): the variance of the estimator is lower bounded by
Ep(|f(x)− µ|)2/N (Owen, 2013).

2.3 Inference amortization

As explained in the introduction, inference amortization
involves learning an inference artifact that regresses from
datasets to proposal parameters. Out of several variants,
we focus on the inference amortization method intro-
duced by Paige & Wood (2016) as this is the one AMCI
builds upon. The inference network is defined as a neural
network ϕ with parameters η and the approximate pro-
posal is q(x;ϕ(y; η)). We would like a choice of η to
minimize DKL [p(x|y) || q(x;ϕ(y; η))] across possible
instantiations of dataset y, hence the objective is
J (η) = Ep(y) [DKL [p(x|y) || q(x;ϕ(y; η))]]

= Ep(x,y) [− log q(x;ϕ(y; η))] + const wrt η (3)
This objective requires us to be able to sample from the
joint distribution p(x, y). The entire objective can be op-
timized using gradient methods since the reparameterized
gradient can be easily evaluated:

∇ηJ (η) = Ep(x,y) [−∇η log q(x;ϕ(y; η))] (4)

3 Amortized Monte Carlo Integration

Amortized Monte Carlo integration (AMCI) is a frame-
work for amortizing the cost of calculating expectations.
Though strongly motivated by Bayesian settings, AMCI
can be applied in any Monte Carlo integration setting
wherein we wish to calculate Eπ(x) [f(x)] for some ref-
erence distribution π(x), known only up to a normaliz-
ing constant. Moreover, because a generic integration∫
x∈X f(x)dx can always be expressed as an expecta-



tion Eq(x)[f(x)π(x)/q(x)] through importance sampling,
AMCI allows amortizing integration more generally.

3.1 Estimator

Existing amortized inference methods often evaluate the
expectations using SNIS with the approximate posterior
q(x|y) as the proposal. As described in the section 2.2,
the variance of this estimator, and hence its error, is
lower bounded. AMCI overcomes this limitation by us-
ing a new estimator consisting of two separate non self-
normalized importance sampling estimators, each using
a separate proposal. This means each can be tailored to
their respective needs, which can give substantial improve-
ments over SNIS. Moreover, when f(x) is lower or upper
bounded, the AMCI construction allows us to achieve
a zero-variance estimate if optimal proposals are used
for each of the estimators. Thus AMCI can, in principle,
provide arbitrarily large improvements over previous ap-
proaches, since there is not limit on the level of accuracy
it can achieve with only a single sample.

AMCI is based around the estimator

Ep(x|y)[f(x)] ≈
1
N

∑N
n
f(xn)p(xn,y)
q1(xn|y)

1
M

∑M
m

p(xm,y)
q2(x∗m|y)

(5)

where a separate set of samples are drawn for the nu-
merator and denominator by sampling xn ∼ q1(x|y) and
x∗m ∼ q2(x|y) respectively. The optimal sampling pro-
posal for the expectation in the numerator is q1(x|y) ∝
|f(x)|p(x|y) while for the denominator it is q2(x|y) ∝
p(x|y). When using these proposals, the estimator gives
zero error, even when N = M = 1.

The above estimator requires taking T = N + M sam-
ples, but only N or M are used to evaluate each of the
individual estimators. Given that in practice we do not
have access to the perfectly optimal proposals, it is more
efficient to make use of all T samples in each of the
estimators. The motivates the definition of full AMCI
estimator for Ep(x|y)[f(x)]

α
N

∑N
n
f(xn)p(xn,y)
q1(xn|y) + 1−α

M

∑M
m

f(x∗m)p(x∗m,y)
q2(x∗m|y)

β
N

∑N
n

p(xn,y)
q1(xn|y) + 1−β

M

∑M
m

p(x∗m,y)
q2(x∗m|y)

, (6)

where both the numerator and denominator are in a form
of a convex combination of estimators with respect to
samples from both proposals. The level of interpolation
is set by parameters α, β which vary between 0 and 1.
Setting α = 1 and β = 0 corresponds to the estimator in
Eq. (5) and is optimal if our proposals are perfect. Setting
α = 1, β = 1 or α = 0, β = 0 corresponds to the SNIS
estimator with proposals q1, q2, respectively.

Intuitively, the optimal coefficients, (α∗, β∗), should be
close to those with perfect proposals, i.e. α ≈ 1, β ≈ 0,

provided we use sufficiently accurate inference networks.
More formally, under certain conservative assumptions,
we can show that α∗ = N/((T −N) Var[f(x1)w1]

Var[f(x∗1)w
∗
1 ]

+ N)

and β∗ = N/((T −N)Var[w1]
Var[w∗1 ]

+N), the derivations for
which are given in Appendix A. Similar analysis should
also be possible to guide the selection of N and M , but
we leave this to future work.

3.2 Amortization

To be able to evaluate this estimator AMCI needs to learn
to amortize the approximations q1 and q2. The standard
objective allowing to amortize the posterior distribution
p(x|y) is described in section 2.3. To learn the approxima-
tion to the optimal sampling proposal |f(x)| p(x|y) AMCI
seeks to minimize DKL [|f(x)| p(x|y) || q(x;ϕ(y; η))]
across possible instantiations of dataset y:
J1(η) = Ep(y) [DKL [|f(x)| p(x|y) || q(x;ϕ(y; η))]]

=− Ep(x,y) [|f(x)| log q(x;ϕ(y; η))] + const wrt η

AMCI learns to amortize q1(x|y) using J1 above, as well
as q2(x|y) using J in Eq. (3). Both objectives can be
jointly optimized using the same samples from p(x, y).

The distributions q1(x|y) and q2(x|y) are related and it is
reasonable to assume that part of the computation required
to determine those proposals is shared. To take advan-
tage of this, we use a single neural network with shared
weights to determine the parameters of both distributions.

To account for cases in which multiple possible target
functions may be of interest, AMCI also allows for amor-
tization over parametrized functions. If the target function
can be parameterized as f(x; θ), then by extending our
target distribution with a pseudo prior p(θ) we are able
to amortize over possible target functions as well. The
choice of p(θ) determines how much importance we as-
sign to different possible functions that we would like
to amortize over. Since in practice perfect performance
is unattainable over the entire space of θ the choice of
p(θ) is important and it will have important effect on the
performance of the system.

Amortization over the space of targets requires another
modification to the objective J and to our inference net-
work ϕ – it now also needs to take θ as input. AMCI
seeks a choice of η which performs well across possible
instantiations of dataset y and possible values of θ. Hence
we need to take an expectation over p(y)p(θ) yielding

J
′

1(η)

= Ep(y) p(θ) [DKL [|f(x; θ)| p(x|y) || q(x;ϕ(y, θ; η))]]

= −Ep(x,y) p(θ) [|f(x; θ)| log q(x;ϕ(y, θ; η))] + const
Note that p(x, y)p(θ) is tractable and so the entire objec-
tive can be optimized using gradient methods.
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(a) Fixed integrand f(x).
Rows represent examples for different values of y,

respectively: −1.5, 0.5, 2.5.
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(b) Parameterized integrand f(x; θ).
Rows represent examples for different values of (y, θ),

respectively: (−1, 1), (−1.25,−0.5), (−1.5,−2).

Figure 1: Results of the amortization experiments. Uncertainty bars in columns 2, 3 are estimated over a 1000 runs.
Middle column errors are reported for 64 samples. For AMCI the number of samples from both proposals was equal,
i.e. M = N . Columns represent, respectively: shapes of probability density functions, log mean error vs α (Eq. (6)),
log mean error vs log number of samples for optimal proposal (α = 1) and for posterior proposal (α = 0).

4 Experiments
We demonstrate the performance of the AMCI estimator
on two illustrative examples, and compare it with the
SNIS estimator with posterior proposal in Eq. (2). In
experiment one we fix the target function f(x) whilst in
experiment two, we allow a parameterized target function
f(x; θ). We also investigate the effects of varying the
parameters α and β in Eq. (6).

4.1 Fixed target function
For a fixed target function the model is as follows

p(x) = N (x; 0, 1) p(y|x) = N (y;x, 1)

q(x|y) = N (x;ϕ(y; η)) f(x) = 1x>1

The posterior p(x|y) = N (x; y2 ,
1
2 ) can be determined

analytically, and so can the true value of the expectation
Ep(x|y) [f(x)] = 1−Φ(1), where Φ is a standard normal
distribution cumulative density function.

4.2 Parameterized target function
In this case p(x) and p(y|x) remain the same, but the
definition of q(x|y) and f(x; θ) changes

q(x|y) = N (x;ϕ(η, y, θ)) f(x; θ) = 1x>θ

θ ∼ Uniform[−5, 5]

We constrain the range of θ to be between -5 and 5 as
the region of interest. The posterior is still p(x|y) =
N (x; y2 ,

1
2 ) and the true value of the expectation is now

dependent on θ as follows Ep(x|y) [f(x; θ)] = 1− Φ(θ).

4.3 Implementation details
The inference networks and the posterior distributions are
combined into one neural network. The network used 2
fully connected layers with 10 hidden nodes per layer and

it was trained using Adam (Kingma & Ba, 2015).

4.4 Results
We find that fixing β = 0 universally results in the small-
est error of the estimates and hence we do not report
results on varying β in the plots to improve clarity.

Results of the experiments are presented in Fig. 1a and
Fig. 1b respectively. The values of y and θ plotted were
chosen to be illustrative of the phenomena observed.

We find that the AMCI estimator performs better than the
SNIS estimator with posterior proposal when the optimal
proposal differs from the posterior. In some cases, when
the optimal sampling proposal differs greatly from the
posterior the mean error using the AMCI estimate are
over an order of magnitude smaller than for the SNIS
estimate for the same total sample budget, see the first
row in the Figure 1. However, when the optimal proposal
is similar to the posterior, AMCI and SNIS give more
similar performance, see the second and third rows. We
also find in those cases setting α < 1 results in lower
mean error.

4.5 Discussion
Further work will be focused on scaling the AMCI frame-
work to larger problems, automating the process of online
hyperparameter tuning, correlating the samples for the
individual estimators to further reduce the variance of
the estimator, and using more flexible neural density es-
timators, e.g. normalizing flows, rather than parametric
families as the amortized proposal distributions.



Acknowledgments

We would like to thank Tuan Anh Le for his input, enthu-
siasm and sharing parts of his previous work, as well as
Bradley Gram-Hansen for both the enthusiasm and taking
time to proof-read the manuscript.

AG is supported by the UK EPSRC CDT in Autonomous
Intelligent Machines and Systems. TR and YWT are sup-
ported in part by the European Research Council under
the European Union’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement no. 617071.
FW is supported under DARPA PPAML through the U.S.
AFRL under Cooperative Agreement FA8750-14-2-0006,
Sub Award number 61160290-111668.

References
Evans, Michael and Swartz, Tim. Methods for approxi-

mating integrals in statistics with special emphasis on
bayesian integration problems. Statistical science, pp.
254–272, 1995.

Hesterberg, Timothy Classen. Advances in importance
sampling. PhD thesis, Stanford University, 1988.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John. Stochastic variational inference. The
Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

Kingma, Diederik and Ba, Jimmy. Adam: A method for
stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

Kingma, Diederik and Welling, Max. Auto-encoding vari-
ational bayes. In International Conference on Learning
Representations, 2014.

Lacoste–Julien, Simon, Huszar, Ferenc, and Ghahramani,
Zoubin. Approximate inference for the loss-calibrated
bayesian. In Gordon, Geoffrey, Dunson, David, and
Dudík, Miroslav (eds.), Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learn-
ing Research, pp. 416–424, Fort Lauderdale, FL, USA,
11–13 Apr 2011. PMLR.

Le, Tuan Anh, Baydin, Atılım Güneş, and Wood, Frank.
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A Derivation of the optimal parameter values for the AMCI estimator

In this section, we derive the optimal values of α and β in terms of minimizing the mean squared error (MSE) of the
estimator in Equation 6. We assume that we are allocated a total sample budget of T samples, such that M = T −N .

Let the true values of the expectations in the numerator and denominator be denoted as ZN and ZD, respectively. We
also define the following shorthands for the unbiased importance sampling estimators with respect to proposals q1 and
q2 in Equation 6 a1 = 1

N

∑N
n
f(xn)p(xn,y)
q1(xn|y) , b1 = 1

M

∑M
m

f(x∗m)p(x∗m,y)
q2(x∗m|y)

, a2 = 1
N

∑N
n

p(xn,y)
q1(xn|y) , b2 = 1

M

∑M
m

p(x∗m,y)
q2(x∗m|y)

,
where xn ∼ q1(x|y) and x∗m ∼ q2(x|y).

We start by considering the estimator according to Equation 6
ZN
ZD
≈ I :=

αa1 + (1− α)b1
βa2 + (1− β)b2

. (7)

Using the central limit theorem, then as N,M →∞, we have

→ ZN + σNξN
ZD + σDξD

, where ξN , ξD ∼ N (0, 1) (8)

are correlated standard normal random variables and σN and σD are the standard deviation of the estimators for
numerator and denominator respectively. Specifically we have

σ2
N =Var[αa1 + (1− α)b1]

=α2Varq1 [a1] + (1− α)2Varq2 [b1],

which by the weak law of large numbers

=
α2

N
Varq1 [f(x1)w1] +

(1− α)2

M
Varq2 [f(x∗1)w∗1 ]

where w1 = p(x1, y)/q1(x1|y), w∗1 = p(x∗1, y)/q2(x∗1|y), x1 ∼ q1(x|y), and x∗1 ∼ q2(x|y). Analogously,

σ2
D =

β2

N
Varq1 [w1] +

(1− β)2

M
Varq2 [w∗1 ].

Now going back to Equation 8 and using Taylor’s Theorem on 1/ (ZD + σDξD) about 1/ZD gives

I =
ZN + σNξN

ZD

(
1− σDξD

ZD

)
+O(ε)

=
ZN
ZD

+
σNξN
ZD

− ZNσDξD
Z2
D

− σNσDξNξD
Z2
D

+O(ε)

where O(ε) represents asympotitically dominated terms. Note here the importance of using Taylor’s theorem, rather
just a Taylor expansion, to to confirm that these terms are indeed asympotitically dominated. We can further drop the
σNσDξNξD

Z2
D

term as this will be order O(1/
√
MN) and will thus be asymptotically dominated, giving

=
ZN
ZD

+
σNξN
ZD

− ZNσDξD
Z2
D

+O(ε).

To calculate the MSE of I , we start with the standard bias variance decomposition

E

[(
I − ZN

ZD

)2
]

= Var [I] +

(
E
[
I − ZN

ZD

])2

.

Considering first the bias squared term, we see that this depends only on the higher order terms O(ε), while the variance
does not. It straightforwardly follows that the variance term will be asymptotically dominant, so we see that optimizing
for the variance is asymptotically equivalent to optimizing for the MSE.

Now using the standard relationship Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ), we have

Var[I] =Var

[
σNξN
ZD

]
+ Var

[
ZNσDξD
Z2
D

]
− 2Cov

[
σNξN
ZN

,
ZNσDξD
Z2
D

]
+O(ε)

=
σ2
N

Z2
D

+
Z2
Nσ

2
N

Z4
D

− 2
σNZNσD

Z3
D

Cov[ξN , ξD] +O(ε)



=
α2

NZ2
D

Varq1 [f(x1)w1] +
(1− α)2

MZ2
D

Varq2 [f(x∗1)w∗1 ] +
Z2
Nβ

2

NZ4
D

Varq1 [w1] +
Z2
N (1− β)2

MZ4
D

Varq2 [w∗1 ]

− 2
ZN
Z3
D

Corr[ξN , ξD]

(
α2

N
Varq1 [f(x1)w1] +

(1− α)2

M
Varq2 [f(x∗1)w∗1 ]

)(
β2

N
Varq1 [w1] +

(1− β)2

M
Varq2 [w∗1 ]

)
To assist in the subsequent analysis, we assume that there is no correlation, Corr[ξN , ξD] = 0. Though this assumption
is unlikely to be exactly true, there are two reasons we believe it is reasonable. Firstly, because we expect to set α ≈ 1
and β ≈ 0, the correlation should generally be small in practice as the two estimators rely predominantly on independent
sets of samples. Secondly, we believe this is generally a relatively conservative assumption: if one were to presume
a particular correlation, there are adversarial cases with the opposite correlation where this assumption is damaging.
Nonetheless, catering for non-zero correlations is something one may wish to look into in future work.

Given this assumption is now straightforward to optimize for α and β by finding where the gradient is zero as follows

∇α(Var[I]Z2
D) =

2αVarq1 [f(x1)w1]

N
− 2(1− α)Varq2 [f(x∗1)w∗1 ]

T −N
= 0

⇒ α∗ =
N

(T −N)
Varq1 [f(x1)w1]

Varq2 [f(x
∗
1)w
∗
1 ]

+N

noting that

∇2
α(Var[I]Z2

D) =
Varq1 [f(x1)w1]

N
+

Varq2 [f(x∗1)w∗1 ]

T −N
> 0

and hence it’s a local minimum. Analogously

β∗ =
N

(T −N)
Varq1 [w1]

Varq2 [w
∗
1 ]

+N
.

We note that it is possible to estimate all the required variances here using previous samples. It should therefore be
possible to adaptively set α and β by using these equations along with empirical estimates for these variances.
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