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Abstract

Existing Bayesian treatments of neural net-
works are typically characterized by weak prior
and approximate posterior distributions accord-
ing to which all the weights are drawn indepen-
dently. Here, we consider a richer prior distri-
bution in which units in the network are repre-
sented by latent variables, and the weights be-
tween units are drawn conditionally on the val-
ues of the collection of those variables. This al-
lows rich correlations between related weights,
and can be seen as realizing a function prior
with a Bayesian complexity regularizer ensur-
ing simple solutions. We illustrate the resulting
meta-representations and representations, eluci-
dating the power of this prior.

1 Introduction

We propose a higher-level abstraction of neural network
weight representations in which the units of the network
are probabilistically embedded into a shared, structured,
meta-representational space (generalizing topographic lo-
cation), with weights and biases being derived conditional
on these embeddings. Rich structural patterns can thus
be induced into the weight distributions. Our model cap-
tures uncertainty on three levels: meta-representational
uncertainty, function uncertainty given the embeddings,
and observation (or irreducible output) uncertainty. This
hierarchical decomposition is flexible, and is broadly
applicable to modeling task-appropriate weight priors,
weight-correlations, and weight uncertainty. It can also
be beneficially used in the context of various modern ap-
plications involving out of sample generalization, where
the ability to perform structured weight manipulations
online is beneficial[[].

"Due to space concerns we provide more background and
related work in the Appendix Sec. E]

2 Meta-Representations of Units

We suggest abandoning direct characterizations of
weights or distributions over weights, in which weights
are individually independently tunable. Instead, we cou-
ple weights using meta-representations (so called, since
they determine the parameters of the underlying NN that
themselves govern the input-output function represented
by the NN). These treat the units as the primary objects
of interest and embed them into a shared space, deriving
weights as secondary structures.

Consider a code z; ,, € RP that uniquely describes each
unit u (visible or hidden) in layer [ in the network. Such
codes could for example be one-hot codes or Euclidean
embeddings of units in a real space RX. A generalization
is to use an inferred latent representation which embeds
units [, u in a D-dimensional vector space. Note that this
code encodes the unit itself, not its activation.

Weighs w; ; ; linking two units can then be recast in terms
of those units’ codes z; ; and z;_; ; for instance by con-
catenation z.,(l,4,j) = [zu7 zl,l,j] . We call the collec-
tion of all such weight codes Z,, (which can be deter-
ministically derived from the collection of unit codes Z).
Biases b can be constructed similarly, for instance using
0’s as the second code; thus we do not distinguish them
below. Weight codes then form a conditional prior distri-
bution P(w; ;|2 (1,4, 7)), parameterized by a function
9(zw(1,1,7),&) shared across the entire network. Func-
tion g, which may itself have parameters £, acts as a
conditional hyperprior that gives rise to a prior over the
weights of the original network:

L V; Vi1

P(W|Zw,f):HH Hp(wl,i,j|zw(lvi7j);§)‘

I=1i=1 j=1

There remain various choices: we commonly use either
Gaussian or implicit models for the weight prior and neu-
ral networks as hyperpriors (though clustering and Gaus-
sian Processes merit exploration). Further, the weight
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code can be augmented with a global state variable zg
(making z,(1,4,5) = [z1,;,%1-1,;,2s]) which can coor-
dinate all the weights or add conditioning knowledge.

3 MetaPrior: A Generative Meta-Model
of Neural Network Weights

The meta-

representation
can be used as a
prior for Bayesian
NNs. Consider a
case with latent
codes for units
being sampled
from P(Z) =
[, P(z.). and
the weights of the
underlying NN
being sampled
according to the
conditional  dis-
tribution for the
weights P(W|Z,,).
Put together this
yields the model:

neN

Figure 1: A graphical model
showing the MetaPrior. Note the
additional plate over the meta-
variables Z indicating the distri-
bution over meta-representations.

P(ylx) =/ZP(Z) /W P(y|x, W)P(W|Z)dWdZ
z)=1[,, Pl =[N0
L,

Crucially, the conditional distribution over weights de-
pends on more than one unit representation. This can
be seen as a structural form of weight-sharing or a func-
tion prior and is made more explicit using the plate no-
tation in Fig[I] Conditioned on a set of sampled vari-
ables Z, our model defines a particular space of functions
fz : X = Y. We can recast the predictive distribution
given training data D* as:

(y|x, D)

Uncertainty about the unit embeddings affords the model
the flexibility to represent diverse functions by coupling
weight distributions with meta-variables.

The learning task for training MetaPriors for a particular
dataset D consists of inferring the posterior distribution
of the latent variables P(Z|D). Compared with the typ-
ical training loop in Bayesian Neural Networks, which
involves learning a posterior distribution over weights,
the posterior distribution that needs to be inferred for
MetaPriors is the approximate distribution Q(Z; ®) over

/ Q(zID*) / (y1x. f2) P(f2|Z)dfzdZ.

the collection of unit variables as the model builds meta-
models of neural networks. We train by maximizing the
evidence lower bound (ELBO):

P(D|Z;§)P(Z)

)

with logP(D|Z) ~ Z P(y|x,W*™) and W*™ ~

P(W|Z™). In practlce we apply the reparametrization
trick (155 1335 139) and its variants (14) and subsample
Z™ ~ Q(Z; ®) to maximize the objective:

- Z E ilogpmx,wm}

—KL( (Z; ®)||P(Z)).

ELBO(®
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However, pure posterior inference over ® without
gradient steps to update ¢ results in learning meta-
representations which best explain the data given the
current hypernetwork with parameters £&. We call the
process of inferring representations P(Z|D) illation. In-
tuitively, inferring the meta-representations for a dataset
induces a functional alignment to its input-output pairs
and thus reduces variance in the marginal representations
for a particular collection of data points.

We can also recast this as a two-stage learning proce-
dure, similar to Expectation Maximization (EM), if we
want to update the function parameters ¢ and the meta-
variables independently. First, we approximate P(Z|D; ¢)
by Q(Z; ¢) by maximizing ELBO(¢; §). Then, we can
maximize of ELBO(¢; ¢) to update the hyperprior func-
tion. In practice, we find that Eq. 2] performs well with a
small amount of samples for learning, but using EM can
help reduce gradient variance in the small-data setting.

4 Experiments

We illustrate the properties of MetaPriors with a series
of tasks of increasing complexity, starting with simple
regression and classification, and then graduating to few-
shot learning.

4.1 Toy Example: Regression

Here, we consider the toy regression task popularized
in (10) (y = 2 + € with ¢ ~ A(0,3)). We use neu-
ral networks with a fixed observation noise given by the
model, and seek to learn suitably uncertain functions. For
all networks, we use 100 hidden units, and 2-dimensional
latent codes and 32 hidden units in the hyper-prior net-
work f.

In Fig. 2] we show two function fits to this example: our
model and a mean field network. We observe that both



models increase uncertainty away from the data, as would
be expected. We also illustrate function draws which
show how each model uses its respective weight repre-
sentation differently to encode functions and uncertainty.
We sample functions in both cases by clamping latent
variables to their posterior mean and allowing a single
latent variable to be sampled from its prior. Our model,
the MetaPrior-based Bayesian NN, learns a global form
of function uncertainty and has global diversity over sam-
pled functions for sampling just a single latent variable.
It uses the composition of these functions through the
meta-representational uncertainty to model the function
space. This can be attributed to the strong complexity
control enacted by the pull of the posterior fitting mech-
anism on the meta-variables. Maximum a posteriori fits
of this model yielded just the mean line directly fitting
the data. The mean field example shows dramatically less
diversity in function samples, we were forced to sample a
large amount of weights to elicit the diversity we got as
single weight samples only induced small local changes.
This suggests that the MetaPrior may be capturing inter-
esting properties of the weights beyond what the mean
field approximation does, as single variable perturbations
have much more impact on the function space.

4.2 Toy Example: Classification

We illustrate the model’s function fit to the half-moon
two class classification task in Fig.[3] also visualizing the
learned weight correlations by sampling from the repre-
sentation. The model reaches 95.5% accuracy, on par
with a mean field BNN and an MLP. Interestingly, meta-
representations induce intra- and inter-layer correlations
of weights, amounting to a form of soft weight-sharing
with long-range correlations. This visualizes the mecha-
nisms by which complex function draws as observed in
Sec. are feasible with only a single variable chang-
ing. The model captures structured weight correlations
which enable global weight changes subject to a low-
dimensional parametrization. This is a conceptual differ-
ence to networks with individually tunable weights.

4.3 MNIST50Kk-Classification

We use NNs with one hidden layer and 100 hidden units to
test the simplest model possible for MNIST-classification.
We train and compare the deterministic one-hot embed-
dings (Gaussian-OH), with the latent variable embeddings
(Gaussian-LV) used elsewhere (with 10 latent dimen-
sions); along with mean field NNs with a unit Gaussian
prior (Gaussian-ML). We visualize the learned Zs (Fig. E[)
by producing a T-SNE embedding of their means which
reveal relationships among the units in the network. The
figure shows that the model infers semantic structure in
the input units, as it compresses boundary units to a simi-
lar value. This is representationally efficient as no capac-

Figure 2: MetaPrior as a Function Prior: (a) Means of
the meta-variables Z of MetaPrior model embedded in
shared 2d space at the onset of training and at the end
show how the variables perform a structured topographic
mapping over the embedding space. (b) Left: MetaPrior
fit and function draws fz are visualized. Functions are
drawn by keeping all meta-variables clamped to the mean
except a random one among the hidden layer units which
is then perturbed according to the offset indicated by the
color-legend. Changes in a single meta-variable induce
global changes across the entire function. The function
space itself is interesting as the model appears to have
generalized to a variety of smoothly varying functions as
we change the sampling offset, the mean of which is the
cubic function. This is a natural task for our model, as
all units of the hidden layer are embedded in the same
space and sampling means exploring that space and all
the functions this induces. Right: A MF-VI BNN with
fixed observation noise function fit to the toy example
and function draws are shown. The function draws are
performed by picking 40 weights at random and sampling
from their priors, while keeping the rest clamped to their
posterior means. Single weight changes induce barely per-
ceptible function fluctuations and in order to explore the
representational ability of the model we sample multiple
weights at once.

ity is wasted on modeling empty units repeatedly.

4.4 Few-Shot and Multi-Task Learning

The model allows task-specific latent variables Z; to be
used to learn representations for separate, but related,
tasks, effectively aligning the model to the current input
data. In particular, the hierarchical structure of the model
facilitates few-shot learning on a new task ¢ by inferring
P(Z4|Dy), starting from the Z produced by the original
training, and keeping fixed the mapping P(W)|Z,; £). We
tested this ability using the MNIST network. After learn-
ing the previous model for clean MNIST, we evaluate the
model’s performance on the MNIST test data in both a
clean and a permuted version. We sample random per-
mutations 7 for input pixels and classes and apply them
to the test data, visualized in Fig.[5] This yields three
datasets, with permutations of input, output or both. We
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Figure 3: Classification and Weight Correlation Ex-
ample: (a) We illustrate correlation structures in the
marginal weight distributions for the Half Moon classifica-
tion example. All units Z are clamped to their mean. We
sample a single unit z, repeatedly from its 2-dimensional
distribution and sample P(W)|Z). We track how partic-
ular ancestral samples generate weights by color-coding
the resulting sampled weights by the offset of the ances-
tral sample from its mean. Similar colors indicate similar
samples. Horizontal axes denote value for weight 1, ver-
tical weight for 2, so that each point describes a state of
a weight column in a layer. Left: We show the sampled
weights from layer 1 of the neural network connected
to unit 0. Right: The sampled weights from the output
layer 2 connected to unit 0. Top: At the onset of train-
ing the effect of varying the unit meta-variable z,, is not
observable. Bottom: After learning the function shown
in SubFig. d we can see that the effect of varying the
unit meta-variable induces correlations within each layer
and also across both layers. (b) Sketch of the NN used
with highlighted unit whose meta-variable we perturb and
the affected weights. (¢) Legend encoding shifts from
the mean in the meta-variable to colors. (d) Predictive
uncertainty of the classifier and the predicted labels of
the datapoints, demonstrating that the model learns more
than a point estimate for the class boundary.

then proceed to illate P(Z;|D;) on progressively grow-
ing numbers of scrambled observations (shots) D;. For
each such attempt, we reset the model’s representations
to the original ones from clean training. As a baseline,
we train a mean field neural network. We also keep track
of performance on the clean dataset as reported in Fig. 5]
We examine a related setting of generalization in the Ap-
pendix Sec. [6]

5 Discussion

We proposed a meta-representation of neural networks.
This is based on the idea of characterizing neurons in
terms of pre-determined or learned latent variables, and
using a shared hypernetwork to generate weights and
biases from conditional distributions based on those vari-

Model  Accuracy

] Gaussian-ML ~ 97.58
A Gaussian-OH ~ 97.97
Gaussian-LV ~ 97.56

d

Figure 4: MNIST Study: (a) T-SNE visualization of the
units in an MNIST network before training reveals ran-
dom structure of the units of various layers. (b) Training
induces structured embeddings of input, hidden and class
units. (¢) Input units color coded by coordinates of corre-
sponding unit embeddings are visualized. Interestingly,
many units in the input layer appear to cluster according
to their marginal occupancy of digits. This is an expected
property for the boundary pixels in MNIST which are
always empty. The model represents those input pixels
with similar latent units Z and effectively compresses the
weight space. (d) Performance table of MNIST models.

Label Task Pixel Ta Pixel-Lab

Figure 5: Few-shot Disentangling Task (a)-(c) Left:
Performance of MetaPrior when inferring Q(Z|D) as a
function of inference work (color coding) and revealed
test data (shots divided by 20) for adaptation to a new
task. Right: Performance of the baseline MF-BNN model
decays on the clean task. (d) Illustration of the pixel per-
mutation we stress the model with.

ables. We used this meta-representation as a function
prior, and showed its advantageous properties as a learned,
adaptive, weight regularizer that can perform complexity
control in function space. We also showed the complex
correlation structures in the input and output weights of
hidden units that arise from this meta-representation, and
demonstrated how the combination of hypernetwork and
network can adapt to out-of-task generalization settings
and distribution shift by re-aligning the networks to the
new data. Our model handles a variety of tasks with-
out requiring task-dependent manually-imposed structure,
as it benefits from the blessing of abstraction (9) which
arises when rich structured representations emerge from
hierarchical modeling.

We believe this type of modeling jointly capturing repre-
sentational uncertainty, function uncertainty and observa-
tion uncertainty can be beneficially applied to many differ-
ent neural network architectures and generalized further
with more interestingly structured meta-representations.
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Figure 6: Structured Surgery Task (a)-(d) Left: Perfor-
mance of MetaPrior when inferring Q(Z.|D) as a function
of inference work (color coding) and revealed test data
(shots divided by 20) for adaptation to a new task. Right:
Performance of the baseline MF-BNN model decays on
the clean task.

6 Appendix: Structured Surgery

In the multi-task experiments in Sec. we studied
the model’s ability to update representations holisti-
cally and generalize to unseen variations in the train-
ing data. Here, we manipulate the meta-variables in a
structured and targeted way (see Fig.[6). Since Z =
{Zinput, Zhidden, Loutput }» We can elect to perform illa-
tion only on a subset of variables. Instead of learning a
new set of task-dependent Z, variables, we only update
input or output variables per task to demonstrate how the
model can disentangle the representations it models and
can generalize in highly structured fashion. When up-
dating only the input variables, the model reasons about
pixel transformations, as it can move the representation
of each input pixel around its latent feature space. The
model appears to solve for an input permutation by search-
ing in representation space for a program approximating
Zipput = T(Zippy). This search is ambiguous, given
little data and the sparsity underlying MNIST. This pro-
cess demonstrates the alignment the model automatically
performs only of its inputs in order to change the weight
distribution it applies to datasets, while keeping the rest
of the features intact. Similarly, we observe that updating
only the class-label units leads to rapid and effective gener-
alization for class shifts or, in this case, class permutation,
since only 10 variables need to be updated. The model
could also easily generalize to new subclasses smoothly
existing between current classes. These demonstrate the
ability of the model to react in differentiated ways to
shifts, either by adapting to changes in input-geometry,
target semantics or actual features in a targeted way while
keeping the rest of the representations constant.

7 Appendix: Probabilistic Neural
Networks

Let D be a dataset of n tuples {(z1,y1), .., (Tn,Yn)}
where x are inputs and y are targets for supervised learn-
ing. Take a neural network (NN) with L layers, V;

units in layer [ (we drop [ where this is clear), an over-
all collection of weights and biases W = {W;}.1,
and fixed nonlinear activation functions. In Bayesian
terms, the NN realizes the likelihood p(y|z, W); together
with a prior P(W) over W, this generates the condi-
tional distribution (also known as the marginal likeli-
hood) P(y|x) = [ P(y|x, W)P(W)dW, where x de-
notes (1, ...,x,) and y denotes (y1,. .., yn). One com-
mon assumption for the prior is that the weights are drawn
iid from a zero-mean common-variance normal distribu-
tion, leading to a prior which factorizes across layers and
units:

L V; Vi
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where ¢ and j index units in adjacent layers of the network,
and A is the prior weight variance. Maximum-a-posteriori
inference with this prior famously results in an objective
identical to Lo weight regularization with regularization
constant 1/\. Other suggestions for priors have been
made, such as (26)’s proposal that the precision of the
prior should be scaled according to the number of hidden
units in a layer, yielding a contribution to the prior of

N, L).

Bayesian learning requires us to infer the posterior dis-
tribution of the weights given the data D: P(W|D) =
POW)TT., P(yi|zi,W)/P(y|x). Unfortunately, the
marginal likelihood and posterior are intractable as they
involve integrating over a high-dimensional space defined
by the weight priors. A common step is therefore to per-
form approximate inference, for instance by varying the
parameters ¢ of an approximating distribution Q(WV; @)
to make it close to the true posterior. For instance, in
Mean Field Variational Inference (MF-VI), we consider
the factorized posterior:

L V, Vi
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Commonly, ¢ is Gaussian for each weight,
Q(wiijsbriy) = N(Wuijlmig,of, ;). with vari-
ational parameters ¢;; ; {0t ;3 The
parameters ¢ are adjusted to maximize a lower bound
L(®D) to the marginal likelihood given by the Evidence
Lower Bound (ELBO) (a relative of the free energy):

L(®) = Egow) [logP(y|x, W)+logP(W)—logQ(W)].

3)
The mean field factorization assumption renders max-
imizing the ELBO tractable for many models. The



predictive distribution of a Bayesian Neural Network
can be approximated utilizing a mixture distribution
P(y|lz,D) =~ %Zle P(y|z,W?) over S sampled in-
stances of weights W* ~ Q(W).

8 Appendix: Related Work

Our work brings together two themes in the literature.
One is the probabilistic interpretation of weights and
activations of neural networks, which has been a com-
mon approach to regularization and complexity con-
trol (251551105 (115125123 2451255 27)). The second theme is
to consider the structure and weights of neural networks
as arising from embeddings in other spaces. This idea has
been explored in evolutionary computation (3; 8} |345 136))
and beyond, and applied to recurrent and convolutional
NNs and more. Our learned hierarchical probabilistic rep-
resentation of units, which we call a meta-representation
because of the way it generates the weights, is inspired
by this work. It can thus also be considered as a richly
structured hierarchical Bayesian Neural network (7;13).
In important recent work training ensembles of neural
networks (19) was proposed. This captures uncertainty
well; but ensembles are a departure from a single, self-
contained model.

Our work is most closely related to two sets of recent
studies. One considers reweighting activation patterns
to improve posterior inference (16} 22} 29). The use of
parametric weights and normalizing flows (6} 128;132) to
model scalar changes to those weights offers a probabilis-
tic patina around forms of batch normalization. However,
our work is not aimed at capturing posterior uncertainty
for given weight priors, but rather as a novel weight prior
in its own right. Our method is also representationally
more flexible, as it provides embeddings for the weights
as a whole.

Equally, our meta-representations of units is reminiscent
of the inducing points that are used to simplify Gaussian
Process (GP) inference (31535;(37), and that are key com-
ponents in GP latent variable models (20;138). Rather like
inducing points, our units control the modeled function
and regularize its complexity. However, unlike inducing
points, the latent variables we use do not even occupy the
same space as the input data, and so offer the blessing of
extra abstraction. The meta-representational aspects of
the model can be related to Deep GPs, as proposed by (4).

Finally, as is clearest in the permuted MNIST example,
the hypernetwork can be cast as an interpreter, turning one
representation of a program (the unit embeddings) into a
realized method for mapping inputs to outputs (the NN).
Thus, our method can be seen in terms of program induc-
tion, a field of recent interest in various fields, including

concept learning (17 [18} 215 30).
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