
Fast Uncertainty Estimates and Bayesian Model Averaging of DNNs

Wesley Maddox1 Timur Garipov4,5 Pavel Izmailov1 Dmitry Vetrov2,3 Andrew Gordon Wilson1

1Cornell University, 2Higher School of Economics, 3Samsung-HSE Laboratory,
4Samsung AI Center in Moscow, 5Lomonosov Moscow State University

Abstract

Reliable uncertainty estimates for both the
weights and the predictions of deep learning
models have proven hard to come by due to
the complexity and size of the models used.
In many other areas, Bayesian methods are
used to capture uncertainty estimates and in-
corporate prior knowledge into the modelling
process; however, they often suffer from scal-
ability issues when applied to deep learning
models. We extend the recently developed
stochastic weight averaging (SWA) procedure
in a simple and computationally efficient man-
ner, creating Gaussian approximations to the
true posterior distribution. This procedure,
termed SWA-Gaussian (SWAG), produces re-
liable uncertainty estimates, while maintain-
ing accuracy in Bayesian model averaging.
Code is available at https://github.
com/wjmaddox/swa_uncertainties.

1 Introduction

Deep learning models are typically over-confident in their
predictions [4] and will often silently fail in practice. In-
corporating Bayesian model averaging has been shown
to help in model robustness; however, Bayesian methods
typically have issues scaling to large datasets, requiring
approximate inference techniques. In Bayesian inference,
we are interested in learning a distribution over the set of
model parameters instead of simply a single model, and
using that distribution to reason with uncertainty. To do
so requires using Bayes’ rule, p(θ|D) ∝ p(D|θ)p(θ).

Typically, this posterior distribution cannot be computed
analytically and must be used approximately. Three stan-
dard methods of approximate Bayesian inference exist:
Markov Chain Monte Carlo (MCMC), variational infer-

ence (VI), and Laplace approximations. MCMC is asymp-
totically exact, but computationally expensive even for
small models; VI and Laplace approximations induce
bias by assigning a parametric form, but perform well
in practice. We instead introduce another method: using
the iterates of stochastic gradient descent by performing
Polyak-Ruppert averaging [13, 17]. Like Laplace and VI,
this method introduces a parametric structure, but directly
uses the iterates instead of estimating a different set of
parameters (like VI) or using curvature (like Laplace).

2 Background

In this section, we describe some prior related work on
Laplace approximations for neural networks and on the
asymptotic distribution of the iterations of stochastic gra-
dient descent (SGD).

2.1 Laplace Approximations for Bayesian Neural
Networks

All three standard techniques for approximate inference
can be applied to Bayesian neural networks and deep
learning. However, variational inference and Laplace
approximations have gained the most interest, as they
show some promise in scaling to deep neural networks.

Laplace approximations use a Taylor expansion around
the maximum a posteriori (MAP) estimate, θ∗, to con-
struct a Gaussian distribution around the true posterior
[8]. This approximation to the posterior distribution can
be written as

p(θ|D) ≈ p(θ∗) exp {−1

2
(θ − θ∗)′H|θ∗(θ − θ∗)}, (1)

where H|θ = ∇θp(y|θ)∇θp(y|θ)′ is the Hessian (or cur-
vature) of the likelihood evaluated at the MAP estimate.
The Laplace approximation is motivated by the Bernstein-
von Mises Theorem, which states that in the large data
limit and under certain regularity conditions, posterior

https://github.com/wjmaddox/swa_uncertainties
https://github.com/wjmaddox/swa_uncertainties

distributions tend towards N(θ∗, I−1), where I−1 is the
inverse of the Fisher information matrix (the expected
value of the Hessian), in total variation distance [19].

The Laplace approximation was first used for Bayesian
neural networks in [7], where a diagonal approximation to
the inverse of the Hessian was utilized for computational
reasons. For scalability reasons, [16] propose the use of
either a diagonal or block Kronecker factored (KFAC)
approximation to the Hessian matrix for Laplace approx-
imations. The diagonal approximation is easily written
as H ≈ diag(I) = σdiag(E(∇θ log p(y|x, θ)2) + τ,)
where τ is the standard deviation of the assumed Gaus-
sian prior on the weights and σ is a scaling factor.1 For a
deep neural network, the KFAC approximation writes the
Hessian matrix as a Kronecker factorization between the
covariance of the activations by each layer, Ql = ala

′
l,

and the Hessian of the error before the activation function:
Hl = ∇hl

2E. This type of approximation has been suc-
cessfully used as a pre-conditioner for standard stochastic
gradient descent (SGD) [10] and for MCMC sampling
with stochastic gradient Langevin dynamics [11]. This
potentially trades off accuracy in the approximation for
computational feasibility.

2.2 Asymptotic Normality of SGD and Averaging

Instead of relying on Laplace approximations, we pro-
pose to use the covariance of Stochastic Weight Averag-
ing (SWA) [5], controlling the structure of the posterior
through the hyper-parameters of SGD as in [9].

In stochastic weight averaging (SWA) [5], a standard de-
caying learning rate is used until SWA iterates are stored.
Then, the learning rate is held at a high constant value,
with the final iteration of each epoch being stored in a
running average of the parameters, similar to thinning in
MCMC. This running weight average is then used to com-
pute predictions for deep neural networks. In the experi-
ments performed in [5] and [2], SWA outperforms other
training techniques at minimal computation cost, produc-
ing state-of-the-art results on semi-supervised learning
tasks. We also note that a similar approximation to both
SWA and Eq. 2 was used in [3] for producing confidence
intervals from the LASSO for high-dimensional linear
regression.

It has been shown that the sample average of SGD
iterations with a constant learning rate will converge
around a stationary point, θ′, and the covariance of
this distribution will be H(θ′)−1SH(θ′)−1, where S =

1We mention here that even computing these variances can
be quite expensive: our PyTorch implementation took about 400
seconds on Titan X GPUs and a grid search for σ took about
1000 seconds for VGG16 on CIFAR-10.

E(∇θl(θ)∇θl(θ)T) [17, 13, 1, 9]. That is, the asymptotic
distribution of the running average is

1

T

T∑
i=1

θi ≈ N(θ′,H(θ′)−1SH(θ′)−1), (2)

where T is the total number of steps and θi is each itera-
tion. This motivates the usage of this distribution as an
approximate posterior distribution. Additionally, burn-
in phases do not change the asymptotic posterior, and
additionally can help the rate of convergence in convex
stochastic optimization [14, 1]. Finally, [9] also showed
that constant step size SGD (including momentum vari-
ants) can be used as a variational-EM type algorithm by
viewing the sequence of SGD iterates as a Markov chain.
Directly computing this covariance would be quite ex-
pensive; however, [3] proposed using a version of the
sample covariance, Σ, as an estimator of this matrix, thus
justifying our usage of the sample covariance of SWA.

3 Scalable Gaussian Posterior
Approximations using SWA

We propose to make a Gaussian approximation to the true
posterior for Bayesian neural networks by using the SWA
estimate as the posterior mean, using the same algorithm
as in [5], while also estimating the covariance. Our pro-
posed methods thus have the same expectation in weight
space as SWA, but differ in their covariance, and thus in
their predictions. We propose three modifications of vary-
ing time and memory costs: SWAG, which is diagonal
and only requires two extra copies of the model parame-
ters, SWAG-LR, which requires k+1 copies of the model
parameters, and SWAG-Laplace, which requires the same
storage as SWAG-LR but the computation of a diagonal
Hessian computation after training.

3.1 SWA-Diagonal Gaussian (SWAG)
Approximations

We first propose to additionally keep a running average
of the second moment while running SWA: E(θ2) =

θ̄2 = 1
T

∑T
i=1 θ

2
i . After training, the variance can then

be estimated using the standard sample variance identity:
VθSWA

≈ θ̄2− θ̄2. We then compute a diagonal Gaussian
approximation using these estimated moments. This gives
the diagonal Gaussian distribution, N(θSWA, VθSWA

). In
our experiments, we term this method SWAG.

To generate samples from the approximate posterior, two
copies of the model must be stored: the SWA estimate of
the mean and the estimate of the second moment. Gener-
ating these ensembles is quite cheap as it only requires
sampling independent normal distributions and rescaling

them by the variance, while predictions from an ensemble
of size K require simply K forward passes through the
network architecture.

3.2 SWA - Low Rank Covariance Approximations
(SWAG-LR)

To improve this approximation beyond the diagonal, a
low-rank covariance approximation can be computed in-
stead of the second moment. Noting that the sample
covariance matrix can be written as the sum of outer prod-
ucts, Σ = 1

T−1
∑T
i=1(θi − θ̄)(θi − θ̄)′ = XX ′, where

(X)i = 1√
T−1 (θi − θ̄i), and θ̄i is the running estimate of

the parameters’ mean for the ith sample. To sample and
compute moments, only X must be stored, which scales
as O(Td), where d is the number of parameters and T
is the number of samples of the sample covariance.2 In
practice, we keep a running estimate with N = 20, for
GPU memory issues. A full-rank version of this approxi-
mation was first described in [9], but stores the full Σ. In
our experiments, we term this method SWAG-LR.

3.3 SWA Low Rank Asymptotic Covariance
Approximation (SWAG-Hessian)

We can also approximate the asymptotic covariance of
Polyak-Ruppert averaging by using the low rank covari-
ance approximation described in the previous section and
using diagonal Hessian approximations. Instead of com-
puting the full inverse Hessian, we will again use a diago-
nal approximation, multiplying it by the low rank sample
covariance approximation described in the previous sec-
tion. For sampling, this gives the approximation

(
H(θ′)−1Σ

)1/2 ≈ diag
(

1

τ + Iii

)
X. (3)

This approach should merge the trajectory dependence of
the SWAG approximation with the curvature information
of Laplace approximations. The trajectory dependence
should remove the need for scaling of the Laplace ap-
proximation in practice, while the curvature information
from the Hessian should incorporate further information
about the loss geometry. In our experiments, we term this
method SWAG-Hessian.

2It is worth noting that the resulting Gaussian is degenerate,
but any Gaussian generated from the sample covariance will be
degenerate unless T > d. To draw samples, we now only need
to draw a T -dimensional independent Gaussian vector.

4 Results

4.1 Toy Distribution Problem

To illustrate the possibility of using SGD trajectories as
an approximate posterior distribution, we first consider a
toy mixture distribution with likelihood proportional to:
N(x|0, 0.12) + N(x|1, 0.152)200. Experimental details
are in Appendix B.2. The results of the posterior ap-
proximation for Laplace, SWAG, and SWAG-Hessian are
shown in Figure 1. While all three are Gaussian approxi-
mations, there are vast differences between them: SWAG
seems to estimate the curvature of the distribution quite
accurately, while Laplace is trapped in a single mode. Fi-
nally, SWAG-Hessian is somewhat over-confident, with
too small of a variance to adequately model the true dis-
tribution.

−4 −2 0 2 4
x

−30

−20

−10

0

10

20

Lo
g-
Lik

el
ih
oo

d

Figure 1: SWAG and Laplace approximations of a toy
mixture distribution. Blue is true log-likelihood, while
red is SWAG approximation, orange is SWAG-Hessian,
and black is Laplace.

4.2 Toy Regression Problem

Next, we compare the SWAG methods with diagonal
Laplace approximations on a toy regression problem:
modelling y ∼ x3 + N(0, 32) with a simple two-layer
MLP as in [16]. Experimental details are in Appendix
B.3. We find that the two covariance based posteriors are
highly confident within the range of the training data, but
less confident outside. We additionally see that Laplace
and SWAG-Hessian are essentially confident nowhere,
even after optimizing for the best scale. This suggests that
SWAG and SWAG-LR are better approximations of the
true posterior distribution on this toy neural network, and
their posterior mean mimics the SWA point estimate.

(a) Diagonal SWA approxima-
tion.

(b) Low-rank, sample covari-
ance SWA approximation.

(c) Diagonal of Hessian ap-
proximation. Scaling was
tuned with a validation set.

(d) SWAG-Hessian approxima-
tion. Scaling was tuned with a
validation set.

Figure 2: Posterior means and uncertainty estimates for
a toy regression problem. Black points are testing data,
black line is true function, red line is SWA point estimate,
while blue line is average prediction from 50 samples of
the approximate posterior, and blue shading are successive
standard deviations from the mean posterior.

4.3 Uncertainty Estimation with DNNs

All further experiments used the VGG16 architecture [18]
trained for 300 epochs as in [5]. Further experimental
details are in the Appendices.

We next show the calibration gap of the SWAG-based
Bayesian model averages on CIFAR100 in Figure 3. Well-
calibrated models of a probability distribution should be
accurate on average p% of the time over repeated draws if
their output probability is p%. Here, we see that all three
of the SWAG approximation models are significantly bet-
ter calibrated than both SWA and diagonal Laplace ap-
proximations. In fact, the two models with covariance
structure (SWAG-LR and SWAG-Hessian) are quite well-
calibrated, reaching the expected calibration line. We
verify this by computing the expected calibration error
[12] in Table A.3.

4.4 Out-of-Sample Uncertainty

The Bayesian approach should additionally provide im-
provements in uncertainty when testing on data that is out-
side of the data distribution. We describe this experiment
in further detail in Appendix B.5. Clearly, out-of-sample
images should be recognized as more uncertain, and thus

0.2 0.4 0.6 0.8 1.0
Max Probability

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 3: Calibration plots for VGG16 on CIFAR100.
Black is the true accuracy/maximum probability line.
Blue is SWA, green is diagonal Laplace, red is SWAG,
yellow is SWAG-LR, and grey is SWAG-Hessian.

have higher entropy than in-distribution test images. Thus,
models that accurately capture uncertainty should be able
to distinguish between in and out-of-sample images, as
measured by entropy of predictions. Looking at the accu-
racy of a threshold formed by entropy, as shown in Figure
A.1 and the AUC of this classifier, which is given in
Table A.2, we see that the SWAG models (but not SWAG-
Hessian) can distinguish better between the in and out
of sample distributions better overall than Laplace and
SWA. This suggests that uncertainty is better modeled
with these posterior approximations.

4.5 Bayesian Model Averaging on DNNs

We test our fast posterior approximation with deep neural
networks on CIFAR-10 and CIFAR-100 datasets. For
models trained on CIFAR-10, we additionally test on the
recently developed CIFAR-10.1 set [15] to assess gener-
alization. Further experimental details are in Appendix
B.4.

The accuracy of Bayesian model averaging when com-
pared to both SWA and SGD point estimates are shown
in Table A.1. We note that with 30 samples the SWAG ap-
proximations improve the ensemble accuracy by a small
but statistically significant amount against standard SWA,
and require no extra hyper-parameter tuning. Interest-
ingly, they do not outperform the empirical distribution of
constant learning rate SGD, but perform quite similarly
to the empirical distribution. Based on this performance,
this suggests that the Gaussian approximation is close
to the empirical distribution of SGD. Of course, at test
time, using the empirical distribution requires consider-
ably more storage than generating the models on the fly,
as in both SWAG methods. On the CIFAR10.1 dataset,
we also see that all of the SWA models outperform their

SGD counterparts, suggesting that the SGD models are in
a sharper optima, and that both SWA and SWAG provide
better generalization capabilities.

In Figure A.2, we test the accuracy of the model in com-
parison to the number of samples from the approximation
distribution to test how many samples are necessary for
improvements using this type of ensembling. This is criti-
cal for evaluating the test time computational efficiency
of the proposed methods.

5 Conclusion

We have proposed SWAG, a Gaussian posterior approx-
imation for DNNs using the covariance of the SGD it-
erates. SWAG produces much better model calibration
and out-of-sample uncertainty estimation than Laplace
posterior approximations. The proposed approximations
are also considerably computationally cheaper, and re-
quire no hyper-parameter tuning. SWAG also seem to act
similarly to Bayesian model averages produced by the em-
pirical distribution of SGD, suggesting that the Gaussian
approximation is well founded. There are many exciting
directions to extend this work: particularly in incorpo-
rating more interesting covariance matrix and Hessian
approximations.

Acknowledgements

We would like to thank Ruqi Zhang and Jacob Gardner
for helpful discussions, particularly in regards to storage
issues of the empirical covariance matrix. WM is sup-
ported by an NSF Graduate Research Fellowship under
Grant No. DGE-165044.

References
[1] S. Asmussen and P. W. Glynn. Stochastic simulation:

algorithms and analysis. Number 57 in Stochastic
modelling and applied probability. Springer, New
York, 2007. OCLC: ocn123113652.

[2] B. Athiwaratkun, M. Finzi, P. Izmailov, and
A. G. Wilson. Improving Consistency-Based Semi-
Supervised Learning with Weight Averaging. arXiv:
1806.05594, June 2018.

[3] X. Chen, J. D. Lee, X. T. Tong, and Y. Zhang. Statis-
tical Inference for Model Parameters in Stochastic
Gradient Descent. arXiv: 1610.08637, Oct. 2016.

[4] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On
Calibration of Modern Neural Networks. In ICML,
June 2017.

[5] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov,
and A. G. Wilson. Averaging Weights Leads to

Wider Optima and Better Generalization. In To ap-
pear in UAI, 2018, Mar. 2018. arXiv: 1803.05407.

[6] B. Lakshminarayanan, A. Pritzel, and C. Blundell.
Simple and Scalable Predictive Uncertainty Estima-
tion using Deep Ensembles. In NIPS, 2017.

[7] D. J. C. MacKay. A Practical Bayesian Framework
for Backpropagation Networks. Neural Computa-
tion, 4(3):448–472, May 1992.

[8] D. J. C. MacKay. Information theory, inference, and
learning algorithms. Cambridge University Press,
Cambridge, UK ; New York, 2003.

[9] S. Mandt and M. D. Hoffman. Stochastic Gradient
Descent as Approximate Bayesian Inference. JMLR,
18:1–35, 2017.

[10] J. Martens and R. Grosse. Optimizing Neural
Networks with Kronecker-factored Approximate
Curvature. arXiv:1503.05671, Mar. 2015. arXiv:
1503.05671.

[11] Z. Nado, J. Snoek, B. Xu, R. Grosse, D. Duvenaud,
and J. Martens. Stochastic Gradient Langevin Dy-
namics That Exploit Neural Network Structure. In
ICLR Workshop Track, 2018.

[12] M. P. Naeini, G. F. Cooper, and M. Hauskrecht. Ob-
taining well calibrated probabilities using bayesian
binning. In AAAI, pages 2901–2907, 2015.

[13] B. T. Polyak and A. B. Juditsky. Acceleration of
Stochastic Approximation by Averaging. SIAM
Journal on Control and Optimization, 30(4):838–
855, July 1992.

[14] A. Rakhlin, O. Shamir, and K. Sridharan. Mak-
ing Gradient Descent Optimal for Strongly Convex
Stochastic Optimization. In ICML, Sept. 2011.

[15] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar.
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
arXiv: 1806.00451, June 2018.

[16] H. Ritter, A. Botev, and D. Barber. A Scalable
Laplace Approximation for Neural Networks. In
ICLR, 2018.

[17] D. Ruppert. Efficient Estimators from a Slowly Con-
vergent Robbins-Munro Process. Technical Report
781, Cornell University, School of Operations Re-
port and Industrial Engineering, 1988.

[18] K. Simonyan and A. Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.
arXiv:1409.1556, Sept. 2014. arXiv: 1409.1556.

[19] A. W. v. d. Vaart. Asymptotic Statistics. Cambridge
Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge, 1998.

A Supplementary Tables and Figures

10−10 10−8 10−6 10−4 10−2 100

Entropy

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Accuracy vs Entropy Threshold

Figure A.1: Accuracy of the classifier that is attempting to
predict out-of-sample images by thresholding the entropy.
Blue is SWA, red is SWAG, orange is SWAG-LR, green
is diagonal Laplace, while grey is SWAG-Hessian.

100 101 102

Number of Samples in Ensemble

91.5

92.0

92.5

93.0

93.5

Ac
cu

ra
cy

Figure A.2: Accuracy by number of models in ensem-
ble for VGG16 trained on CIFAR-10 dataset. Blue line
is SWA point estimate, while black line is SGD point
estimate. Red is SWAG and orange is SWAG-LR.

B Experimental Details

B.1 SWA Averaging Details

Unless otherwise specified, we followed the same proce-
dure for SWA as in [5], using VGG16 [18] models. We
ran models for 300 epochs using SGD with momentum
with εt = 0.01 and η = 0.9. We additionally used a de-
caying learning rate schedule prior to the beginning of
SWA averaging, with a constant learning rate of ε = 0.01
afterwards. For SWA, we save the state at the final batch
in the epoch at every epoch, beginning with epoch 161.

Figure A.3: Distribution of the entropies for (diagonal)
Laplace, SWA, and SWAG based approximations for CI-
FAR10 test set, with VGG16 trained on 5 classes of CI-
FAR10. Red is within distribution, while grey is out-of-
distribution. X axis here is entropy score, with a maxi-
mum possible entropy of− log 0.2 = 1.61, and the y axis
is the count of entropies at a test point for a given bin.

10−2 10−1 100

Entropy

100

Ac
cu
ra
cy

Figure A.4: Accuracy by entropy of models on CIFAR
100. Blue is SWA, red is SWAG, orange is SWAG-LR,
green is diagonal Laplace, while grey is SWAG-Hessian.

B.2 Toy Distribution

To form the Laplace approximation, we performed a grid
search to find the maximum, and then evaluated the sec-
ond derivative at that point to compute the standard devia-
tion.

To form the SWAG approximation, we ran SGD for 100
steps, computing the mean and standard deviation of the
last 80 steps, using this as the posterior approximation.
Here, there is no noise, and so we had to choose the
learning rate via cross-validation. We did this by running
SGD 10 times with random initialization x0 ∼ N(0, 32),
and computing the mean squared error between the log-
likelihood of the Gaussian distribution formed by the

Table A.1: Accuracy comparisons with VGG architecture for CIFAR-10 and CIFAR-100 ensembling experiments,
including CIFAR-10.1 dataset. CIFAR-10.1 models were trained on CIFAR-10, as in [15]. All numbers are averaged
over five runs, with 10 replications for each model also coming for the sampling based models.

Dataset (epochs) SGD, point SGD, empirical SWA SWAG, 30 samples SWAG-LR, 30 samples

CIFAR-10 (300) 93.19± 0.22 93.64± 0.14 93.44± 0.09 93.53± 0.14 93.57± 0.15
CIFAR-10.1 84.93± 0.32 85.78± 0.20 86.14± 0.59 86.18± 0.57 86.24± 0.67
CIFAR-100 (300) 73.29± 0.38 74.74± 0.26 74.04± 0.25 74.44± 0.31 74.57± 0.39

Table A.2: Area under the curves computed on the CIFAR
5 tasks using entropies as uncertainty estimates.

Method AUC

Laplace 80.41
SWA 79.26
SWAG 80.84
SWAG-LR 80.86
SWAG-Hessian 47.22

Table A.3: Expected calibration error on 1 CIFAR100
model. Lower is better.

Method ECE

Laplace 0.7604
SWA 0.7650
SWAG 0.3794
SWAG-LR 0.6001
SWAG-Hessian 0.7093

SGD iterates and the true distribution’s log-likelihood.

Finally, to form the SWAG-Hessian approximation, we
used the SWA mean and computed its second derivative,
and then calculated the standard deviation.

B.3 Toy Regression Problem

We draw 20 samples of x ∼ U(−4, 4) and y ∼ x3 +
N(0, 32), using a Gaussian distribution for the likeli-
hood. We use a two-hidden layer MLP with ReLU activa-
tions and 7 hidden units to directly compare to [16], with
weight decay of 1e−4 creating a Gaussian prior with that
standard deviation. We used the standard learning rate
schedule, but with εt = 0.001 and ε = 0.01.

To estimate the diagonal Laplace approximation, we fol-
lowed a grid search on a validation set over the scaling
factor of the Hessian as in [16], but did not also scale τ,
instead using the weight decay factor that we trained the
network with. Otherwise, we would be creating both a
data-dependent prior and scaling the prior incorrectly as

compared to what is used. To do otherwise would essen-
tially be modifying the prior to fit the data distribution
post facto, violating the assumptions of Bayes’ Theorem.

B.4 Bayesian Model Averaging with DNNs

Comparisons with SGD are with independently trained
models that do not use the SWA learning rate (instead
decaying in the same manner to zero), and are supposed
to represent best practice with this architecture. Here, re-
ported standard deviations come from both 5 independent
runs of the model and K = 30 independent samples from
the approximate posterior (either empirical or Gaussian)
when possible. Here, empirical denotes 30 samples from
the empirical distribution formed by SGD iterates, and so
the comparison is to test if the Gaussian used by SWAG
is a good proxy for this distribution.

In both cases, Bayesian predictions on the testing data,
y∗, using the approximate posterior, q, can now be made
using Bayesian model averaging:

p(y∗|y) = Ep(θ|y)(p(y∗|θ)) (4)

≈ 1

K

K∑
i=1

p(y∗|θi), θi ∼ q(θ|Y).

As we use weight decay, this corresponds to a version of
a Gaussian prior on the weights, implying a proper prior.

B.5 Out-of-Sample Uncertainty

To out of sample uncertainty, we use a modified version
of the experiment in [6]. We train VGG models on five
classes from the CIFAR-10 dataset, but now test on the
full 10 class dataset. We hypothesize that predictions
on images from the five out-of-sample classes should
be more uncertain than images from the five in-sample
classes. Thus, we consider the entropy of the predictions,
and use a threshold to classifier test images beneath the
threshold as in-class, and test images above the threshold
as out-of-class. We then compute the AUC based on the
accuracy of this threshold.

As to the poor performance of the SWAG-Hessian method

on this task, we found paradoxically, that out-of-sample
images were nearly indistinguishable in terms of entropy,
and if anything, had a slightly lower distribution. We
attribute this to the Hessian providing too much regular-
ization, and thus the predictions have too much variance
associated with them.

	Introduction
	Background
	Laplace Approximations for Bayesian Neural Networks
	Asymptotic Normality of SGD and Averaging

	Scalable Gaussian Posterior Approximations using SWA
	SWA-Diagonal Gaussian (SWAG) Approximations
	SWA - Low Rank Covariance Approximations (SWAG-LR)
	SWA Low Rank Asymptotic Covariance Approximation (SWAG-Hessian)

	Results
	Toy Distribution Problem
	Toy Regression Problem
	Uncertainty Estimation with DNNs
	Out-of-Sample Uncertainty
	Bayesian Model Averaging on DNNs

	Conclusion
	Supplementary Tables and Figures
	Experimental Details
	SWA Averaging Details
	Toy Distribution
	Toy Regression Problem
	Bayesian Model Averaging with DNNs
	Out-of-Sample Uncertainty

