Dependent Type Networks: A Probabilistic Logic via the Curry-Howard Correspondence in a System of Probabilistic Dependent Types

Jonathan Warrell1,2,∗ and Mark Gerstein1,2,3

1Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
3Department of Computer Science, Yale University, New Haven, CT 06520, USA
∗jonathan.warrell{＠yale.edu, ＠gmail.com}

Abstract

We first introduce a Probabilistic Dependent Type System (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta reduction. Further, we formulate a probabilistic logic by defining a Dependent Type Network (DTN) within the PDTS, where the DTN is derived as a direct result of the Curry-Howard correspondence. We show that the DTN framework is equivalent to Markov Logic Networks, and hence is a universal representation for discrete distributions.

1 Introduction

Stochastic functional programming languages have used non-deterministic beta reduction to provide a probabilistic semantics for languages based on the untyped lambda calculus [1] and probabilistic type systems based on the simply-typed lambda calculus [2]. Here, we show that a similar approach can be used to provide semantics for a probabilistic type system based on intuitionistic type theory [3], hence including also dependent types. We call these Probabilistic Dependent Type Systems (PDTs).

We demonstrate that a probabilistic logic can be naturally formulated in our PDTS framework, which we term a Dependent Type Network (DTN), using the Curry-Howard correspondence. The logic we derive is distinct from previous formulations of probabilistic logic: Previous approaches have involved associating weights with sentences which induce a distribution over interpretations (possible worlds) [4]; formulating conditions for consistently assigning probabilities to sentences or interpretations in a simply-typed higher-order language [5, 6]; or assigning terms and deterministic functions probabilistically to types via probabilistic type judgments [7]. In contrast, we formulate an intuitionistic type system of non-deterministic functions, and derive a probabilistic logic as a subsystem. We show that DTNs are equivalent to Markov Logic Networks (MLNs) [4], and hence are a universal representation for discrete distributions.

2 A System of Probabilistic Dependent Types

We begin by defining a probabilistic dependent type system $\lambda P^\Sigma \text{bool}$. Since this system includes stochastic functions and dependent types, we naturally derive expressions which represent distributions over terms of multiple types, distributions over types, as well as functions whose return type is probabilistically determined. We first define an abstract syntax for the language:

\begin{align*}
\mathcal{C} &::= 1 \mid \text{true} \mid \text{false} \mid \text{unit} \mid \text{bool} \\
\mathcal{S} &::= * \mid \Box \\
\mathcal{V} &::= \{a, b, c, \ldots A, B, \ldots a_1, b_1, c_1 \ldots a_2\ldots\} \\
\mathcal{U} &::= \mathcal{C} \mid \mathcal{V} \mid (\mathcal{U}, \mathcal{U})_T \\
\mathcal{Z} &::= \{\} \mid \{(\mathcal{T},\mathcal{T}), \ldots \mathcal{Z}\} \\
\mathcal{T} &::= \mathcal{U} \mid (\mathcal{T}\mathcal{T}) \mid \lambda \mathcal{V} : \mathcal{T}.\mathcal{T} \mid \text{random}_p(\mathcal{T}) \mid \\
&\text{if}\mathcal{V}\text{then}\mathcal{T}\text{else}\mathcal{T} \mid \pi_1\mathcal{T} \mid \pi_2\mathcal{T} \mid \\
&\sum\mathcal{V} : \mathcal{T}.\mathcal{T} \mid \prod\mathcal{V} : \mathcal{T}.\mathcal{T} \mid (\lambda\mathcal{V}.\mathcal{Z})\mathcal{T}, (1)
\end{align*}
where C are type/value constants, S are sorts, V are variables, U are values, T are pseudo-expressions (a subset of which will be legal expressions), ρ is any real number in the interval $[0,1]$, and the syntactic construction Z allows us to form lists of paired terms. We will refer to the deterministic subsystem built out of expressions not involving random and $(\lambda V.Z)$ constructions as $\lambda P^\Sigma_{\text{bool}}$, and write $T_{\lambda P^\Sigma_{\text{bool}}}$ for the set of common pseudo-expressions. Next, we define inductively a weighted β-reduction relationship ($\beta\rho$-reduction) on pseudo-expressions, $\tau_1 \rightarrow^\rho_\beta \tau_2$ via:

$$
\begin{align*}
\pi_1(u_1, u_2)_\tau & \rightarrow^1_\beta u_1 \\
\pi_2(u_1, u_2)_\tau & \rightarrow^1_\beta u_2 \\
\text{if true then } \tau_1 \text{ else } \tau_2 & \rightarrow^1_\beta \tau_1 \\
\text{if false then } \tau_1 \text{ else } \tau_2 & \rightarrow^1_\beta \tau_2 \\
\text{random}_\rho(\tau) & \rightarrow^1_\beta (\tau \text{ true}) \\
\text{random}_\rho(\tau) & \rightarrow^1_\beta (\tau \text{ false}) \\
(\lambda x: \tau_1.\tau_2)_\tau_3 & \rightarrow^1_\beta \tau_2[x := \tau_3] \\
\text{if } \tau_3 \in T_{\lambda P^\Sigma_{\text{bool}}}, \\
\text{and no FV captured,} \\
(\lambda x.Z)_\tau_3 & \rightarrow^1_\beta (\lambda x: \tau_1.\tau_2)_\tau_3 \\
\text{if } \tau_3 \in T_{\lambda P^\Sigma_{\text{bool}}}, \\
\text{and } \tau_3 : \tau_1, (\tau_1, \tau_2) \in Z, \\
\text{and no conflicting} \\
\text{reductions of same type.}
\end{align*}
$$

(2)

where, $u_1, u_2 \in U$, $\tau_1, \tau_2, \tau_3, \tau \in T$, $b_1, b_2 \in \{\text{true}, \text{false}\}$, $Z \in Z$, FV abbreviates free variables, and we write ‘in’ for the list membership relation (see Supp. Eqs. 3 and 6 for full description of FV and conflicting reduces conditions). The reduction relation $\beta\rho$ is extended by allowing reduction of sub-pseudo-expressions while enforcing a ‘stochastic memoization’ property as defined in [1], and we write $\tau_1 \rightarrow^{\rho_0}_\beta \tau_2$ when the sum of the products of the ρ values across all reduction chains between τ_1 and τ_2 is ρ_0 (see Supp Eq. 6 and following, and Supp. Prop. 5).

To apply the reduction rules in Eq. 2, it is necessary to define the relation (or judgement) $a : A$, which can be read as ‘a is of type A’. This can be done by specifying the type inference rules for the system. For the deterministic component, $T_{\lambda P^\Sigma_{\text{bool}}}$, we use standard typing rules for dependent type systems (see [9] and Supp. Eq. 4). Note particularly, that an expression of the form $\prod a : A.B$ represents the dependent type of functions whose inputs are of type A, and whose outputs may have a type which depends on their input $B(a)$. Similarly, an expression of the form $\Sigma a : A.B$ represents the type of pairs whose first element is of type A, and whose second element has the dependent type $B(a)$. Also, note that all typing judgments are relative to a (possibly empty) context, Γ, which assigns types to any FVs. To identify legal expressions in $\lambda P^\Sigma_{\text{bool}}$ (i.e. including non-deterministic expressions), we define two operators Types and Reductions on pseudo-expressions, where Reductions(τ) returns the set of normal forms to which a given pseudo-expression reduces with non-zero probability, and Types(τ) returns the set of types corresponding to those normal forms (we will ensure all reduction sequences of legal expressions in $\lambda P^\Sigma_{\text{bool}}$ end in $\lambda P^\Sigma_{\text{bool}}$ normal forms). We define these operators inductively (see Supp. Eq. 7), and define the legal expressions in $\lambda P^\Sigma_{\text{bool}}$ as all expressions τ with non-empty Types(τ) and Reductions(τ) sets.

We can demonstrate that $\lambda P^\Sigma_{\text{bool}}$ has a number of desirable properties. First, we have that $\tau_1 \rightarrow^0_\beta \tau_2$, implies Types$(\tau_1) \supseteq$ Types(τ_2), and Reductions$(\tau_1) \supseteq$ Reductions(τ_2) (Supp. Prop. 3), hence $\beta\rho$-reduction weakly preserves types (weak preservation). Second, we can show that a progress property holds, in that for any legal expression the ρ values associated with the available reductions sum to 1, implying that we can make a probabilistic reduction step hence giving sampling semantics to the relation $\beta\rho$ (Supp. Prop. 4a), and that all valid reduction sequences of expressions end in an expression of $\lambda P^\Sigma_{\text{bool}}$ in normal form (Supp. Prop. 4b). Further, we can show that Reductions(τ) and Types(τ) contain exactly the normal forms and associated types to which τ reduces with non-zero probability (Supp. Prop. 6). Together, these properties imply that probabilistic type judgement is possible by sampling in $\lambda P^\Sigma_{\text{bool}}$. We summarize this in the following (writing NF for normal form):

Theorem 1. (Probabilistic Type Judgment): Letting $t_{\tau_1} (\tau_2) = \sum_{\tau_3 \in \text{NF}_{\lambda P^\Sigma_{\text{bool}}} | \tau_3, \tau_2} \rho_{\tau_3}$, where $\tau_1 \rightarrow^0_\beta \tau_3$, we have (a) $t_{\tau_1} (\tau_2) > 0 \Rightarrow \tau_2 \in \text{Types}(\tau_1)$ and $t_{\tau_1} (\tau_2) = 0 \Rightarrow \tau_2 \notin \text{Types}(\tau_1)$; and (b) $t_{\tau_1} (\tau_2)$ can be estimated by the frequency with which τ_1 reduces to $\tau_3 \in \text{NF}_{\lambda P^\Sigma_{\text{bool}}}$ such that $\tau_3 : \tau_2$.

A proof is provided in the supplement (Supp. Prop. 7).

3 Dependent Type Networks

We now formulate a Dependent Type Network (DTN), which will be a weighted network of formulae in first-order logic embedded in a PDTS as above. We require a base context Γ_0 which fixes symbols for the constants, predicates and functions of the model, for instance containing symbols (λ-types-constructors) $B^1_{n=1...N_{B^1}}$, and $B^2_{n=1...N_{B^2}}$ for unary and binary predicates respectively;
In Eq. 3, D is defined as follows:

$$D = \begin{cases} \text{let } x_{1,1} = \text{random}_{0.5}(\lambda x : \text{bool}. \text{if } x \text{ then } b_{1,1,1} \text{ else } b_{1,1,0}) \text{ in} \\
\phantom{\text{let } x_{1,1} = \text{random}_{0.5}(\lambda x : \text{bool}. \text{if } x \text{ then } b_{1,1,1} \text{ else } b_{1,1,0}) \text{ in} \quad \ldots} \\
\phantom{\text{let } x_{1,1} = \text{random}_{0.5}(\lambda x : \text{bool}. \text{if } x \text{ then } b_{1,1,1} \text{ else } b_{1,1,0}) \text{ in}} \\
\phantom{\text{let } x_{1,1} = \text{random}_{0.5}(\lambda x : \text{bool}. \text{if } x \text{ then } b_{1,1,1} \text{ else } b_{1,1,0}) \text{ in}} \\
\end{cases}$$

representing an expression which uniformly samples a possible world. The term Z_Q in Eq. 3 is constructed as a list of pairs $[(t, \tau_i), t \in \text{Types}(T)]$, where T is defined in Supp. Eq. 14 (representing tuples for all combinations of assumptions and possible words).

For each $t \in \text{Types}(T)$, we consider the context $\Gamma_t = \Gamma'_t \cup \Gamma$, $x : t$, and construct the sets $R_{Q,t}$ of expressions r such that $\Gamma_t \vdash r : Q$, $S_{Q,t}$ of expressions s such that $\Gamma_t \vdash s : Q \rightarrow \bot$, and $K_{Q,t}$ of expressions k such that $\Gamma_t \vdash k : \bot$. If $\Gamma_t \neq \emptyset$, we set $\tau_t = k$ for an arbitrary $k \in K$. Otherwise, we must have either $R = \emptyset$ or $S = \emptyset$ (since if neither is the case $(sr) \in K$ for arbitrary $s \in S, r \in R$, and the term D in Eq. 4 ensures at least one is non-empty). If $R = \emptyset \land K = \emptyset$, we set $\tau_t = s$ for an arbitrary $s \in S$, and if $S = \emptyset \land K = \emptyset$, we set $\tau_t = r$ for an arbitrary $r \in R$. $(\lambda x. Z_Q)$ thus returns a proof of $Q, \neg Q$, or \perp, depending on which of these can be constructed given the type of the input argument passed. We define the probability of a query in terms of the probability that q_Q reduces by $\beta\rho$-reduction to a term τ of type Q given that it does not reduce to an inconsistency (where $\tau \in \text{NF}_{\lambda\mu\rho\Sigma} b$):

$$P(Q|\Gamma_0, \Gamma_1, P) = \frac{P(q_Q \rightarrow^\rho \tau : Q)}{1 - P(q_Q \rightarrow^\rho \tau) + 1}.$$

The probability in Eq. 5 can be evaluated by sampling repeated reductions of Eq. 3, and rejecting those samples returning $\tau : \bot$. Writing x_W for a type $x_W \in \text{Types}(D)$, i.e. a possible world, and $P(\cdot)$ for the powerset operator, we can show:

Theorem 2. (DTN distribution over possible worlds): A DTN defined as above represents the following distribution over possible worlds:

$$P(x_W|\Gamma_0, 1, P) \propto \sum_{H \in \text{P}(\{1,\ldots,N_F\})} \prod_{j \in H} \text{P}_j \cdot (\prod_{j \notin H} (1 - \text{P}_j)) [\forall j \in H, \exists y \text{ s.t. } \Gamma'_t, t : x_W \vdash y : F_j].$$

A proof is provided in the supplement (Supp. Prop. 8).

4 Equivalence with Markov Logic Networks

As defined in [4], a Markov Logic Network (MLN) L is a set of pairs (F_i, w_i), where F_i is a formula in first order logic and w_i is an arbitrary real number. L acts as a template, which when combined with a finite set of constants $C = \{c_1, c_2, \ldots, c_{|C|}\}$ (which includes and may extend the constants used to build the F_i’s, defining the domain over which the model ranges) constructs a ground Markov Network, $M_{L,C}$. $M_{L,C}$ contains a binary
node for every possible grounding of the predicates in L (a ground predicate being a formula involving only the applications of a predicate to a tuple of constants). The network also contains cliques for all possible groundings of each formula F in L, where the clique derived from the j’th grounding of formula F is associated with a clique potential ψij which is 1 if the ground formula is not satisfied, and eωi if it is. A possible world is fixed by a joint setting of the nodes of MLC, which we denote by x ∈ \{0, 1\}P, where P is the number of ground predicates (nodes) in the network. MLC thus defines a distribution over possible worlds, which can be expressed as a random variable X which ranges over the settings x:

\[P(X = x) = \frac{1}{Z} \prod_{ij} \psi_{ij}(x_{ij}) = \frac{1}{Z} \prod_{i} (e^{\omega_i})^{n_i(x)} \]

where Z is the partition function Z = \sum_{x} \prod_{ij} \psi_{ij}(x_{ij}), and n_i(x) denotes the number of true groundings of formula F_i in joint setting x. The probability that a given formula holds in a possible world is expressed in a canonical form, using only non-positive weights \(\omega\). This transformation will preserve the distributions across finitely many discrete variables.

To draw a relation with DTNs, we require that an MLN is expressed in a canonical form, using only non-positive weights \(\omega\). This can always be achieved as follows: For an arbitrary MLN L, we form an equivalent network L’, where, for pair (F_i, w_i) ∈ L we set (F_i’, w_i’) ∈ L’ with F_i’ = F_i, w’ = \(w\) if \(w \leq 0\), and F_i’ = ¬F_i, w’ = \(-w\) otherwise. This transformation will preserve the distribution across worlds, since the ratio \(\psi_i(x_1)/\psi_i(x_2)\) for a world which satisfies F_1, x_1, and one which does not, x_2, is e\(\omega\) in both networks MLC and MLC’.

We can then demonstrate the following equivalence:

Theorem 3. (Equivalence of DTNs and MLNs): We have the following canonical maps, which preserve distributions over possible worlds:

(a) Given a ground Markov Logic Network MLC, L = (\(F_i\), w_i ≤ 0), we map it to a DTN \{Γ_0, Γ_1, P\}, Γ_1 = Γ_0, < f_i : F_i’, i = 1 : N_F >, such that:

\[F_i’ = \hat{F}_i \]

\[p_i = (1 - \exp(w_i)) \]

(b) Given a DTN \{Γ_0, Γ_1, P\}, Γ_1 = Γ_0, < f_i : F_i, i = 1 : N_F >, we map it to an MLN MLC, L = (\(F_i\), w_i), such that:

\[F_i’ = \neg\hat{F}_i \]

\[w_i = \log(1 - p_i) \]

where \(\hat{F}\) denotes the formula corresponding to type F under the Curry-Howard correspondence.

A proof is provided in the supplement (Supp. Prop. 1).

A direct corollary of this equivalence is therefore:

Corollary 1. DTNs are a universal representation for distributions across finitely many discrete variables.

Proof. As shown in [4], MLNs are a universal representation for finite discrete distributions.

5 Discussion

We have used a restricted system here to show that stochastic functions can be embedded in dependent type theory (DTT), and how this naturally leads to a probabilistic logic equivalent to Markov Logic Networks. In general, we would wish to make use of the full resources of DTT [10, 11], such as inductive and recursive definitions, identity types and higher inductive types to formulate more general DTTS’s, in which richer probabilistic logics may be embedded. We note however that the current framework is suggestive of a number of directions for investigation both with respect to the specific models investigated here and more generally. For instance, the relationship between DTNs and MLNs suggests that automatic theorem proving techniques may be generally applied in the context of inference in graphical models (which may naturally be expressed as MLNs), since Eq. 5 may be evaluated by a meta-algorithm which repeatedly samples assumptions and searches for proofs of \(Q\), \(\neg Q\) or \(\bot\). The recent application of deep-learning techniques to automated and interactive theorem proving [12, 13] is potentially a powerful tool in this context.

Another suggestive direction is model learning. Recent approaches have shown that deep-learning methods can be fully integrated with probabilistic programming [14]. Our DTTS framework is naturally treated as a probabilistic programming framework, and we can straightforwardly incorporate deep neural networks as stochastic or deterministic functions within the DTTS. In the logical context, this corresponds to learning formulae of arbitrary complexity in a DTN. Additionally, the ambient DTTS of our framework can naturally represent both models and inference procedures applied to models as stochastic programs, as in [14].

Finally, we note that fully integrating dependent types in probabilistic programming languages has the potential to draw a tight connection between machine learning techniques and recent computational approaches in the foundations of mathematics, such as UniMath [15].
References

Dependent Type Networks: A Probabilistic Logic via the Curry-Howard Correspondence in a System of Probabilistic Dependent Types

Supplementary Materials

Jonathan Warrell12∗, Mark Gerstein123

1 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
3 Department of Computer Science, Yale University, New Haven, CT 06520, USA

∗jonathan.warrell{[@yale.edu, gmail.com]}

Abstract. We first introduce a Probabilistic Dependent Type System (PDTS) via a functional language based on a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta reduction. Further, we formulate a probabilistic logic by defining a Dependent Type Network (DTN) within the PDTS, where the DTN is derived as a direct result of the Curry-Howard correspondence. We show that DTNs are equivalent to Markov Logic Networks, and hence are a universal representation for discrete distributions. These supplementary materials provide an extended presentation of the main paper.

1 Introduction

Stochastic functional programming languages have used non-deterministic beta reduction to provide a probabilistic semantics for languages based on the untyped lambda calculus [1] and probabilistic type systems based on the simply-typed lambda calculus [2]. Here, we show that a similar approach can be used to provide semantics for a probabilistic type system based on intuitionistic type theory [3], hence including also dependent types. We call these Probabilistic Dependent Type Systems (PDTS).

We demonstrate that a probabilistic logic can be naturally formulated in our PDTS framework, which we term a Dependent Type Network (DTN), using the Curry-Howard correspondence. The logic we derive is distinct from previous formulations of probabilistic logic: Previous approaches have involved associating weights with sentences which induce a distribution over interpretations (possible worlds) [4]; formulating conditions for consistently assigning probabilities to sentences or interpretations in a simply-typed higher-order language [5, 6]; or assigning terms and deterministic functions probabilistically to types via probabilistic type judgments [7]. In contrast, we formulate an intuitionistic type system of non-deterministic functions, and derive a probabilistic logic as a sub-system. We show that DTNs are equivalent to Markov Logic Networks (MLNs) [4], and hence are a universal representation for discrete distributions.

Sec. 2 outlines a deterministic dependent type system, which is then generalized to include non-deterministic functions in Sec. 3, hence forming a PDTS. Sec. 4 then uses the PDTS to derive DTNs as a probabilistic logic via the Curry-Howard correspondence, and shows that a canonical translation can be made between DTNs and MLNs.

2 A Dependent Type System: \(\lambda P^{\Sigma \text{bool}} \)

We give an initial overview of a system we will call \(\lambda P^{\Sigma \text{bool}} \). This will be a typed lambda calculus with dependent products (hence based on the system \(\lambda P \), see [8]), dependent sums (\(\Sigma \)-types), and bool and unit base types.

The language includes the following sets of base constants \(C_0 \), and sorts, denoted \(S \):

\[
C_0 ::= \text{1} \mid \text{true} \mid \text{false} \mid \text{unit} \mid \text{bool}
\]

\[
S ::= * \mid □ \tag{1}
\]

We denote the constants collectively as \(C = C_0 \cup S \). We also have a countably infinite supply of variables, \(V = \{a, b, c, \ldots A, B, C, \ldots a_1, b_1, c_1, \ldots a_2, \ldots\} \). An abstract syntax (see [8]) for values \(U \) and pseudo-expressions \(T \) in our language can be specified as follows:

\[
U ::= C \mid V \mid (U,U)_T
\]

\[
T ::= U \mid (T \cdot T) \mid \lambda V : T \cdot T \mid \text{if } V \text{ then } T \text{ else } T \mid \pi_1 T \mid \pi_2 T \mid \sum V : T \cdot T \mid \prod V : T \cdot T \tag{2}
\]
We define inductively the free variables of a pseudo-expression $FV(\tau)$, such that $FV(c) = \emptyset$ for $c \in C$, $FV(v) = \{v\}$ for $v \in V$, $FV((u_1, u_2)) = FV(u_1) \cup FV(u_2)$ for $u_1, u_2 \in U$, $FV(\tau_1 \tau_2) = FV(\tau_1) \cup FV(\tau_2)$ for $\tau_1, \tau_2 \in \mathcal{T}$, $FV(\pi \tau) = FV(\pi_2 \tau) = FV(\tau)$, $FV(\text{if } v \text{ then } \tau_1 \text{ else } \tau_2) = FV(\tau_1) \cup FV(\tau_2) \cup FV(v)$, and $FV(\lambda x : \tau_1 \tau_2) = FV(\sum v : \tau_1 \tau_2) = FV(\prod v : \tau_1 \tau_2) = FV(\tau_1) \cup FV(\tau_2) - \{v\}$. Any variable appearing in τ which is not a free variable is bound. Pseudo-expressions which can be converted into one another by renaming variables such that no free variable becomes bound after renaming are identified as equivalent (by alpha conversion), and we write $\tau_1 \equiv \tau_2$ when this is the case. Further, the notion of beta reduction between pseudo-expressions, denoted $\tau_1 \rightarrow_{\beta} \tau_2$, is specified by the following rules:

\[
\begin{align*}
\pi_1(u_1, u_2)_{\tau} &\rightarrow_{\beta} u_1 \\
\pi_2(u_1, u_2)_{\tau} &\rightarrow_{\beta} u_2 \\
\text{if true then } \tau_1 \text{ else } \tau_2 &\rightarrow_{\beta} \tau_1 \\
\text{if false then } \tau_1 \text{ else } \tau_2 &\rightarrow_{\beta} \tau_2 \\
(\lambda x : \tau_1 \tau_2) \tau_3 &\rightarrow_{\beta} \tau_2[x := \tau_3] \quad \text{(see conditions below),}
\end{align*}
\]

where $u_1, u_2 \in U$, $\tau_1, \tau_2, \tau_3, \tau \in \mathcal{T}$, $b_1, b_2 \in \{\text{true}, \text{false}\}$, and $\tau_2[x := \tau_3]$ denotes the result of substituting τ_3 for x in τ_2. For rule 5, we also impose the conditions that no variable in $FV(\tau_2)$ becomes bound on substitution (transforming τ_2 by alpha conversion if necessary before substitution to prevent this), and that $\tau_3 \in U$ if τ_2 contains any sub-expressions of the form $(x, y), (y, x)$ or (x, x). In addition to the rules above, we extend the beta reduction relation as follows: letting τ_2 be a free sub-(pseudo)-expression of τ_1, meaning that $\tau_1, \tau_2 \in \mathcal{T}$, τ_2 is a subexpression of τ_1, and no free variable of τ_2 is bound in τ_1 (by a λ, \prod or \sum construct), we have that $\tau_1 \rightarrow_{\beta} \tau'_1$ whenever $\tau_2 \rightarrow_{\beta} \tau'_2$ by one of the above rules (Eq. 3), and τ'_2 is the result of replacing τ_2 for τ'_2 in τ_1. Further, we write $\tau_1 =_{\beta} \tau_2$ iff $\tau_1 \rightarrow_{\beta} \tau_2$ or $\tau_2 \rightarrow_{\beta} \tau_1$, where \rightarrow_{β} is the reflexive transitive closure of \rightarrow_{β}.

The pseudo-expressions for which we can infer types will be the expressions proper (legal expressions/terms) of the language. For this purpose, we define a statement to be of the form $\tau_0 : \tau_1$ (pronounced τ_0 is of type τ_1). A context is a finite linearly ordered set of statements, $\Gamma = < \tau_{0,1}, \tau_{1,0}, \tau_{2,0}, \ldots, \tau_{N,0} >$, where $\tau_{n,0} \in V$, $n = 1 \cdots N$, and for $n_1 \neq n_2, n_{1,0} \neq n_{2,0}$. We write $<>$ for the empty context, and $\Gamma, x : \tau$ for the result of appending $x : \tau$ to Γ. We can then specify rules for type inference as follows:

\[
\begin{align*}
\text{(axioms):} & \quad <> \vdash * : \square, \ \text{bool} : *, \ \text{unit} : *, \ 1 : \text{unit}, \ \text{true} : \text{bool}, \ \text{false} : \text{bool}, \\
\text{(start):} & \quad \Gamma \vdash A : s \\
\text{(weakening):} & \quad \Gamma \vdash A : B, \quad \Gamma \vdash C : s, \quad x \notin \Gamma \\
\text{(type/kind formation):} & \quad \Gamma \vdash A : * , \quad \Gamma, x : A \vdash B : s \\
\text{(application):} & \quad \Gamma \vdash F : (\prod x : A.B) \quad \Gamma \vdash a : A \\
\text{(abstraction):} & \quad \Gamma, x : A \vdash b : B \quad \Gamma \vdash (\prod x : A.B) : s \\
\text{(if):} & \quad \Gamma \vdash a : \text{bool} \quad \Gamma \vdash b_1 : B[x := \text{true}] \quad \Gamma \vdash b_2 : B[x := \text{false}] \\
\text{(products (1)):} & \quad \Gamma, x : A \vdash b : B \quad \Gamma \vdash (\sum x : A.B) : s \quad x, b \in U \\
\text{(products (2)):} & \quad \Gamma \vdash c : (\sum x : A.B) \quad \Gamma \vdash (\pi_1 c) : A, \quad \Gamma \vdash (\pi_2 c) : (B[x := (\pi_1 c)])
\end{align*}
\]
where \(s \) ranges over \(S \) and \(\tau_1 \rightarrow \tau_2 \) is shorthand for \(\prod x : \tau_1.\tau_2 \) in the case that \(\tau_2 \) is independent of \(x \). In the following, we will also use the notation \(\tau_1 \times \tau_2 \) for \(\sum x : \tau_1.\tau_2 \) where \(\tau_2 \) is independent of \(x \), (let \(x = \tau_1 \) in \(\tau_2 \)) for \((\lambda x : A.\tau_2)\tau_1 \), where \(\tau_1 : A \), and \((x, y, z) \) for \((x, (y, z)) \) and similarly for longer tuples, where we omit tuple type-tags for clarity.

The system \(\lambda P^\Sigma^\text{bool} \) forms a subsystem of the most general system considered in [9] (TT), and as such can be shown to be strongly normalizing (see Theorem 5.36, [9]), implying that \(\beta \) reduction sequences of all valid expressions can always be extended to terminate in a normal form (an expression which cannot be reduced further), and that each expression has a unique normal form up to alpha equivalence. We can thus write \(\text{Norm}(\tau) \) for the unique normal form of \(\tau \), where \(\tau \) is a typable expression. Further properties which can be demonstrated in \(\lambda P^\Sigma^\text{bool} \) include preservation (\(\beta \)-reduction preserves types up to beta equivalence, in that for a reduction step \(\tau_1 \rightarrow_\beta \tau_2 \), where \(\tau_1 : \tau_3 \) and \(\tau_2 : \tau_4 \), we have that \(\tau_3 \equiv_\beta \tau_4 \), and progress (any expression not in normal form has a valid \(\beta \) reduction). The second of these properties follows directly from strong normalization, and we give a proof of the first in the Appendix (Prop. 2).

3 Probabilistic Dependent Types: \(\lambda P^\rho^\Sigma^\text{bool} \)

We now enlarge the \(\lambda P^\Sigma^\text{bool} \) system to include primitives for sampling from distributions, using a similar syntax to [2]. The calculus developed in [2] is based on the simple typed lambda calculus, and includes only distributions over values within a type. Since our calculus also includes dependent types, we naturally derive expressions which represent distributions over terms of multiple types, distributions over types, as well as functions whose return type is probabilistically determined. The language we develop in this section will be called \(\lambda P^\rho^\Sigma^\text{bool} \), and contains as a subsystem the fragment of the Fun language in [2] only involving Bernoulli distributions (and without observe statements)\(^4\) when the dependent types are removed.

We begin by expanding the syntax of Sec. 2:

\[
\begin{align*}
U & ::= C_0 \ | \ V \ | \ (U, U) \ | \\
Z & ::= \{} \ | \ ((T, T), \ Z) \\
T & ::= U \ | \ (TT) \ | \ \lambda V : T. T \ | \ \text{if } V \ \text{then } T \ \text{else } T \ | \\
& \quad \pi_1 T \ | \ \pi_2 T \ | \ \sum V : T. T \ | \ \prod V : T. T \ | \ (\lambda V. Z) T \ | \ \text{random}_\rho(T)
\end{align*}
\]

(5)

where \(\rho \) is any real number in the interval \((0 \ 1)\), and the new syntactic construction \(Z \) allows us to form lists/ordered sets of paired terms. Since the syntax in Eq. 5 is an expansion of that in Eq. 2, all pseudo-expressions of \(\lambda P^\rho^\Sigma^\text{bool} \) will also be pseudo-expressions of \(\lambda P^\Sigma^\text{bool} \). We denote the set of common pseudo-expressions as \(T^\rho_{\lambda P^\Sigma^\text{bool}} \). Next, we define inductively a weighted reduction relationship (\(\beta \rho \)-reduction) on pseudo-expressions, \(\tau_1 \rightarrow_\beta^\rho \tau_2 \) via:

\[
\begin{align*}
\pi_1(u_1, u_2)\tau & \rightarrow_\beta^\rho u_1 \\
\pi_2(u_1, u_2)\tau & \rightarrow_\beta^\rho u_2 \\
\text{if true then } \tau_1 \ \text{else } \tau_2 & \rightarrow_\beta^\rho \tau_1 \\
\text{if false then } \tau_1 \ \text{else } \tau_2 & \rightarrow_\beta^\rho \tau_2 \\
\text{random}_\rho(\tau) & \rightarrow_\beta^\rho (\text{true}) \\
\text{random}_\rho(\tau) & \rightarrow_\beta^\rho (\text{false}) \\
(\lambda x : \tau_1.\tau_2)\tau_3 & \rightarrow_\beta^\rho \tau_2[x := \tau_3] \quad \text{if } \tau_3 \in T^\rho_{\lambda P^\Sigma^\text{bool}}, \ \text{and conditions as in Eq. 3 rule 5,} \\
(\lambda x. Z)\tau_3 & \rightarrow_\beta^\rho (\lambda x : \tau_1.\tau_2)\tau_3 \quad \text{if } \tau_3 \in T^\rho_{\lambda P^\Sigma^\text{bool}}, \ \tau_3 : \tau_1, \ (\tau_1, \tau_2) \in Z, \ \text{and } \forall \tau_1' \neq \tau_2, \ \neg((\tau_1, \tau_1') \in Z).
\end{align*}
\]

\(^4\) The observe statement in [2] allows a distribution to be conditioned on (and updated by) evidence. As we discuss in Sec. 4.1, such conditioning can be simulated by adding the conditioning formula with a weight tending to \(\infty \) in the context of Markov Logic Networks, and hence also in Dependent Type Networks by the correspondence we describe in Sec. 4.3. Further, in a general PDTS we could say return the unit value from a probabilistic function if the conditional is not satisfied. We thus simplify our analysis by not including the statement in our syntax.
where, as before, \(u_1, u_2 \in U, \tau_1, \tau_2, \tau_3, \tau \in T, b_1, b_2 \in \{\text{true, false}\}\), and here \(Z \in Z\), while we write in for the transitive closure of the set membership relation where \(Z\) is interpreted as denoting a set (alternatively, in denotes list membership if \(Z\) is viewed as a list data structure). We extend the reduction relation by allowing \(\tau_1 \rightarrow_{\rho}^{\beta} \tau'_1\) whenever \(\tau_2 \rightarrow_{\rho}^{\beta} \tau'_2\) by one of the above rules, and \(\tau'_1\) is the result of replacing \(\tau_2\) for \(\tau'_2\) in \(\tau_1\), where \(\tau_2\) is either (i) the leftmost-outermost reducible sub-(pseudo)-expression of the form \(\tau_2 = \text{random}_{\rho}(\tau_3)\) or \(\tau_2 = (\lambda x. Z)\tau_3\), or (ii) if no reducible sub-(pseudo)-expression of the forms in (i) exist, the leftmost-outermost free sub-(pseudo)-expression of \(\tau_1\) as in Sec. 2. Here, leftmost-outermost refers to the sub-expression found by searching the parse tree of a (pseudo)-expression top-down, traversing the left subtree of a non-reducible expression before the right (see [9], Def. 2.13). These conditions ensure that there is at most one sub-(pseudo)-expression whose reduction is allowed at any point. The relationship \(\tau_1 \rightarrow_{\rho}^{\beta} \tau_2\) can be given the operational semantics \(\tau_1\) reduces to \(\tau_2\) with probability \(\rho\). We can further define the relation \(\tau_1 \rightarrow_{\rho}^{\beta} \tau_2\) to hold when there exists any reduction chain between \(\tau_1\) and \(\tau_2\) such that no step has zero probability, and \(\tau_1 \rightarrow_{\rho}^{\beta} \tau_2\) to hold when the sum of the products of the \(\rho\) values across all such chains is \(\rho_0\) (where \(\rho_0 \leq 1\), see Appendix Prop. 5). Further, we note that the rules for reduction of \(\lambda\) terms in Eq. 6 whereby a term may not be substituted until it is reduced to a term in \(T_{\lambda P^\Sigma_{\text{bool}}}\) enforce a `stochastic memoization' property on reduction sequences as defined in [1] (a random statement will not be duplicated by substitution, and reduced in alternative ways in a single reduction sequence).

In [2], type assignment rules are given which consistently assign a single type to all expressions such that a preservation property holds: in any probabilistic reduction sequence, the types of all terms are preserved at each reduction step (up to \(\beta\) equivalence). Since our language contains dependent types, such a property cannot be expected to hold, as a given expression may reduce to expressions with different types by different reduction sequences. Instead of assigning types to all expressions in \(\lambda P^\Sigma_{\text{bool}}\), only expressions already typed in \(\lambda P^\Sigma_{\text{bool}}\) by the rules of Eq. 4 will be typed directly. To identify general valid expressions in \(\lambda P^\Sigma_{\text{bool}}\), we define two operators \(\text{Types}\) and \(\text{Reductions}\) on pseudo-expressions, where \(\text{Reductions}(\tau)\) will return the set of normal forms to which a given pseudo-expression reduces with non-zero probability, and \(\text{Types}(\tau)\) will return the set of types corresponding to those normal forms (we will ensure all reduction sequences of legal expressions in \(\lambda P^\Sigma_{\text{bool}}\) end in \(\lambda P^\Sigma_{\text{normal}}\) normal forms). We define these operators inductively. For each pseudo-expression \(\tau_1\) of \(\lambda P^\Sigma_{\text{bool}}\), we set \(\text{Types}(\tau_1) = \{\tau_2\}\) when \(\tau_1 : \tau_2 \in NF_{\lambda P^\Sigma_{\text{bool}}},\) and \(\text{Types}(\tau_1) = \{\text{no-type}\}\) otherwise. Further, \(\text{Reductions}(\tau_1) = \{\text{Norm}(\tau_1)\}\) in the former case, and \(\emptyset\) in the latter. The following inductive rules are then used to define these operators for all valid expressions in \(\lambda P^\Sigma_{\text{bool}}\) (where we let \(T_{\rho}\) be the set of \(\lambda P^\Sigma_{\text{bool}}\) pseudo-expressions containing no reducible sub-expressions containing the variable \(x\), including sub-expressions within \(Z\) constructions):

\[
\begin{align*}
\Gamma \vdash \text{Reductions}(F) & = \{\lambda x : \text{bool}. a_n, n = 1...N_1\}, \\
\Gamma \vdash \text{Types}(F) & = \{\prod x : \text{bool}. A_n, n = 1...N_2\}, \\
\Gamma \vdash \text{Reductions}(& \text{random}(\rho)(F)) = \bigcup_{b \in \{\text{true, false}\}} \{\text{Norm}(a_n[x := b]), n = 1...N_1\}, \\
\Gamma \vdash \text{Types}(\text{random}(\rho)(F)) = \bigcup_{b \in \{\text{true, false}\}} \{\text{Norm}(A_n[x := b]), n = 1...N_2\}.
\end{align*}
\]

\[
\Gamma \vdash a : \text{bool}, \text{Reductions}(a_1) = \{b_1,n, n = 1...N_{1,1}\}, \\
\text{Reductions}(a_2) = \{b_{2,n}, n = 1...N_{2,1}\}, \\
\text{Types}(a_1) = \{B_{1,n}, n = 1...N_{1,2}\}, \\
\text{Types}(a_2) = \{B_{2,n}, n = 1...N_{2,2}\},
\]

\[
\begin{align*}
\Gamma \vdash \text{Reductions}(\text{if} a \text{ then } a_1 \text{ else } a_2) & = \{\text{if } a \text{ then } b_1,n, n \text{ else } b_{2,n}, n_1 = 1...N_{1,1}, n_2 = 1...N_{2,1}\}, \\
\Gamma \vdash \text{Types}(\text{if} a \text{ then } a_1 \text{ else } a_2) & = \{\text{if } a \text{ then } B_{1,n}, n \text{ else } B_{2,n}, n_1 = 1...N_{1,2}, n_2 = 1...N_{2,2}\}.
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : A & \vdash \text{Reductions}(b) = \{b_n, n = 1...N_1\}, \\
\Gamma, x : A & \vdash \text{Types}(b) = \{B_n, n = 1...N_2\}, \ b \in T_x, \\
\Gamma \vdash \text{Reductions}(\lambda x : A. b) = \{\lambda x : A. b_n, n = 1...N_1\}, \\
\Gamma \vdash \text{Types}(\lambda x : A. b) = \{\prod x : A. B_n, n = 1...N_2\}.
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \text{Reductions}(a) = A, \text{Reductions}(F) = \{\lambda x : A. b_n, n = 1...N_1\}, \\
\Gamma \vdash \text{Types}(a) = \{A\}, \text{Types}(F) = \{\prod x : A. B_n, n = 1...N_2\}.
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \text{Reductions}(Fa) = \bigcup_{a' \in A} \{\text{Norm}(b_n[x := a']), n = 1...N_1\}, \\
\Gamma \vdash \text{Types}(Fa) = \bigcup_{a' \in A} \{\text{Norm}(B_n[x := a']), n = 1...N_2\}.
\end{align*}
\]
All pseudo-expressions τ whose values cannot be set by Eq. 7 are set to $\text{Types}(\tau) = \{\text{no-type}\}$, $\text{Reductions}(\tau) = \emptyset$. The expressions proper (legal expressions) of $\mathcal{LP}\rho^{\Sigma\text{bool}}$ are all those for which no-type $\not\in \text{Types}(\tau)$ and $\exists s \in \mathcal{S}$ s.t. $\forall \tau' \in \text{Types}(\tau)$, $\tau' : s$ (an expression can reduce to either types/type-constructors or terms belonging to types, not both).

As a consequence of Eqs. 6 and 7, we can show that for any legal expression τ_1 and reduction step $\tau_1 \rightarrow^\rho_{\beta} \tau_2$, we have that $\text{Types}(\tau_1) \supseteq \text{Types}(\tau_2)$, and $\text{Reductions}(\tau_1) \supseteq \text{Reductions}(\tau_2)$ (Appendix, Prop. 3). Hence, in place of a strong preservation property in the framework of [2] in which probabilistic reduction preserves types, we have a weak preservation property in which probabilistic reduction preserves a non-empty subset of types. Further, we can show that a progress property holds for \rightarrow^ρ_{β} reduction, in that for any pseudo-expression τ_1 not in $\mathcal{LP}\rho^{\Sigma\text{bool}}$ normal form there exists a ρ and τ_2 such that $\tau_1 \rightarrow^\rho_{\beta} \tau_2$, and that $\sum_{\{\rho,\tau_2\}} 1 = (i.e., we can make a probabilistic reduction step, see Appendix, Prop. 4a), and that all valid reduction sequences of expressions in $\mathcal{LP}\rho^{\Sigma\text{bool}}$ end in an expression of $\mathcal{LP}\rho^{\Sigma\text{bool}}$ in normal form (Appendix, Prop. 4b). Finally, we can show that for any $\tau_1 \in \text{Reductions}(\tau_1)$, $\tau_1 \rightarrow^\rho_{\beta} \tau_3$ with $\rho > 0$, and (a) for each $\tau_3 \in \text{Reductions}(\tau_1)$, $\exists \tau_4 \in \text{Types}(\tau_1)$ s.t. $\tau_3 : \tau_4$; (b) for each $\tau_2 \in \text{Types}(\tau_1)$, $\exists \tau_3 \in \text{Reductions}(\tau_1)$ s.t. $\tau_1 : \tau_3$, i.e. $\text{Types}(\tau_1)$ contains exactly the normal form types resulting from reductions of τ_1 for which $\rho > 0$ (Appendix, Prop. 6).

Taken together, the above properties imply that probabilistic type judgement is possible by sampling in $\mathcal{LP}\rho^{\Sigma\text{bool}}$. Letting $\tau_1(\tau_2) = \sum_{\{\tau_1 \in \text{NF}_{\mathcal{LP}\rho^{\Sigma\text{bool}}} \mid \tau_1 : \tau_2\}} \rho_{\tau_3}$, where $\tau_1 \rightarrow^\rho_{\beta} \tau_3$, we can think of $\tau_1(\cdot)$ as a characteristic function for $\text{Types}(\tau_1)$, where $\tau_1(\tau_2) > 0 \Rightarrow \tau_2 \in \text{Types}(\tau_1)$ and $\tau_1(\tau_2) = 0 \Rightarrow \tau_2 \not\in \text{Types}(\tau_1)$. We can estimate $\tau_1(\tau_2)$ by repeated $\beta\rho$ reduction of τ_1 to τ_3, taking the frequency with which $\tau_1 : \tau_2$ by using the fact that derivability of type judgements is decidable in $\mathcal{LP}\rho^{\Sigma\text{bool}}$ (Appendix, Prop. 7).

Expressions in the system $\mathcal{LP}\rho^{\Sigma\text{bool}}$ can be given a two-level semantics in terms of probability distributions. Most directly, expressions can place a low level distribution across terms which they reduce to of several types, which induces a higher level distribution across the types themselves ($\tau_1(\cdot)$ above). Alternatively, since expressions in $\mathcal{LP}\rho^{\Sigma\text{bool}}$ may also reduce to types and type-constructors belonging to kinds such as \ast or $A \rightarrow \ast$, they may induce a low level distribution across the former entities, and a higher level distribution across kinds. In each case, reduction of an expression corresponds to sampling explicitly from the low level distribution and implicitly from the high level distribution (a sampling semantics). We briefly note some special cases here (assuming an empty context). If $\text{Types}(\tau) = \{A\}$, $A : \ast, \tau$ represents a (non-dependent) distribution over a single type. When $A : \emptyset$, τ is a distribution over a kind, for instance a distribution over types themselves ($\tau = \ast$), or type-constructors ($A = B \rightarrow \ast$). If $\text{Types}(\tau) = \{A, B, C\}$, $A, B, C : \ast$, then τ is distribution over terms of types A, B and C at the low level, and a distribution over the types at the higher level. If in addition τ has the form F_x, where $\text{Types}(x) = \{X\}$, then τ can be thought of as a mixture distribution, where the components are determined by the
distribution over X denoted by x. Alternatively, for $\text{Types}(\tau) = \{ \prod x : A.B_n, n = 1...N_1 \}$, and $B_n[x := a] : \ast$, τ can be thought of both as a distribution across functions with types in $\text{Types}(\tau)$, and as a function itself, which when given a distribution τ' across A returns a distribution across the return types of the functions in $\text{Types}(\tau)$. We note also how expressions of the form $\lambda x.Z\tau$ can be used to transform a general distribution across terms of several types represented by τ into another general distribution across terms of several types.

4 Relationship to Markov Logic Networks via Curry-Howard Correspondence

We now discuss the relationship between a particular class of PDTS, which we shall call Dependent Type Networks (DTNs), and Markov Logic Networks (MLNs) as introduced in [4]. As we show, these systems are equivalent under a probabilistic analogue of the formulae as types interpretation (or Curry-Howard correspondence) for typed lambda systems. The equivalence provides a further semantics for this class of PDTS in terms of MLNs, which in turn can be given factor graph semantics. Further, it is suggestive of algorithmic possibilities in that algorithms for performing inference in either of the representations can be transformed to perform inference in the other.

4.1 Markov Logic Networks

As defined in [4], a Markov Logic Network L is a set of pairs (F_i, w_i), where F_i is a formula in first order logic (constructed using constants, variables, functions, predicates and logical connectives) and w_i is a real number. L acts as a template, which when combined with a finite set of constants $C = \{c_1, c_2, ..., c|C|\}$ (which includes and may extend the constants used to build the F_i's, defining the domain over which the model ranges) constructs a ground Markov Network, $M_{L,C}$. $M_{L,C}$ contains a binary node for every possible grounding of the predicates in L (a ground predicate being a formula involving only the applications of a predicate to a tuple of constants). For instance, if P_1 is a unary predicate, $M_{L,C}$ contains a node for each application $P_1(c_i), i = 1...|C|$, and if P_2 is a binary predicate, a node for each application $P_2(c_i, c_j), i, j = 1...|C|$. The network also contains cliques for all possible groundings of each formula F in L (i.e. substitutions of constants for free variables in F), where the clique derived from the jth grounding of formula i is associated with a clique potential ψ_{ij} which is 1 if the ground formula is not satisfied, and e^{w_i} if it is. A possible world is fixed by a joint setting of the nodes of $M_{L,C}$ (under the assumptions of unique names, domain closure and known functions, see [4]), which we denote by $x \in \{0, 1\}^P$, where P is the number of ground predicates (nodes) in the network. $M_{L,C}$ thus defines a distribution over possible worlds, which can be expressed as a random variable X which ranges over the settings x:

$$P(X = x) = \frac{1}{Z} \prod_{ij} \psi_{ij}(x_{ij}) = \frac{1}{Z} \prod_i (e^{w_i}n_i(x)),$$

(8)

where Z is the partition function $Z = \sum_x \prod_{ij} \psi_{ij}(x_{ij})$, and $n_i(x)$ denotes the number of true groundings of formula F_i in joint setting x. We note that the distribution defined by Eq. 8 is maximum entropy in the sense that any ground predicates which are independent of the weighted F_i's (hence probabilistically undecidable) will be true or false with equal probability.

For convenience, we consider only unconditional inference. Here, we are interested in the probability that a given formula holds in a possible world distributed according to Eq. 8, which can be written $P(F|L, C) = \sum_{x \in \mathcal{X}_F} P(x|L, C)$, where \mathcal{X}_F is the subset of possible worlds in which query formula F holds (conditional queries can be simulated by adding the conditioning formula F to the MLN with a weight tending to ∞). We give two examples below. First, consider an MLN L with a formula F_1 corresponding to $A(x) \rightarrow B(x)$ (equivalently $B(x) \lor \neg A(x)$) with weight w_1, where A, B are unary predicates and \rightarrow implication, and $F_2 = A(c_1)$ with weight w_2 and c_1 a constant ($w_1, w_2 > 0$). We then consider the grounded network over over $C = \{c_1\}$, and the query $B(c_1)$. Writing b_1b_2 for the setting of x which implies $A(c_1)$ when $b_1 = 1$ and $\neg A(c_1)$ when $b_1 = 0$ and similarly for $B(c_1)$, the query has the probability:

$$P(B(c_1)|L, C) = P(x = [0 \ 1]) + P(x = [1 \ 1]) = \frac{e^{w_1}(1 + e^{w_2})}{e^{w_1}(2 + e^{w_2}) + e^{w_2}},$$

(9)

Formulas of the form $\forall x F$ are ground as a conjunction of all possible groundings of x in F, and $\exists x F$ as a disjunction of all possible groundings. We will not assume that L is automatically transformed into conjunctive normal form, and so distinguish between $L = \{F_1, 0.5 \ast w\}, \{F_2, 0.5 \ast w\}$ and $L = \{(F_1 \land F_2), w\}$, as well as $L = \{\forall x F, |C| w\}$ and $L = \{(F, w)\} \{FV(F) = \{x\}\}$, where the latter can be taken as shorthand for $L = \{(F[x := c_1], w), (F[x := c_2], w), \ldots (F[x := c|C|], w)\}$ (which is only equivalent to $L = \{\forall x F, |C| w\}$ if transformation to conjunctive normal form is assumed).
which tends to 1 as w_1, w_2 tend to ∞. As a second example, consider an MLN L with a formula $F_1 = A(x)$, with weight $w_1 > 0$ and $A(x)$ a unary predicate. We then consider the grounded network over $C = \{c_1, c_2\}$, and the query $\exists x A(x)$ (equivalently $A(c_1) \lor A(c_2)$, under the assumptions above). Writing $[b_1 b_2]$ for the setting of x which implies $A(c_1)$ when $b_1 = 1$ and $\neg A(c_1)$ when $b_1 = 0$ and similarly for $A(c_2)$ and b_2, the query has the probability:

$$
P(\exists x A(x)|L, C) = P(x = [1 \ 0]) + P(x = [0 \ 1]) + P(x = [1 \ 1]) = \frac{\exp(w_1 (2 + e^{w_1}))}{\exp(w_1 (2 + e^{w_1})) + 1},$$

(10)

which again tends to 1 as w_1 tends to ∞. As detailed in [4], queries in larger networks can be estimated by building a factor graph representation of the ground Markov Network, and using algorithms such as Gibbs sampling, Loopy Belief Propagation and variational methods such as mean-field message passing.

4.2 Dependent Type Networks

We now define the notion of a Dependent Type Network (DTN), which will be a probabilistic dependent type system in the sense of Sec. 3. A ‘language’ for the PDTS will be fixed by specifying a context of the form (assuming only unary and binary predicates/functions):

$$
\Gamma_0 = \Gamma', \Gamma''
$$

$$
\Gamma' = < A : *, \bot : *, c_1...N_C : A, B_{1...N_{g^1}} : A \to *, \\
B_{1...N_{g^2}} : A \to A \to A, g_{1...N_{g^1}} : A \to A, g_{2...N_{g^2}} : A \to A
$$

$$
\Gamma'' = < b^1_{n=1...N_{b^1}, m=1...N_{g^1}} : B^1_{n}(c_m), b^1_{n=1...N_{b^1}, m=1...N_{g^1}, 0} : B^1_{n}(c_m) \to \bot, \\
b^2_{n=1...N_{b^2}, m=1...N_{g^2}, l=1...N_{g^2}, 1} : B^2_{n}(c_m, c_l), \\
b^2_{n=1...N_{b^2}, m=1...N_{g^2}, l=1...N_{g^2}, 0} : B^2_{n}(c_m, c_l) \to \bot >.
$$

(11)

Here, A specifies a domain, to which constants $c_1...N_C$ belong. $B^1_{n=1...N_{b^1}}$ and $B^2_{n=1...N_{b^2}}$ will be used as unary and binary predicates over the domain respectively, $g^1_{n=1...N_{g^1}}$ and $g^2_{n=1...N_{g^2}}$ as unary and binary functions, \bot to represent a contradiction, and the sets of terms b^1 and b^2 as ground predicates, while we write $B(c)$ as alternative notation for application. A DTN is fixed by augmenting this context with a further set of ‘formulas’ in the language, specified by $\Gamma_1 = \Gamma_0, < f_1 : F_1, ... , f_{N_F} : F_{N_F} >$. Here, a given formula such as $B^1(c_1) \land B^2(c_2)$ is represented by the type corresponding to the formula by the formulae as types interpretation of typed lambda systems (equivalently, the propositions as types interpretation, see [8]), $B^1(c_1) \times B^2(c_2)$. In general, $X \land Y$ corresponds to $X \times Y$ (X and Y being ground predicates), $X \lor Y$ to the disjoint product $\sum x : \text{bool}.(if x then X else Y)$, $X \to X$ to $X \to Y$, $\neg X$ to $X \to \bot$, $\forall x(X(x))$ to $\prod x : A.X(x)$, and $\exists x(X(x))$ to $\exists x : A.X(x)$. Quantifications over binary and higher order predicates can be represented by nested dependent sums and products. An expression which can be typed to a formula type corresponds to a proof of that formula, and thus to asserting the formula itself (a formula is ‘true’ if it is inhabited). We will further equip a DTN with a set of probabilistic weights, $P = \{p_1, p_2, ..., p_{N_F}\}$, where p_i will represent the probability that F_i is true as a constant in the meta-language, taking values in $(0, 1)$. We summarize the above in the following definition:

Definition 1. A Dependent Type Network is a probabilistic dependent type system equipped with a context Γ_0 representing a language containing a domain, constants, predicates, functions, contradiction and ground predicate symbols as above, a context Γ_1 which augments Γ_0 with a set of with a set of formula proofs represented as constants assigned to types in the language ($f_i : F_i, i = 1...N_F$), and a set P of meta-language constants p_i, which assign a probabilistic weight in $(0, 1)$ to each formula.

Given a DTN as defined, we will represent a query formula, for instance $Q = B^1(c_3)$, as an expression (/program) q_Q where $\text{Types}(q_Q) = \{B^1(c_3), B^1(c_3) \to \bot, \bot\}$. That is, the expression reduces to either a proof of Q, a proof of $\neg Q$, or a proof of a contradiction (the last possibility corresponding to an inconsistent world). We
For each $\beta\rho \in r$, we then set the formulae in Eq. 9 is the case given that it does not reduce to an inconsistency (where τ is the indicator function, which is 1 for a true condition and 0 otherwise, and $\tau\notin R$). Writing x_{post} for a type $x_{\mathit{w}} \in \mathit{Types}(D)$, i.e. a possible world, it can be shown (see Appendix, Prop. 8) that:

$$P(Q|I_0, \Gamma_1, P) = \frac{P(q_Q \Rightarrow_\beta \tau : Q)}{1 - P(q_Q \Rightarrow_\beta \tau : \bot)}.$$

The probability in Eq. 15 can be evaluated by sampling repeated reductions of Eq. 12, and rejecting those samples. For each $\tau : \bot$. Writing x_{w} for a type $x_{\mathit{w}} \in \mathit{Types}(D)$, i.e. a possible world, it can be shown (see Appendix, Prop. 8) that:

$$P(x_{\mathit{w}}|I_0,1, P) \propto \sum_{H \in \mathcal{P}((1\ldots n))} (\prod_{j \in H} p_j)(\prod_{j \notin H} (1 - p_j))[\forall j \in H, \exists y s.t. \Gamma', t : x_{\mathit{w}} \vdash y : F_j],$$

where $[.]$ is the indicator function, which is 1 for a true condition and 0 otherwise, and $\mathcal{P}(\cdot)$ the powerset operator. Eq. 16 implies that the probability for a world under a DTN is proportional to the combined probabilities of all subsets of initial formulae it is consistent with.

We can reformulate the examples from the end of Sec. 4.1 as DTNs. For the first, we fix a language via $\Gamma' = \langle A : *, \bot : *, c_1 : A, B_1 : A \rightarrow *, B_2 : A \rightarrow *, >, i.e. with one constant and two unary predicates. We then set the formulae $\Gamma_1 = I_0,1 < f_1 : (B_1(c_1) \rightarrow B_2(c_1)), f_2 : B_2(c_1) >$ with the probabilities $P = \{p_1 = (1 - e^{-w_1}), p_2 = (1 - e^{-w_2})\}$. It can be shown (following the proof of Prop. 1, part (a) below) that the distribution over worlds is identical to that in Sec. 4.1, and in particular $P(B_2(c_1)|I_0,1, P) = \frac{e^{w_1} + w_2}{w_1 e^{w_1} + w_2 e^{w_2} + w_2 e^{w_2}}$ as in Eq. 9 ($w_1, w_2 > 0$). For the second example, we let $\Gamma' = \langle A : *, \bot : *, c_1 : A, c_2 : A, B_1 : A \rightarrow * >$, and
that the distribution over worlds is equivalent to that in Sec. 4.1. Here, we can write the query \(\exists \) dependent type \(B \) of an MLN is the same as the class of distributions over worlds representable by DTNs. In particular we have:

\[L \quad \text{and an equivalent DTN.} \]

We assume that \(\) each preserving distributions across worlds.

variables has been replaced by \(p \) for a possible world represented as in Sec. 4.1 as a binary vector which specifies the truth or falsity of each ground \(\Gamma \), the matching constants, predicates and functions from \(M \), and \(\) the ratio \(w \)

\[\frac{\text{exp}(w)}{\text{exp}(w)} \]

for the number of (formula,weight) pairs in \(F \) for the translation of formulae into matching type constructors.

Proof of Proposition 1, part a: We provide here a canonical translation from an arbitrary ground MLN \(M_{L,C} \) and an equivalent DTN. We assume that \(L \) has been expanded so that any pair \((F,w) \) where \(F \) contains free variables has been replaced by \((F_j,w) \), \(j = 1 \ldots J \) with \(F_j \) ranging over all possible groundings of the free variables. We will write \(N_F \) for the number of (formula,weight) pairs in \(L, N_C \) for the number of constants in \(C \), and \(x \in \mathbb{B}^P \) for a possible world represented as in Sec. 4.1 as a binary vector which specifies the truth or falsity of each ground predicate \(p = 1 \ldots P \).

We begin by transforming \(L \) to \(L' \), where, for pair \((F_i,w_i) \in L \) we set \((F'_i,w'_i) \in L' \) with \(F'_i = F_i, w' = w \) if \(w \leq 0 \), and \(F'_i = \neg F_i, w' = -w \) otherwise. This transformation will preserve the distribution across worlds, since the ratio \(\psi_1(x_1)/\psi_2(x_2) \) for a world which satisfies \(F_1 \), \(x_1 \), and one which does not, \(x_2 \), is \(e^w \) in both networks \(M_{L,C} \) and \(M_{L,C} \).

We then construct a DTN by forming \(I_0 = I_0', F''_i \) with the same number of constants, predicates and functions and matching arities as \(M_{L,C} \), and setting \(I_1 = I_0, f_i : F''_i, i = 1 : N_F > \), for \(F''_i \) transforming \(F \) into a DTN type expression, using the matching constants, predicates and functions from \(I_0 \) and the formulae as types correspondence (discussed in Sec. 4.2) to translate the logical symbols into matching type constructors.

We now demonstrate that the DTN constructed above gives the same distribution across possible worlds as \(M_{L,C} \). For a given world \(x \), write \(G(x) \) for the proposition \(\widetilde{G_1}(x) \wedge G_2(x) \wedge \ldots G_P(x) \), where for ground predicate \(h_p, G_p(x) = h_p \) if \(h_p \) is true in world \(x \), and \(G_p(x) = \neg h_p \) otherwise. Further, let \(R_x = \{ i \in \{1 \ldots N_F \}|G(x) \rightarrow F''_i \} \) and \(S_x = \{ i \in \{1 \ldots N_F \}|G(x) \rightarrow \neg F''_i \} \), where \(F''_i \) is the translation of type \(F''_i \) to a logical formula by the formulae as types correspondence \(R \) is thus the set indices of formulae in \(I_1 \) which are consistent with world \(x \), and \(S \) the set of indices of formulae that are inconsistent. Then, from Eq. 16, we have:

\[P(\widetilde{G}(x)|I_0'1, P) \propto \sum_{H \in \mathcal{P}(1 \ldots N_F)} \prod_{j \in H} (1 - p_j) \prod_{j \notin H} (1 - p_j) \prod_{y \in H} \prod_{\widetilde{G}(x) \vdash y : F''_i} \]

\[= \sum_{s \subseteq S_x} \prod_{i \in s} \prod_{\widetilde{G}(x) \vdash y : F''_i} \prod_{i \notin s} (1 - p_i) \]

\[= \prod_{i \in s} \exp(w'_i). \quad (17) \]

Similarly, for \(M_{L',C} \) (and thus for \(M_{L,C} \) as discussed above) we have:

\[P(x|L', C) \propto \prod_{i \in S_x} \exp(w'_i) \]

\[= \prod_{i \in S_x} \exp(w'_i), \quad (18) \]

thus giving rise to identical distributions.
Proof of Proposition 1, part b: We suppose we have a DTN specified by Γ_0, Γ_1, P, where Γ_1 contains statements $f_i : F_i$ for $i = 1...N_F$. We use $x \in \mathbb{B}_P$ as above to represent a possible world, by considering all possible groundings of the predicates in Γ_0. Letting $S_x = \{ i \in \{1...N_F\} | G(x) \rightarrow \neg \hat{F}_i \}$ (where \hat{F}_i is the translation of type F_i to a logical formula by the formulae as types correspondence), and following the same derivation as Eq. 17 lines 1-3, we have:

$$P(\hat{G}(x)|\Gamma_{0,1}, P) \propto \prod_{i \in S_x} (1 - p_i).$$

(19)

Consider now a grounded MLN formed using a language containing the same constants, predicates and functions as the DTN above, where we set $L = \{ (\neg \hat{F}_i, \log(1 - p_i)), i = 1...N_F \}$. By Eq. 8 we will have

$$P(x|L,C) = \frac{1}{Z} \prod_{i \in S_x} (e^{\log(1 - p_i)}) \prod_{i \in S_x} (1 - p_i),$$

(20)

hence we have identical distributions.

Finally, we note that since MLNs provide a universal representation for finite discrete distributions, we have:

Corollary 1. Both MLNs and DTNs are universal representations for distributions across finitely many discrete variables.

Proof. [4] show that MLNs are such a universal representation, and so by Prop. 1 and the fact that each contain only finitely-many discrete variables (ground predicates), the classes of representable distributions must be all finite discrete distributions for both DTNs and MLNs. In particular, the translation scheme provided in the proof of Prop. 1 part (a) applied to the canonical MLN representation of a general finite discrete distribution given in [4] provides a canonical DTN representation of the same distribution.

□

5 Discussion

We have used a restricted system here to show that stochastic functions can be embedded in dependent type theory (DTT), and how this naturally leads to a probabilistic logic equivalent to Markov Logic Networks. In general, we would wish to make use of the full resources of DTT [10, 11], such as inductive and recursive definitions, identity types and higher inductive types to formulate more general PDTS’s, in which richer probabilistic logics may be embedded. We note however that the current framework is suggestive of a number of directions for investigation both with respect to the specific models investigated here and more generally. For instance, the relationship between DTNs and MLNs suggests that automatic theorem proving techniques may be generally applied in the context of inference in graphical models (which may naturally be expressed as MLNs), since Eq. 15 may be evaluated by a meta-algorithm which repeatedly samples assumptions and searches for proofs of Q or $\neg Q$ or \bot. The recent application of deep-learning techniques to automated and interactive theorem proving [12, 13] is potentially a powerful tool in this context.

Another suggestive direction is model learning. Recent approaches have shown that deep-learning methods can be fully integrated with probabilistic programming [14]. Our PDTS framework is naturally treated as a probabilistic programming framework, and we can straightforwardly incorporate deep neural networks as stochastic or deterministic functions within the PDTS outlined. In the logical context, this corresponds to learning formulae of arbitrary complexity in a DTN. Additionally, the ambient PDTS of our framework can naturally represent both models and inference procedures applied to models as stochastic programs, as in [14].

Finally, we note that fully integrating dependent types in probabilistic programming languages has the potential to draw a tight connection between machine learning techniques and recent computational approaches in the foundations of mathematics, such as UniMath [15].
Appendix

Proofs of results mentioned in Sec. 2 and 3 are given below.

Proposition 2. β-reduction in λPΣ^ bool preserves types up to β equivalence.

Proof. We first show the proposition folds for all rules in Eq. 3. From the products(1) and products(2) rules in Eq. 4 we have:

\[\pi_1(U_1, U_2)_{\Sigma, A:B} : A \rightarrow_\beta U_1 : A \]
\[\pi_2(U_1, U_2)_{\Sigma, A:B} : B[x := U_1] \rightarrow_\beta U_2 : B[x := \pi_1(U_1, U_2)_{\Sigma, A:B}], \]

(21)

where, we note that \(B[x := U_1] =_\beta B[x := \pi_1(U_1, U_2)_{\Sigma, A:B}] \). Further, if we have \(\tau_1 : B[x = true] \) and \(\tau_2 : B[x = false] \), from the if rule in Eq. 4:

\[\text{(if true then } \tau_1 \text{ else } \tau_2) : B[x = true] \rightarrow_\beta \tau_1 \]
\[\text{(if false then } \tau_1 \text{ else } \tau_2) : B[x = false] \rightarrow_\beta \tau_2, \]

(22)

and from the abstraction and application rules in Eq. 4, letting \((\lambda x : \tau_1 \tau_2) \tau_3) : \prod x : A.B:

\[(\lambda x : \tau_1 \tau_2) \tau_3) : B[x := \tau_3] \rightarrow_\beta \tau_2 [x := \tau_3] : B[x := \tau_3]. \]

(23)

The above cover the base cases of the β-reduction relation. For \(\tau_1 \rightarrow_\beta \tau_1' \) where \(\tau_2 \rightarrow_\beta \tau_2' \), and \(\tau_1' \) is the result of replacing free sub-expression \(\tau_2 \) for \(\tau_2' \) in \(\tau_1 \), we prove the result by induction on the structure of \(\tau_1 \). First we outline a general induction step for each form that \(\tau_1 \) may take. For \(\tau_1 = \prod x : A.B : s \), with either the inductive hypothesis \(A : * \rightarrow_\beta \beta' : s \) or \(B : s \rightarrow_\beta \beta' : s \), we have that \(\tau_1' = \prod x : A.B' : s \) or \(\tau_1' = \prod x : A.B' : s \) respectively by the type/kind formation rule in Eq. 4 (similarly for \(\Sigma \)-types). For \(\tau_1 = (F\alpha) : B[x := a] \) with inductive hypothesis \(F : (\prod x : A.B) \rightarrow_\beta \beta' : (\prod x : A.B) \) and inductive hypothesis \(\alpha : A \rightarrow_\beta \beta' : A \) (where we implicitly use the type conversion rule, Eq. 4, to equalize types which are \(\beta \)-equivalent), we have respectively \(\tau_1' = FA' : B[x := a] \) and \(\tau_1' = FA' : B[x := a] \) respectively by the application rule in Eq. 4. For \(\tau_1 = (\lambda x : A.B) : (\prod x : A.B) \) and inductive hypothesis \(A : s \rightarrow_\beta \beta' : s \) or \(B : s \rightarrow_\beta \beta' : s \), respectively \(\tau_1' = (\lambda x : A.B') : (\prod x : A.B') \) and \(\tau_1' = (\lambda x : A.B') : (\prod x : A.B') \) respectively by the abstraction rule in Eq. 4. For \(\tau_1 = a \) then \(\tau_1' = a \rightarrow_\beta a' : B[x := a] \rightarrow_\beta \tau_1' \) for non-negative \(\rho \), we have that \(\text{Types}(\tau_1) \supseteq \text{Types}(\tau_1') \), and \(\text{Reductions}(\tau_1) \supseteq \text{Reductions}(\tau_1') \), where \(\text{Types}(\tau_1') \) and \(\text{Reductions}(\tau_1') \) are non-empty.

Proposition 3. (Weak-preservation) For expressions \(\tau_1 \) and \(\tau_1' \) in \(\lambda P \rho^* \Sigma^ bool \) such that \(\tau_1 \rightarrow_\beta \tau_1' \) for non-zero \(\rho \), we have that \(\text{Types}(\tau_1) \supseteq \text{Types}(\tau_1') \), and \(\text{Reductions}(\tau_1) \supseteq \text{Reductions}(\tau_1') \), where \(\text{Types}(\tau_1') \) and \(\text{Reductions}(\tau_1') \) are non-empty.

Proof. We note initially that for any expression \(\tau_1 \) which is identical to an expression in \(\lambda P \rho^* \Sigma^ bool \) such that \(\tau_1 : \tau_2, \) by Prop. 2 we have that for \(\tau_1 \rightarrow_\beta \tau_1' \), \(\text{Reductions}(\tau_1) = \text{Reductions}(\tau_1') = \{\text{Norm}(\tau_1)\} \) and \(\text{Types}(\tau_1) = \text{Types}(\tau_1') = \{\text{Norm}(\tau_2)\} \). For a general expression \(\tau_1 \rightarrow_\beta \tau_1' \), we check as base cases each of the reduction rules in Eq. 6. The projection rules involve only values, and so are covered by the above. If for reduction, by the if rule in Eq. 7 we have that for \(\text{Reductions}(\tau_1) = \{B_{1,n} : n = 1...N_{1,1}\}, \text{Types}(\tau_1) = \{B_{1,n} : n = 1...N_{1,2}\}, \text{Reductions}(\tau_2) = \{B_{2,n} : n = 1...N_{2,1}\}, \text{Types}(\tau_2) = \{B_{2,n} : n = 1...N_{2,2}\} : \]

\[\text{Reductions(if true then } \tau_1 \text{ else } \tau_2) = \text{Reductions}(\tau_1) = \{B_{1,n} : n = 1...N_{1,1}\} \]
\[\text{Reductions(if false then } \tau_1 \text{ else } \tau_2) = \text{Reductions}(\tau_2) = \{B_{2,n} : n = 1...N_{2,1}\} \]
\[\text{Types(if true then } \tau_1 \text{ else } \tau_2) = \text{Types}(\tau_1) = \{B_{1,n} : n = 1...N_{1,2}\} \]
\[\text{Types(if false then } \tau_1 \text{ else } \tau_2) = \text{Types}(\tau_2) = \{B_{2,n} : n = 1...N_{2,2}\}. \]

(24)
For random expressions, by the random and application (1) rules in Eq. 7 we have for \(\text{Reductions}(F) = \{ \lambda x : \text{bool}.a_n, n = 1...N_1 \} \), \(\text{Types}(F) = \{ \prod x : \text{bool}.A_n, n = 1...N_2 \} \):

\[
\text{Reductions}(F \text{ true}) = \{ \text{Norm}(a_n[x := \text{true}], n = 1...N_1) \}
\subseteq \bigcup_{b \in \{\text{true, false}\}} \{ \text{Norm}(a_n[x := b], n = 1...N_1) \}
= \text{Reductions}(\text{random}(F))
\]

\[
\text{Reductions}(F \text{ false}) = \{ \text{Norm}(a_n[x := \text{false}], n = 1...N_1) \}
\subseteq \bigcup_{b \in \{\text{true, false}\}} \{ \text{Norm}(a_n[x := b], n = 1...N_1) \}
= \text{Reductions}(\text{random}(F))
\]

\[
\text{Types}(F \text{ true}) = \{ \text{Norm}(A_n[x := \text{true}], n = 1...N_2) \}
\subseteq \bigcup_{b \in \{\text{true, false}\}} \{ \text{Norm}(A_n[x := b], n = 1...N_2) \}
= \text{Types}(\text{random}(F))
\]

\[
\text{Types}(F \text{ false}) = \{ \text{Norm}(A_n[x := \text{false}], n = 1...N_2) \}
\subseteq \bigcup_{b \in \{\text{true, false}\}} \{ \text{Norm}(A_n[x := b], n = 1...N_2) \}
= \text{Types}(\text{random}(F)).
\] (25)

For \(\lambda \) applications of the form \((Fa) \) with \(F = \lambda x : A.b, (b \in T_a) \) and \(\Gamma, x : A \vdash \text{Reductions}(b) = \{ b_n, n = 1...N_1 \}, \text{Types}(b) = \{ B_n, n = 1...N_2 \} \), where \(a : A, \text{Reductions}(a) = \{ a \}, \text{Types}(a) = \{ A \} \), \(\text{Reductions}(F) = \{ \lambda a : A.b_n, n = 1...N_1 \}, \text{Types}(F) = \{ \prod a : A.B_n, n = 1...N_2 \} \), we have by the application (1) and abstraction rules in Eq. 7:

\[
\text{Reductions}(Fa) = \{ \text{Norm}(b_n[x := a], n = 1...N_1) \}
= \text{Reductions}(b[x := a])
\]

\[
\text{Types}(Fa) = \{ \text{Norm}(B_n[x := a], n = 1...N_2) \}
= \text{Types}(b[x := a]).
\] (26)

For \(\lambda \) applications of the form \((\lambda Z)a \), where \(a : A, \text{Reductions}(a) = \{ a \}, \text{Types}(a) = \{ A \} \), and \((A, b) \in \in Z, \forall b' \neq b, \neg ((A, b') \in Z) \), where \(\Gamma, x : A \vdash \text{Reductions}(b) = \{ b_n, n = 1...N_1 \}, \text{Types}(b) = \{ B_n, n = 1...N_2 \} \), \(b \in T_a \), we have by the application (1) and (2) rules in Eq. 7:

\[
\text{Reductions}((\lambda Z)a) = \{ \text{Norm}(b_n[x := a], n = 1...N_1) \}
= \text{Reductions}((\lambda x : A.b)a)
\]

\[
\text{Types}((\lambda Z)a) = \{ \text{Norm}(B_n[x := a], n = 1...N_2) \}
= \text{Types}((\lambda x : A.b)a).
\] (27)

The above form the base cases for the reduction relation \(\rightarrow^\beta \), which show that the proposition holds for each rule in Eq. 6 in the case that the sub-expression being reduced is the outermost sub-expression. For the general case (for a proper sub-expression) we can use a similar inductive argument to Prop. 1 above on the structure on \(\tau \), the expression to be reduced, where the induction is on the number of nesting levels \(n \) between \(\tau_2 \), the sub-expression to be reduced, and the outermost level (Eq. 7 providing all cases for relating sub-expressions at level \(n \) to those at level \(n - 1 \)).

Further, the \(\text{Reductions}(\tau_1^f) \) and \(\text{Types}(\tau_1^f) \) sets after reduction of a legal expression \(\tau_1 \rightarrow^\beta \tau_1' \) must be non-empty, since \(\text{Reductions}(\tau_1^f) = \emptyset \Rightarrow \text{Types}(\tau_1^f) = \{ \text{no-type} \} \), and we have no-type \(\notin \text{Types}(\tau_1) \) for legal \(\tau_1 \).

\[\Box\]

Proposition 4. For any legal expression \(\tau_1 \) in \(\lambda \Sigma^{\Sigma^{\Sigma}}\text{bool} \) we have that: (a) (Progress) Either \(\tau_1 \) is a \(\lambda \Sigma^{\Sigma^{\Sigma}}\text{bool} \) expression in normal form, or there exists a \(\rho \) and \(\tau_2 \) such that \(\tau_1 \rightarrow^\rho \tau_2 \), and that \(\sum_{((\rho, \tau_2): (\rho_1 \rightarrow^\rho \tau_2))} \rho_1 = 1 \); and (b) all valid reduction sequences from \(\tau_1 \) can be extended to a sequence ending in a \(\lambda \Sigma^{\Sigma^{\Sigma}}\text{bool} \) normal form.
Proof. For part (a) we start by observing that the proposition is already satisfied for terms which are shared between $\lambda P^\Sigma_{\text{bool}}$ and $\lambda P^{\Sigma_{\text{bool}}}$ ($\tau_1 \in T_{\lambda P^{\Sigma_{\text{bool}}}}$) since in $\lambda P^{\Sigma_{\text{bool}}}$ we have that leftmost-outermost reduction always finds a normal form by strong normalization (see [9], Theorem 5.36). The proposition automatically follows since there is a unique leftmost-outermost reduction for such terms not in normal form with $\rho = 1$ (the rules in Eq. 3 become deterministic rules in Eq. 6).

For τ_1 is not in $T_{\lambda P^{\Sigma_{\text{bool}}}}$, we consider first the case that it contains no random$_\rho(\tau_1)$ sub-expressions. Then it must contain at least one $(\lambda x.Z)\tau_1$ sub-expression. For such a sub-expression with the lowest nesting depth, τ_3 will contain no further such sub-expressions, and hence $\tau_3 \in T_{\lambda P^{\Sigma_{\text{bool}}}}$, and thus either this expression, or one with a higher nesting level $(\lambda x.Z)\tau'_3$ such that $\tau'_3 \in T_{\lambda P^{\Sigma_{\text{bool}}}}$, will be the leftmost-outermost reducible expression of this form, and can be deterministically reduced according to rule 8, Eq. 6 (the full conditions of the rule following from the application (2) rule in Eq. 7 for a legal expression). Note that sub-expressions of this form are prioritized by condition (i) following Eq. 6 above free sub-expressions of other forms. Consider now the case that τ_1 contains at least one random$_\rho(\tau_3)$ sub-expression. Then, we will either have a leftmost-outermost reducible sub-expression of the form $(\lambda x.Z)\tau_3$, or the first random(\tau_3) sub-expression encountered by leftmost-outermost order will be available for reduction by rule 5 or 6, Eq. 6, since we placed no further conditions on the reduction of such expressions and they are prioritized over free sub-expressions of other forms (following Eq. 6). Here, for the two possible reductions by rules 5 and 6, we have ρ values of ρ' and $1 - \rho'$, and hence $\sum_{(\rho, \tau_2) | \tau_1 \rightarrow_\rho \tau_2} \rho = 1$ as required.

For part (b), we note again that this follows directly when $\tau_1 \in T_{\lambda P^{\Sigma_{\text{bool}}}}$ by strong normalization of $\lambda P^{\Sigma_{\text{bool}}}$. For general terms of $\lambda P^{\Sigma_{\text{bool}}}$, part (a) of the proposition ensures that a probabilistic reduction is always possible. There can be only a finite number of sub-expressions of the form random$_\rho(\tau_1)$ and $(\lambda x.Z)\tau_1$ in τ_1 and singly or multiply nested within Σ constructions of $(\lambda x.Z)\tau_1$ expressions within τ_1. Combining this with the facts that, (1) from condition (i) following Eq. 6 (prioritizing the reduction of these expressions); (2) random$_\rho(\tau_1)$ expressions are always reducible; (3) $(\lambda x.Z)\tau_1$ expressions are always reducible if no random$_\rho(\tau_3)'$ or $(\lambda x.Z)\tau'_3$ expressions are nested beneath them (see part (a) above); and (4) rules 5, 6 and 8 in Eq. 6 always decrease the total number of such expressions across all sub-expressions and Σ constructions of τ_1; we can deduce that any valid reduction sequence can be extended to (or already includes as an initial sub-sequence) one which initially reduces all such terms and ends in an expression of $\lambda P^{\Sigma_{\text{bool}}}$. Such a sequence can then be extended to reach a normal form of $\lambda P^{\Sigma_{\text{bool}}}$, again by strong normalization.

\[\square\]

Proposition 5. For legal expressions τ_1, τ_2 in $\lambda P^{\Sigma_{\text{bool}}}$ such that $\tau_1 \rightarrow_0^0 \tau_2$, $\rho_0 \leq 1$.

Proof. By Prop. 4, all legal expressions τ of $\lambda P^{\Sigma_{\text{bool}}}$ have at most two valid reductions, and all maximal sequences must terminate in a $\lambda P^{\Sigma_{\text{bool}}}$ normal form. We can thus form a reduction tree for τ_1, with nodes labeled by expressions (τ_1 at the root, the children of a node labeled by the possible reductions of that node, and $\lambda P^{\Sigma_{\text{bool}}}$ normal forms at the leaves, repeating expression labels if they are encountered in multiple reductions), and edges labeled by reduction probabilities. Since by Prop. 4(a) the sum of the edges between a single parent and its children nodes are non-negative and sum to one, writing ρ_1 for the product of the weights along the branch from the root leading to leaf l, we have that $\sum_l \rho_1 = 1$. Since $\lambda P^{\Sigma_{\text{bool}}}$ does not have general recursion, the given expression τ_2 in the proposition can occur at most once along any branch from root to leaf. Further, we have that for a given node N, the product of the weights on the path from the root to N is $\sum_{l \in L_N} \rho_l$, where L_N contains all leaves whose branches from the root pass through N. Hence, we have $\rho_0 = \sum_{l \in L_N} (l \not\in L_N \land \psi(N) = \tau_2$) $\rho_l \leq 0$, where $\psi(N)$ returns the expression with which node N is labeled.

\[\square\]

Proposition 6. For τ_1 in $\lambda P^{\Sigma_{\text{bool}}}$, and any τ_3 in $\text{Reductions}(\tau_1)$, we have that $\tau_1 \rightarrow_\rho \tau_3$ with $\rho > 0$, and (a) for each τ_3 in $\text{Reductions}(\tau_1)$, $\exists \tau_4 \in \text{Types}(\tau_1) s.t. \tau_3 : \tau_4$; (b) for each $\tau_4 \in \text{Types}(\tau_1)$, $\exists \tau_3$ in $\text{Reductions}(\tau_1)$ s.t. $\tau_3 : \tau_4$.

Proof. We begin by noting that for expressions $\tau_1 \in T_{\lambda P^{\Sigma_{\text{bool}}}}$, the proposition holds, since $\text{Reductions}(\tau_1) = \{\tau_3\}$ and $\text{Types}(\tau_1) = \{\tau_4\}$ are singletons, and we can set $T_{\tau_1}(\tau_3) = \tau_3$ and $R_{\tau_1}(\tau_4) = \tau_4$, where we use $T_{\tau_1}(\cdot)$ to denote a function which, for any $\tau'_3 \in \text{Reductions}(\tau_1)$, picks out a $\tau'_4 \in \text{Types}(\tau_1)$ for which $\tau'_3 : \tau'_4$, and $R_{\tau_1}(\cdot)$ to denote a function which, for any $\tau'_4 \in \text{Types}(\tau_1)$, picks out a $\tau'_3 \in \text{Reductions}(\tau_1)$ for which $\tau'_3 : \tau'_4$.

13
For the general case, we use an induction on the formation rules for legal expressions in λP^2-bool, Eq. 7, where in each case we assume the proposition holds for the expressions in the antecedent of the rule, and derive from this that it holds for the expression(s) in the consequent.

(random): For $\tau_1 = \text{random}_\rho(F)$ we associate with $\tau_3 = \text{Norm}(a_0[x := \text{true}])$ the reduction which first reduces τ_1 to F true, reduces F true to $(\lambda x : \text{bool}.a_0)\text{true}$ (by the inductive hypothesis (IH), noting that leftmost-outermost reduction will reduce expressions in F first), performs the substitution $a_0[x := \text{true}]$, and finally reduces $a_0[x := \text{true}]$ to normal form. Letting $F \vdash^\rho_\beta \lambda x : \text{bool}.a_0$, we have $\tau_1 \vdash^\rho_\beta \tau_3$.

Similarly, for $\tau_3 = \text{Norm}(a_0[x := \text{false}])$ we have $\tau_1 \vdash^\rho_\beta \tau_3$. Finally, for $b \in \{\text{true}, \text{false}\}$ we set $T_{\tau_1}(\text{Norm}(a_0[x := b])) = \text{Norm}(A_{\text{true}}[x := b])$ where $T_{F}(\lambda x : \text{bool}.a_0) = \prod x : \text{bool}.A_{\text{true}}$, and $R_{\tau_1}(\text{Norm}(A_{\text{true}}[x := b])) = \text{Norm}((R_{\rho_\beta}(\prod x : \text{bool}.A_{\text{true}}))[b])$ (for convenience, embedding the meta-language function R_{ρ_β} in the syntax of λP^2-bool).

(if): For τ_1 if a_1 else a_2 we associate with $\tau_3 = \text{if} = a_1$ then b_1,n_1 else b_2,n_2 the reduction which reduces a_1 to b_1,n_1, and a_2 to b_2,n_2 (the exact sequence of reduction of sub-expressions will depend on the ordering rules following Eq. 6). Letting $a_1 \vdash^\rho_\beta b_1,n_1$, and $a_2 \vdash^\rho_\beta b_2,n_2$, we have $\tau_1 \vdash^\rho_\beta \tau_3$. Finally, we set $T_{\tau_1}(\text{if} = a_1, b_1,n_1$ else $b_2,n_2) = b_1,n_1$ if a_1 then b_1,n_1 else $b_2,n_2) = b_2,n_2$.

(abstract): For $\tau_1 = \lambda x : A.b$ we associate with $\tau_3 = \lambda x : A.b_0$ the reduction which prefixes all expressions in a reduction sequence from b to b_0 (IH) with $\lambda x : A$, noting that we have that $b \in T_\rho$, and so b contains no reducible sub-expressions containing x. Letting $b \vdash^\rho_\beta b_0$, we have $\tau_1 \vdash^\rho_\beta \tau_3$.

(application (1)): For $\tau_1 = F$ we associate with $\tau_3 = \text{Norm}(b_0[x := a])$ the reduction which first reduces F to $\lambda x : A.b_0$ with weight $\rho_1(\text{IH})$, and then a to b_0 with weight $\rho_2(\text{IH})$, replacing the subtraction $b_0[x := a]$ with b_0 and then reduces to normal form. For this reduction we have $\tau_1 \vdash^\rho_\beta \rho_2 \tau_3$. Finally, we set $T_{\tau_1}(\text{Norm}(b_0[x := a])) = \text{Norm}(B_{\text{true}}[x := a])$ where $T_{\text{F}}(\lambda x : A.b_0) = \prod x : A.B_{\text{true}}$, and $R_{\tau_1}(\text{Norm}(B_{\text{true}}[x := a])) = \text{Norm}((R_{\rho_\beta}(\prod x : A.B_{\text{true}}))[a])$.

(application (2)): For $\tau_1 = (\lambda x : Z.a) \text{a}$ we associate with $\tau_3 \in \text{Reductions}(b[x := a])$ the reduction which first reduces a to a' with weight $\rho_1(\text{IH})$, then reduces $(\lambda x : Z.a)a'$ to $\lambda x : A.b_0a'$ where $\rho_2(\text{and} (A, b) + \in Z$, and finally reduces $(\lambda x : A.b_0a')$ to b_0 and then to τ_3 with weight $\rho_2(\text{IH})$. For this reduction we have $\tau_1 \vdash^\rho_\beta \rho_2 \tau_3$. Further, we set $T_{\tau_1}(\tau_3 \in \text{Reductions}(b[x := a])) = \text{Type}(\lambda x : a') \in \text{Types}(\rho_1(\text{IH}),$ and $R_{\tau_1}(\text{Reductions}(\lambda x : a')) = \text{Reductions}(\lambda x : a')$.

(formation): For $\tau_1 = \prod x : A.B$, we associate with $\tau_3 = \prod x : A.B_n$ the reduction which prefixes all expressions in a reduction sequence from B to B_n (IH) with $\prod x : A$, noting that we have that $B \in T_\rho$, and so B contains no reducible sub-expressions containing x. Letting $B \vdash^\rho_\beta B_n$, we have $\tau_1 \vdash^\rho_\beta \tau_3$. Similarly, by prefixing the same reduction sequence with $\sum x : A$, we have $\tau_1' = \sum x : A.B \vdash^\rho_\beta \tau_3' = \sum x : A.B_n$. We can further set $T_{\tau_1}(\prod x : A.B_n) = \sum x : A.B = \sum x : A.B_n$, and $R_{\tau_1}(\sum x : A.B_n) = \sum x : A.B_1$, and $R_{\tau_1}(\sum x : A.B)$ = $\sum x : A.B_1$.

(products): For $\tau_1 = \pi_{\alpha} a$ $(\alpha = 1, 2)$ we associate with $\tau_3 = \text{Norm}(\pi_{\alpha} a')$ the reduction which first reduces a to a' with weight $\rho_1(\text{IH})$, and then reduces $\pi_{\alpha} a'$ to normal form. For this reduction we have $\tau_1 \vdash^\rho_\beta \tau_3$. Further, we set $T_{\pi_{\alpha}}(\text{Norm}(\pi_{\alpha} a')) = A_{\pi_{\alpha}}(A)$ to an arbitrary $\text{Norm}(\pi_{\alpha} a')$, $T_{\pi_{\alpha}}(\text{Norm}(\pi_{\alpha} a')) = \text{Norm}(\pi_{\alpha} a')$, and $R_{\pi_{\alpha}}(\text{Norm}(\pi_{\alpha} a')) = \text{Norm}(\pi_{\alpha} a')$.

\[\square\]

Proposition 7 (Theorem 1 in main text). (Probabilistic Type Judgment): Letting $\iota_{\tau_1}(\tau_2) = \sum \tau_2 \in \text{NF}_{\lambda P^2_{\text{bool}}} | \tau_2 \vdash^\rho_\beta \tau_3$, where $\tau_1 \vdash^\rho_\beta \tau_3$ we have (a) $\iota_{\tau_1}(\tau_2) > 0$ \Rightarrow $\tau_2 \in \text{Types}(\tau_1)$ and $\iota_{\tau_1}(\tau_2) = 0$ \Rightarrow $\tau_2 \not\in \text{Types}(\tau_1)$; and (b) $\iota_{\tau_1}(\tau_2)$ can be estimated by the frequency with which τ_1 reduces to $\tau_3 \in \text{NF}_{\lambda P^2_{\text{bool}}}$ such that $\tau_3 \vdash^\rho_\beta \tau_2$.

Proof. Part (a) follows firstly from that fact that we have shown by Props. 3 and 4b that all maximal reduction sequences of τ_1 end in a single member of $\text{Reductions}(\tau_1)$ having $\lambda P^2_{\text{bool}}$ normal form, and by Prop. 6 that every member of $\text{Reductions}(\tau_1)$ has a reduction from τ_1 having non-zero probability, implying together that $\text{Reductions}(\tau_1)$ contains exactly the maximal reductions of all reduction sequences from τ_1; and secondly from the fact that, from Prop. 6 we have that $\tau_2 \in \text{Types}(\tau_1) \Rightarrow \exists \tau_3 \in \text{Reductions}(\tau_1)$ s.t. $\tau_3 = \tau_2$, and $\tau_3 \in \text{Reductions}(\tau_1) \Rightarrow \exists \tau_2 \in \text{Types}(\tau_1)$ s.t. $\tau_3 = \tau_2$. Part (b) follows from the fact that all members of $\text{Reductions}(\tau_1)$ and $\text{Types}(\tau_1)$ are expressions in $\lambda P^2_{\text{bool}}$, and that $\beta\rho$ reduction corresponds to sampling from $\text{Reductions}(\tau_1)$ according to the probabilities ρ_{τ_3} (which follows from Props. 3a, 5 and 6). Since the derivability of type judgments (the truth of the form $\tau_3 : \tau_2$) is decidable in $\lambda P^2_{\text{bool}}$ (see [9], Theorem
5.21), we can determine for a given reduction if \(\tau_3 : \tau_2 \), and use the frequency with which this is true to estimate
\[
\ell_{\tau_1}(\tau_2) = \sum_{(\tau_2 \in \text{NF}_A^p : \text{S} \vdash \text{hold} | \tau_3 : \tau_2)} \rho_{\tau_3}.
\]

 Proposition 8 (Theorem 2 in main text). For a Dependent Type Network defined by \(\Gamma_0, \Gamma_1 \) and \(P \) as in Definition 1 (Sec. 4.2) and \(x_W \in \text{Types}(D) \) representing a possible world, with \(D \) as in Eq. 13, writing \([\cdot]\) for the indicator function which is 1 for a true condition and 0 otherwise, and \(\mathcal{P}(\cdot) \) for the powerset operator, we have:

\[
P(x_W|\Gamma_{0,1}, P) \propto \sum_{H \in \mathcal{P}(\{1\ldots N_D\})} (\prod_{j \in H} p_j)(\prod_{j \notin H} (1 - p_j))[\forall j \in H, \exists y \text{ s.t. } \Gamma', t : x_W \vdash y : F_j].
\]

 Proof. By Eq. 15 we have that \(P(x_W|\Gamma_{0,1}, P) \propto P(q_Q \rightarrow _ _ _ : _ _ _) \), \(Q = x_w \) (where the normalizing constant, \(1 - P(q_Q \rightarrow _ _ _ : _ _ _) = \sum_W P(x_W|\Gamma_{0,1}, P) \), by mutual exclusion of possible worlds, \(x_W \)). For \(q_Q \) to reduce to \(\tau : Q \), two events must occur. First, \(D \) in Eq. 12 (defined in Eq. 13) must reduce to a term \(\tau_1 : Q \), since otherwise \(\tau_1 \) will contain a proof for some ground predicate which is false in \(x_W \), allowing a proof of \(x_W \rightarrow _ _ _ \), and thus \(q_Q \) will reduce to either \(\tau : Q \rightarrow _ _ _ \) or \(\tau : _ _ _ \). Writing \(N_D \) for the size of the tuple \(\tau_1 : Q \), by Eq. 13 the probability of this occurring is \(P_1 = 2^{-N_D} \). Second, the formulae \(F_1 = 1\ldots N_F \) for which the binding of \(x_i \) in Eq. 12 reduces to \(f_i : F_i \) must all be consistent with the world represented by \(x_W \). Since \(x_W \) fixes all ground predicates, it also fixes all formulae built from these, hence a formula is consistent with \(x_W \) if \(x_W \rightarrow F_i \) (\(x_W \) is the formulae as types interpretation translation of \(x_w \)), as discussed in Sec. 4.2), or equivalently, \(\exists y \text{ s.t. } \Gamma', t : x_W \vdash y : F_i \) (\(x_W \) being inhabited implies that \(F_i \) is inhabited). If \(x_i \) binds to \(f_i : F_i \) for an inconsistent formula, we will be able to construct a proof of \(x_W \rightarrow _ _ _ \), and hence again \(q_Q \) will reduce to either \(\tau : Q \rightarrow _ _ _ \) or \(\tau : _ _ _ \). The probability of this event is \(P_2 = \sum_{H \in \mathcal{P}(\{1\ldots N_F\})} P(H)[\forall j \in H, \exists y \text{ s.t. } \Gamma', t : x_W \vdash y : F_j] \), where \(P(H) \) is the probability that for the indices \(i \) in the subset \(H \), \(x_i \) is bound to \(f_i : F_i \), and for all other formulae \(x_i \) is bound to \(1 \) : unit (hence we sum across all possible subsets of formulae \(H \), selecting only those subsets consistent with the query). Since \(P(H) = (\prod_{j \in H} p_j)(\prod_{j \notin H} (1 - p_j)) \), we have:

\[
P(x_W|\Gamma_{0,1}, P) \propto P_1 \cdot P_2 \\
= 2^{-N_D} \cdot P_2 \\
= \sum_{H \in \mathcal{P}(\{1\ldots N_F\})} P(H)[\forall j \in H, \exists y \text{ s.t. } \Gamma', t : x_W \vdash y : F_j] \\
= \sum_{H \in \mathcal{P}(\{1\ldots N_F\})} (\prod_{j \in H} p_j)(\prod_{j \notin H} (1 - p_j))[\forall j \in H, \exists y \text{ s.t. } \Gamma', t : x_W \vdash y : F_j],
\]

where the step from lines 2 to 3 follows from the fact that \(N_D \) is constant for all worlds, and hence \(P_1 \) may be absorbed into the normalizing constant.

\[\square\]

References

