
Dependent Type Networks: A Probabilistic Logic via the Curry-Howard
Correspondence in a System of Probabilistic Dependent Types

Jonathan Warrell1,2,∗ Mark Gerstein1,2,3

1Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA

3Department of Computer Science, Yale University, New Haven, CT 06520, USA
*jonathan.warrell{@yale.edu, @gmail.com}

Abstract

We first introduce a Probabilistic Dependent
Type System (PDTS) via a functional language
based on a subsystem of intuitionistic type the-
ory including dependent sums and products,
which is expanded to include stochastic func-
tions. We provide a sampling-based semantics
for the language based on non-deterministic
beta reduction. Further, we formulate a prob-
abilistic logic by defining a Dependent Type
Network (DTN) within the PDTS, where the
DTN is derived as a direct result of the Curry-
Howard correspondence. We show that the
DTN framework is equivalent to Markov Logic
Networks, and hence is a universal representa-
tion for discrete distributions.

1 Introduction

Stochastic functional programming languages have used
non-deterministic beta reduction to provide a probabilis-
tic semantics for languages based on the untyped lambda
calculus [1] and probabilistic type systems based on the
simply-typed lambda calculus [2]. Here, we show that a
similar approach can be used to provide semantics for a
probabilistic type system based on intuitionistic type the-
ory [3], hence including also dependent types. We call
these Probabilistic Dependent Type Systems (PDTS).

We demonstrate that a probabilistic logic can be nat-
urally formulated in our PDTS framework, which we
term a Dependent Type Network (DTN), using the Curry-
Howard correspondence. The logic we derive is dis-
tinct from previous formulations of probabilistic logic:
Previous approaches have involved associating weights
with sentences which induce a distribution over interpre-
tations (possible worlds) [4]; formulating conditions for
consistently assigning probabilities to sentences or inter-

pretations in a simply-typed higher-order language [5, 6];
or assigning terms and deterministic functions proba-
bilistically to types via probabilistic type judgments [7].
In contrast, we formulate an intuitionistic type system
of non-deterministic functions, and derive a probabilistic
logic as a subsystem. We show that DTNs are equivalent
to Markov Logic Networks (MLNs) [4], and hence are a
universal representation for discrete distributions.

Sec. 2 describes our ambient Probabilistic Dependent
Type System model, while Sec. 3 describes the em-
bedded Dependent Type Network formulation of prob-
abilistic logic. Sec. 4 summarizes the connection be-
tween DTNs and Markov Logic Networks, and Sec. 5
concludes with a discussion, including relationships to
deep-learning and probabilistic programming methods.
A more extended exposition is given in Supplementary
Materials, and we refer to relevant sections throughout.

2 A System of Probabilistic Dependent
Types

We begin by defining a probabilistic dependent type sys-
tem λPρΣ bool. Since this system includes stochastic
functions and dependent types, we naturally derive ex-
pressions which represent distributions over terms of
multiple types, distributions over types, as well as func-
tions whose return type is probabilistically determined.
We first define an abstract syntax for the language:

C ::= 1 | true | false | unit | bool

S ::= ∗ | �
V ::= {a, b, c, ...A,B,C...a1, b1, c1...a2...}
U ::= C | V | (U ,U)T

Z ::= {} | {(T , T), Z}
T ::= U | (T T) | λV : T .T | randomρ(T) |

if V then T else T | π1T | π2T |∑
V : T .T |

∏
V : T .T | (λV.Z)T , (1)

where C are type/value constants, S are sorts, V are vari-
ables, U are values, T are pseudo-expressions (a subset
of which will be legal expressions), ρ is any real num-
ber in the interval [0 1], and the syntactic construction
Z allows us to form lists of paired terms. We will re-
fer to the deterministic subsystem built out of expres-
sions not involving random and (λV.Z) constructions
as λPΣ bool, and write TλPΣ bool for the set of com-
mon pseudo-expressions. Next, we define inductively
a weighted β-reduction relationship (βρ-reduction) on
pseudo-expressions, τ1 →ρ

β τ2 via:

π1(u1, u2)T →1
β u1

π2(u1, u2)T →1
β u2

if true then τ1 else τ2 →1
β τ1

if false then τ1 else τ2 →1
β τ2

randomρ(τ) →ρ
β (τ true)

randomρ(τ) →(1−ρ)
β (τ false)

(λx : τ1.τ2)τ3 →1
β τ2[x := τ3]

if τ3 ∈ TλPΣ bool ,

and no FV captured,
(λx.Z)τ3 →1

β (λx : τ1.τ2)τ3

if τ3 ∈ TλPΣ bool ,
τ3 : τ1, (τ1, τ2) inZ,
and no conflicting
reducts of same type.

(2)

where, u1, u2 ∈ U , τ1, τ2, τ3, τ ∈ T , b1, b2 ∈
{true, false}, Z ∈ Z , FV abbreviates free variables, and
we write ‘in’ for the list membership relation (see Supp.
Eqs. 3 and 6 for full description of FV and conflict-
ing reducts conditions). The reduction relation βρ is ex-
tended by allowing reduction of sub-pseudo-expressions
while enforcing a ‘stochastic memoization’ property as
defined in [1], and we write τ1 �ρ0

β τ2 when the sum of
the products of the ρ values across all reduction chains
between τ1 and τ2 is ρ0 (see Supp Eq. 6 and following,
and Supp. Prop. 5).

To apply the reduction rules in Eq. 2, it is necessary to
define the relation (or judgement) a : A, which can be
read as ‘a is of type A’. This can be done by specify-
ing the type inference rules for the system. For the de-
terministic component, TλPΣ bool , we use standard typ-
ing rules for dependent type systems (see [9] and Supp.
Eq. 4). Note particularly, that an expression of the form∏
a : A.B represents the dependent type of functions

whose inputs are of type A, and whose outputs may have
a type which depends on their input B(a). Similarly, an
expression of the form

∑
a : A.B represents the type

of pairs whose first element is of type A, and whose
second element has the dependent type B(a). Also,
note that all typing judgments are relative to a (possi-
bly empty) context, Γ, which assigns types to any FVs.
To identify legal expressions in λPρΣ bool (i.e. includ-
ing non-deterministic expressions), we define two op-
erators Types and Reductions on pseudo-expressions,
where Reductions(τ) returns the set of normal forms to
which a given pseudo-expression reduces with non-zero
probability, and Types(τ) returns the set of types corre-
sponding to those normal forms (we will ensure all re-
duction sequences of legal expressions in λPρΣ bool end
in λPΣ bool normal forms). We define these operators in-
ductively (see Supp. Eq. 7), and define the legal expres-
sions in λPρΣ bool as all expressions τ with non-empty
Types(τ) and Reductions(τ) sets.

We can demonstrate that λPρΣ bool has a number of de-
sirable properties. First, we have that τ1 →ρ

β τ2, im-
plies Types(τ1) ⊇ Types(τ2), and Reductions(τ1) ⊇
Reductions(τ2) (Supp. Prop. 3), hence βρ-reduction
weakly preserves types (weak preservation). Second, we
can show that a progress property holds, in that for any
legal expression the ρ values associated with the avail-
able reductions sum to 1, implying that we can make
a probabilistic reduction step hence giving sampling se-
mantics to the relation βρ (Supp. Prop. 4a), and that all
valid reduction sequences of expressions end in an ex-
pression of λPΣ bool in normal form (Supp. Prop. 4b).
Further, we can show that Reductions(τ) and Types(τ)
contain exactly the normal forms and associated types to
which τ reduces with non-zero probability (Supp. Prop.
6). Together, these properties imply that probabilistic
type judgement is possible by sampling in λPρΣ bool. We
summarize this in the following (writing NF for normal
form):

Theorem 1. (Probabilistic Type Judgment): Letting
ιτ1(τ2) =

∑
{τ3∈NF

λPΣ bool |τ3:τ2} ρτ3 , where τ1 �
ρτ3
β

τ3, we have (a) ιτ1(τ2) > 0 ⇒ τ2 ∈ Types(τ1) and
ιτ1(τ2) = 0 ⇒ τ2 6∈ Types(τ1); and (b) ιτ1(τ2) can
be estimated by the frequency with which τ1 reduces to
τ3 ∈ NFλPΣ bool such that τ3 : τ2.

A proof is provided in the supplement (Supp. Prop. 7).

3 Dependent Type Networks

We now formulate a Dependent Type Network (DTN),
which will be a weighted network of formulae in first-
order logic embedded in a PDTS as above. We require
a base context Γ0 which fixes symbols for the constants,
predicates and functions of the model, for instance con-
taining symbols (/types-constructors) B1

n=1...NB1
, and

B2
n=1...NB2

for unary and binary predicates respectively;

b1n=1...NB1
, and b2n=1...NB2

for terms (/proofs) associated
with these predicates; and c1...Nc for fixed constants (see
Supp. Eq. 11 and following for a full definition of Γ0). A
DTN is fixed by augmenting this base context with a fur-
ther set of ‘formulas’ in the language, specified by Γ1 =
Γ0, < f1 : F1, ..., fNF : FNF >. Here, a given formula
such asB1(c1)∧B1(c2) is represented by the type corre-
sponding to the formula by the Curry-Howard correspon-
dence, B1(c1)×B1(c2). In general, X ∧Y corresponds
to X × Y (X and Y being ground predicates), X ∨ Y
to the disjoint product

∑
x : bool .(if x thenX elseY),

X → Y to X → Y , ¬X to X → ⊥, ∀x(X(x)) to∏
x : A.X(x), and ∃x(X(x)) to

∑
x : A.X(x). An

expression which can be typed to a formula type corre-
sponds to a proof of that formula, and thus to asserting
the formula itself (a formula is ‘true’ if it is inhabited).
We will further equip a DTN with a set of probabilistic
weights, P = {p1, p2, ..., pNF }, where pi will represent
the probability that Fi is true, taking values in (0 1) (see
Supp. Def. 1 for a full definition of DTN).

Given a DTN as defined, we will represent a query for-
mula, for instance Q = B1

1(c3), as an expression (/pro-
gram) qQ where Types(qQ) = {B1

1(c3), B1
1(c3) →

⊥,⊥}. That is, the expression reduces to either a proof
of Q, a proof of ¬Q, or a proof of a contradiction (the
last possibility corresponding to an inconsistent world).
We will canonically define qQ for a particular Q (where
Q is a type) as follows:

qQ = letx1 = randomp1
(λx : bool . if x then f1

else 1) in

...

letxNF = randompNF
(λx : bool . if x then fNF

else 1) in

letxNF+1 = D in

(λx.ZQ)(x1, x2, ..., xNF , xNF+1). (3)

In Eq. 3, D is defined as follows:

D = letx1,1 = random0.5(λx : bool . if x then b1,1,1

else b1,1,0) in

...

letxNB1 ,NC = random0.5(λx : bool . if x then

bNB1 ,NC ,1 else bNB1 ,NC ,0) in

letx1,1,1 = random0.5(λx : bool . if x then

b1,1,1,1 else b1,1,1,0) in

...

letxNB1 ,NC ,NC = random0.5(λx : bool . if x

then bNB2 ,NC ,NC ,1 else bNB2 ,NC ,NC ,0) in

(x1,1, ..., xNB1 ,NC , x1,1,1, ..., xNB2 ,NC ,NC), (4)

representing an expression which uniformly samples a
possible world. The term ZQ in Eq. 3 is constructed as
a list of pairs [(t, τt), t ∈ Types(T)], where T is defined
in Supp. Eq. 14 (representing tuples for all combinations
of assumptions and possible words).

For each t ∈ Types(T), we consider the context Γt =
Γ′, x : t, and construct the sets RQ,t of expressions r
such that Γt ` r : Q, SQ,t of expressions s such that Γt `
s : Q → ⊥, and KQ,t of expressions k such that Γt `
k : ⊥. If K 6= ∅, we set τt = k for an arbitrary k ∈ K.
Otherwise, we must have either R = ∅ or S = ∅ (since if
neither is the case (sr) ∈ K for arbitrary s ∈ S, r ∈ R,
and the term D in Eq. 4 ensures at least one is non-
empty). IfR = ∅∧K = ∅, we set τt = s for an arbitrary
s ∈ S, and if S = ∅ ∧ K = ∅, we set τt = r for an
arbitrary r ∈ R. (λx.ZQ) thus returns a proof of Q, ¬Q,
or ⊥, depending on which of these can be constructed
given the type of the input argument passed. We define
the probability of a query in terms of the probability that
qQ reduces by βρ-reduction to a term τ of type Q given
that it does not reduce to an inconsistency (where τ ∈
NFλPΣ bool):

P (Q|Γ0,Γ1, P) =
P (qQ �ρ

β τ : Q)

1− P (qQ �ρ
β τ : ⊥)

. (5)

The probability in Eq. 5 can be evaluated by sampling
repeated reductions of Eq. 3, and rejecting those sam-
ples returning τ : ⊥. Writing xW for a type xW ∈
Types(D), i.e. a possible world, and P(.) for the pow-
erset operator, we can show:

Theorem 2. (DTN distribution over possible worlds): A
DTN defined as above represents the following distribu-
tion over possible worlds:

P (xW |Γ0,1, P) ∝
∑
H∈P({1...NF })(

∏
j∈H pj) ·

(
∏
j 6∈H(1− pj))[∀j ∈ H,∃y s. t.Γ′, t : xW ` y : Fj].

(6)

A proof is provided in the supplement (Supp. Prop. 8).

4 Equivalence with Markov Logic
Networks

As defined in [4], a Markov Logic Network (MLN) L
is a set of pairs (Fi, wi), where Fi is a formula in first
order logic and wi is an arbitrary real number. L acts
as a template, which when combined with a finite set
of constants C = {c1, c2, ..., c|C|} (which includes and
may extend the constants used to build the Fi’s, defining
the domain over which the model ranges) constructs a
ground Markov Network,ML,C . ML,C contains a binary

node for every possible grounding of the predicates in L
(a ground predicate being a formula involving only the
applications of a predicate to a tuple of constants). The
network also contains cliques for all possible groundings
of each formula F in L, where the clique derived from
the j’th grounding of formula i is associated with a clique
potential ψi,j which is 1 if the ground formula is not sat-
isfied, and ewi if it is. A possible world is fixed by a
joint setting of the nodes of ML,C , which we denote by
x ∈ {0, 1}P , where P is the number of ground predi-
cates (nodes) in the network. ML,C thus defines a distri-
bution over possible worlds, which can be expressed as a
random variable X which ranges over the settings x:

P (X = x) =
1

Z

∏
ij

ψij(xij) =
1

Z

∏
i

(ewi)ni(x), (7)

where Z is the partition function Z =
∑

x

∏
ij ψij(xij),

and ni(x) denotes the number of true groundings of
formula Fi in joint setting x. The probability that
a given formula holds in a possible world distributed
according to Eq. 7 can be written P (F |L,C) =∑

x∈XF P (x|L,C), where XF is the subset of possible
worlds in which query formula F is true.

To draw a relation with DTNs, we require that an MLN
is expressed in a canonical form, using only non-positive
weights wi. This can always be achieved as follows: For
an arbitrary MLN L, we form an equivalent network L′,
where, for pair (Fi, wi) ∈ L we set (F ′i , w

′
i) ∈ L′ with

F ′i = Fi, w′ = w if w ≤ 0, and F ′i = ¬Fi, w′ = −w
otherwise. This transformation will preserve the distri-
bution across worlds, since the ratio ψi(x1)/ψi(x2) for
a world which satisfies Fi, x1, and one which does not,
x2, is ew in both networks ML,C and ML′,C .

We can then demonstrate the following equivalence:

Theorem 3. (Equivalence of DTNs and MLNs): We have
the following canonical maps, which preserve distribu-
tions over possible worlds:

(a) Given a ground Markov Logic Network ML,C , L =
(F ′i , w

′
i ≤ 0), we map it to a DTN {Γ0,Γ1, P}, Γ1 =

Γ0, < fi : F ′′i , i = 1 : NF >, such that:

F ′′i = F̂ ′i → ⊥
pi = (1− exp(w′i)), (8)

where F̂ denotes the type corresponding to formula F
under the Curry-Howard correspondence,

(b) Given a DTN {Γ0,Γ1, P}, Γ1 = Γ0, < fi : Fi, i =
1 : NF >, we map it to an MLN ML,C , L = (F ′i , wi),
such that:

F ′i = ¬ ˆ̂
Fi

wi = log(1− pi), (9)

where ˆ̂
F denotes the formula corresponding to type F

under the Curry-Howard correspondence.

A proof is provided in the supplement (Supp. Prop. 1).

A direct corollary of this equivalence is therefore:

Corollary 1. DTNs are a universal representation for
distributions across finitely many discrete variables.

Proof. As shown in [4], MLNs are a universal represen-
tation for finite discrete distributions.

5 Discussion

We have used a restricted system here to show that
stochastic functions can be embedded in dependent type
theory (DTT), and how this naturally leads to a proba-
bilistic logic equivalent to Markov Logic Networks. In
general, we would wish to make use of the full resources
of DTT [10, 11], such as inductive and recursive defi-
nitions, identity types and higher inductive types to for-
mulate more general PDTS’s, in which richer probabilis-
tic logics may be embedded. We note however that the
current framework is suggestive of a number of direc-
tions for investigation both with respect to the specific
models investigated here and more generally. For in-
stance, the relationship between DTNs and MLNs sug-
gests that automatic theorem proving techniques may be
generally applied in the context of inference in graphical
models (which may naturally be expressed as MLNs),
since Eq. 5 may be evaluated by a meta-algorithm which
repeatedly samples assumptions and searches for proofs
of Q, ¬Q or ⊥. The recent application of deep-learning
techniques to automated and interactive theorem proving
[12, 13] is potentially a powerful tool in this context.

Another suggestive direction is model learning. Recent
approaches have shown that deep-learning methods can
be fully integrated with probabilistic programming [14].
Our PDTS framework is naturally treated as a proba-
bilistic programming framework, and we can straightfor-
wardly incorporate deep neural networks as stochastic or
deterministic functions within the PDTS outlined. In the
logical context, this corresponds to learning formulae of
arbitrary complexity in a DTN. Additionally, the ambi-
ent PDTS of our framework can naturally represent both
models and inference procedures applied to models as
stochastic programs, as in [14].

Finally, we note that fully integrating dependent types
in probabilistic programming languages has the poten-
tial to draw a tight connection between machine learning
techniques and recent computational approaches in the
foundations of mathematics, such as UniMath [15].

References

[1] N.D. Goodman, V.K. Mansinghka, D. Roy, K.
Bonawitz, and J.B. Tenenbaum. Church: A language
for generative models. UAI, 2008.

[2] J. Borgström, A.D. Gordon, M. Greenberg, J. Mar-
getson, and J. Van Gael. Measure Transformer Se-
mantics for Bayesian Machine Learning. In Pro-
gramming Languages and Systems, 77-96, Springer
Berlin Heidelberg, 2011.

[3] P. Martin Löf. An Intuitionistic Theory of Types:
Predicative Part. In Logic Colloquim, 1973, North-
Holland, 1975.

[4] M. Richardson, and P. Domingos. Markov Logic
Networks. Machine Learning, 62(1-2):107-136,
2006.

[5] K.S. Ng, and J.W. Lloyd. Probabilistic Reason-
ing in a Classical Logic. Journal of Applied Logic,
7(2):218-238, 2007.

[6] M. Hutter, J.W. Lloyd, K.S. Ng, and W.T.B. Uther.
Probabilities on Sentences in an Expressive Logic.
Journal of Applied Logic, 11(4):386-420, 2013.

[7] R. Cooper, S. Dobnik, S. Lappin, and S. Larsson. A
Probabilistic Rich Type Theory for Semantic Inter-
pretation. Proceedings of the EACL 2014 Workshop
on Type Theory and Natural Language Semantics,
72-79, 2014.

[8] H. P. Barendregt. Lambda Calculi with Types. In
Handbook of Logic in Computer Science, Vol 2:1-
189, 1992.

[9] S. Thompson. Type Theory and Functional Pro-
gramming, Addison-Wesley, 1991.

[10] P. Martin-Löf. ”Constructive mathematics and
computer programming.” In Studies in Logic and the
Foundations of Mathematics, vol. 104, pp. 153-175.
Elsevier, 1982.

[11] The Univalent Foundations Program, Homotopy
Type Theory: Univalent Foundations of Mathemat-
ics, Princeton NJ, Institute for Advanced Study,
2013, https://homotopytypetheory.org/book.

[12] C. Kaliszyk, F. Chollet, and C. Szegedy. Holstep: A
machine learning dataset for higher-order logic the-
orem proving, ICLR, 2017.

[13] T. Rocktäschel, and S. Riedel. End-to-end differen-
tiable proving. NIPS 2017.

[14] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo,
K. Murphy, and D. M. Blei. Deep probabilistic pro-
gramming, ICLR, 2017.

[15] V. Voevodsky, B. Ahrens, and D. Grayson, Uni-
Math, 2014, https://github.com/UniMath.

Dependent Type Networks: A Probabilistic Logic via the Curry-Howard
Correspondence in a System of Probabilistic Dependent Types

Supplementary Materials

Jonathan Warrell12∗, Mark Gerstein123

1 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
2 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA

3 Department of Computer Science, Yale University, New Haven, CT 06520, USA

*jonathan.warrell{@yale.edu, @gmail.com}

Abstract. We first introduce a Probabilistic Dependent Type System (PDTS) via a functional language based on
a subsystem of intuitionistic type theory including dependent sums and products, which is expanded to include
stochastic functions. We provide a sampling-based semantics for the language based on non-deterministic beta
reduction. Further, we formulate a probabilistic logic by defining a Dependent Type Network (DTN) within the
PDTS, where the DTN is derived as a direct result of the Curry-Howard correspondence. We show that DTNs
are equivalent to Markov Logic Networks, and hence are a universal representation for discrete distributions.
These supplementary materials provide an extended presentation of the main paper.

1 Introduction

Stochastic functional programming languages have used non-deterministic beta reduction to provide a probabilistic
semantics for languages based on the untyped lambda calculus [1] and probabilistic type systems based on the
simply-typed lambda calculus [2]. Here, we show that a similar approach can be used to provide semantics for
a probabilistic type system based on intuitionistic type theory [3], hence including also dependent types. We call
these Probabilistic Dependent Type Systems (PDTS).

We demonstrate that a probabilistic logic can be naturally formulated in our PDTS framework, which we term
a Dependent Type Network (DTN), using the Curry-Howard correspondence. The logic we derive is distinct from
previous formulations of probabilistic logic: Previous approaches have involved associating weights with sentences
which induce a distribution over interpretations (possible worlds) [4]; formulating conditions for consistently as-
signing probabilities to sentences or interpretations in a simply-typed higher-order language [5, 6]; or assigning
terms and deterministic functions probabilistically to types via probabilistic type judgments [7]. In contrast, we
formulate an intuitionistic type system of non-deterministic functions, and derive a probabilistic logic as a sub-
system. We show that DTNs are equivalent to Markov Logic Networks (MLNs) [4], and hence are a universal
representation for discrete distributions.

Sec. 2 outlines a deterministic dependent type system, which is then generalized to include non-deterministic
functions in Sec. 3, hence forming a PDTS. Sec. 4 then uses the PDTS to derive DTNs as a probabilistic logic via
the Curry-Howard correspondence, and shows that a canonical translation can be made between DTNs and MLNs.

2 A Dependent Type System: λPΣ bool

We give an initial overview of a system we will call λPΣ bool. This will be a typed lambda calculus with dependent
products (hence based on the system λP , see [8]), dependent sums (Σ-types), and bool and unit base types.

The language includes the following sets of base constants C0, and sorts, denoted S:

C0 ::= 1 | true | false | unit | bool

S ::= ∗ | � (1)

We denote the constants collectively as C = C0 ∪ S. We also have a countably infinite supply of variables, V =
{a, b, c, ...A,B,C...a1, b1, c1...a2...}. An abstract syntax (see [8]) for values U and pseudo-expressions T in our
language can be specified as follows:

U ::= C | V | (U ,U)T
T ::= U | (T T) | λV : T .T | if V then T else T |

π1T | π2T |
∑
V : T .T |

∏
V : T .T (2)

We define inductively the free variables of a pseudo-expression FV (τ), such that FV (c) = ∅ for c ∈ C, FV (v) =
{v} for v ∈ V , FV ((u1, u2)) = FV (u1)∪FV (u2) for u1, u2 ∈ U , FV (τ1τ2) = FV (τ1)∪FV (τ2) for τ1, τ2 ∈ T ,
FV (π1τ) = FV (π2τ) = FV (τ), FV (if v then τ1 else τ2) = FV (τ1)∪FV (τ2)∪FV (v), and FV (λv : τ1.τ2) =
FV (

∑
v : τ1.τ2) = FV (

∏
v : τ1.τ2) = FV (τ1) ∪ FV (τ2) − {v}. Any variable appearing in τ which is not a

free variable is bound. Pseudo-expressions which can be converted into one another by renaming variables such
that no free variable becomes bound after renaming are identified as equivalent (by alpha conversion), and we
write τ1 ≡ τ2 when this is the case. Further, the notion of beta reduction between pseudo-expressions, denoted
τ1 →β τ2, is specified by the following rules:

π1(u1, u2)τ →β u1

π2(u1, u2)τ →β u2

if true then τ1 else τ2 →β τ1

if false then τ1 else τ2 →β τ2

(λx : τ1.τ2)τ3 →β τ2[x := τ3] (see conditions below), (3)

where u1, u2 ∈ U , τ1, τ2, τ3, τ ∈ T , b1, b2 ∈ {true, false}, and τ2[x := τ3] denotes the result of substituting τ3
for x in τ2. For rule 5, we also impose the conditions that no variable in FV (τ3) becomes bound on substitution
(transforming τ2 by alpha conversion if necessary before substitution to prevent this), and that τ3 ∈ U if τ2 contains
any sub-expressions of the form (x, y), (y, x) or (x, x). In addition to the rules above, we extend the beta reduction
relation as follows: letting τ2 be a free sub-(pseudo)-expression of τ1, meaning that τ1, τ2 ∈ T , τ2 is a substring
of τ1, and no free variable of τ2 is bound in τ1 (by a λ,

∏
or

∑
construct), we have that τ1 →β τ ′1 whenever

τ2 →β τ ′2 by one of the above rules (Eq. 3), and τ ′1 is the result of replacing τ2 for τ ′2 in τ1. Further, we write
τ1 =β τ2 iff τ1 �β τ2 or τ2 �β τ1, where �β is the reflexive transitive closure of→β .

The pseudo-expressions for which we can infer types will be the expressions proper (legal expressions/terms)
of the language. For this purpose, we define a statement to be of the form τ0 : τ1 (pronounced τ0 is of type τ1).
A context is a finite linearly ordered set of statements, Γ =< τ1,0 : τ1,1, τ2,0 : τ2,1, ..., τN,0 : τN,1 >, where
τn,0 ∈ V , n = 1...N , and for n1 6= n2, τn1,0 6= τn2,0. We write <> for the empty context, and Γ, x : τ for the
result of appending x : τ to Γ . We can then specify rules for type inference as follows:

(axioms): <>` ∗ : �, bool : ∗, unit : ∗, 1 : unit, true : bool, false : bool,

Γ ` A : s(start): x 6∈ Γ
Γ, x : A ` x : A

Γ ` A : B Γ ` C : s(weakening): x 6∈ Γ
Γ, x : C ` A : B

Γ ` A : ∗ Γ, x : A ` B : s
(type/kind formation):

Γ ` (
∏
x : A.B) : s, (

∑
x : A.B) : s

Γ ` F : (
∏
x : A.B) Γ ` a : A

(application):
Γ ` Fa : B[x := a]

Γ, x : A ` b : B Γ ` (
∏
x : A.B) : s

(abstraction):
Γ ` (λx : A.b) : (

∏
x : A.B)

Γ ` a : bool Γ ` b1 : B[x := true] Γ ` b2 : B[x := false]
(if):

Γ ` (if a then b1 else b2) : B[x := a]

Γ, x : A ` b : B Γ ` (
∑
x : A.B) : s

(products (1)): x, b ∈ U
Γ ` (x, b)(

∑
x:A.B) : (

∑
x : A.B)

Γ ` c : (
∑
x : A.B)

(products (2)):
Γ ` (π1c) : A, (π2c) : (B[x := (π1c)])

2

Γ ` A : B Γ ` C : s B =β C(type conversion): ,
Γ ` A : C

(4)

where s ranges over S and τ1 → τ2 is shorthand for
∏
x : τ1.τ2 in the case that τ2 is independent of x. In the

following, we will also use the notation τ1 × τ2 for
∑
x : τ1.τ2 where τ2 is independent of x, (letx = τ1 in τ2)

for (λx : A.τ2)τ1, where τ1 : A, and (x, y, z) for (x, (y, z)) and similarly for longer tuples, where we omit tuple
type-tags for clarity.

The system λPΣ bool forms a subsystem of the most general system considered in [9] (TT), and as such
can be shown to be strongly normalizing (see Theorem 5.36, [9]), implying that β reduction sequences of all
valid expressions can always be extended to terminate in a normal form (an expression which cannot be reduced
further), and that each expression has a unique normal form up to alpha equivalence. We can thus write Norm(τ)
for the unique normal form of τ , where τ is a typable expression. Further properties which can be demonstrated
in λPΣ bool include preservation (β-reduction preserves types up to beta equivalence, in that for a reduction step
τ1 →β τ2, where τ1 : τ3 and τ2 : τ4, we have that τ3 =β τ4), and progress (any expression not in normal form
has a valid β reduction). The second of these properties follows directly from strong normalization, and we give a
proof of the first in the Appendix (Prop. 2).

3 Probabilistic Dependent Types: λPρΣ bool

We now enlarge the λPΣ bool system to include primitives for sampling from distributions, using a similar syntax
to [2]. The calculus developed in [2] is based on the simple typed lambda calculus, and includes only distributions
over values within a type. Since our calculus also includes dependent types, we naturally derive expressions which
represent distributions over terms of multiple types, distributions over types, as well as functions whose return type
is probabilistically determined. The language we develop in this section will be called λPρΣ bool, and contains as
a subsystem the fragment of the Fun language in [2] only involving Bernoulli distributions (and without observe
statements)4 when the dependent types are removed.

We begin by expanding the syntax of Sec. 2:

U ::= C0 | V | (U ,U)T
Z ::= {} | {(T , T), Z}
T ::= U | (T T) | λV : T .T | if V then T else T |

π1T | π2T |
∑
V : T .T |

∏
V : T .T | (λV.Z)T | randomρ(T) (5)

where ρ is any real number in the interval (0 1), and the new syntactic constructionZ allows us to form lists/ordered
sets of paired terms. Since the syntax in Eq. 5 is an expansion of that in Eq. 2, all pseudo-expressions of λPΣ bool

will also be pseudo-expressions of λPρΣ bool. We denote the set of common pseudo-expressions as TλPΣ bool .
Next, we define inductively a weighted reduction relationship (βρ-reduction) on pseudo-expressions, τ1 →ρ

β τ2
via:

π1(u1, u2)T →1
β u1

π2(u1, u2)T →1
β u2

if true then τ1 else τ2 →1
β τ1

if false then τ1 else τ2 →1
β τ2

randomρ(τ) →ρ
β (τ true)

randomρ(τ)→(1−ρ)
β (τ false)

(λx : τ1.τ2)τ3 →1
β τ2[x := τ3] if τ3 ∈ TλPΣ bool , and conditions as in Eq. 3 rule 5,

(λx.Z)τ3 →1
β (λx : τ1.τ2)τ3 if τ3 ∈ TλPΣ bool , τ3 : τ1, (τ1, τ2) inZ,

and ∀τ ′2 6= τ2,¬((τ1, τ ′2) inZ). (6)
4 The observe statement in [2] allows a distribution to be conditioned on (and updated by) evidence. As we discuss in Sec. 4.1,

such conditioning can be simulated by adding the conditioning formula with a weight tending to∞ in the context of Markov
Logic Networks, and hence also in Dependent Type Networks by the correspondence we describe in Sec. 4.3. Further, in
a general PDTS we could say return the unit value from a probabilistic function if the conditional is not satisfied. We thus
simplify our analysis by not including the statement in our syntax.

3

where, as before, u1, u2 ∈ U , τ1, τ2, τ3, τ ∈ T , b1, b2 ∈ {true, false}, and here Z ∈ Z , while we write in for the
transitive closure of the set membership relation where Z is interpreted as denoting a set (alternatively, in denotes
list membership if Z is viewed as a list data structure). We extend the reduction relation by allowing τ1 →ρ

β τ
′
1

whenever τ2 →ρ
β τ
′
2 by one of the above rules, and τ ′1 is the result of replacing τ2 for τ ′2 in τ1, where τ2 is either

(i) the leftmost-outermost reducible sub-(psuedo)-expression of the form τ2 = randomρ(τ3) or τ2 = (λx.Z)τ3,
or (ii) if no reducible sub-(psuedo)-expression of the forms in (i) exist, the leftmost-outermost free sub-(pseudo)-
expression of τ1 as in Sec. 2. Here, leftmost-outermost refers to the sub-expression found by searching the parse
tree of a (pseudo)-expression top-down, traversing the left subtree of a non-reducible expression before the right
(see [9], Def. 2.13). These conditions ensure that there is at most one sub-(pseudo)-expression whose reduction
is allowed at any point. The relationship τ1 →ρ

β τ2 can be given the operational semantics ‘τ1 reduces to τ2 with
probability ρ’. We can further define the relation τ1 �β τ2 to hold when there exists any reduction chain between
τ1 and τ2 such that no step has zero probability, and τ1 �ρ0

β τ2 to hold when the sum of the products of the ρ values
across all such chains is ρ0 (where ρ0 ≤ 1, see Appendix Prop. 5). Further, we note that the rules for reduction of λ
terms in Eq. 6 whereby a term may not be substituted until it is reduced to a term in TλPΣ bool enforce a ‘stochastic
memoization’ property on reduction sequences as defined in [1] (a random statement will not be duplicated by
substitution, and reduced in alternative ways in a single reduction sequence).

In [2], type assignment rules are given which consistently assign a single type to all expressions such that
a preservation property holds: in any probabilistic reduction sequence, the types of all terms are preserved at
each reduction step (up to β equivalence). Since our language contains dependent types, such a property cannot
be expected to hold, as a given expression may reduce to expressions with different types by different reduction
sequences. Instead of assigning types to all expressions in λPρΣ bool, only expressions already typed in λPΣ bool

by the rules of Eq. 4 will be typed directly. To identify general valid expressions in λPρΣ bool, we define two
operators Types and Reductions on pseudo-expressions, where Reductions(τ) will return the set of normal forms
to which a given psuedo-expression reduces with non-zero probability, and Types(τ) will return the set of types
corresponding to those normal forms (we will ensure all reduction sequences of legal expressions in λPρΣ bool

end in λPΣ bool normal forms). We define these operators inductively. For each pseudo-expression τ1 of λPΣ bool,
we set Types(τ1) = {τ2} when τ1 : τ2, τ2 ∈ NFλPΣ bool , and Types(τ1) = {no-type} otherwise. Further,
Reductions(τ1) = {Norm(τ1)} in the former case, and ∅ in the latter. The following inductive rules are then used
to define these operators for all valid expressions in λPρΣ bool (where we let Tx be the set of λPρΣ bool pseudo-
expressions containing no reducible sub-expressions containing the variable x, including sub-expressions within
Z constructions):

Γ ` Reductions(F) = {λx : bool .an, n = 1...N1},
Γ ` Types(F) = {

∏
x : bool .An, n = 1...N2},(random):

Γ ` Reductions(randomρ(F)) =
⋃
b∈{true,false}{Norm(an[x := b]), n = 1...N1}

Γ ` Types(randomρ(F)) =
⋃
b∈{true,false}{Norm(An[x := b]), n = 1...N2}

Γ ` a : bool,Reductions(a1) = {b1,n, n = 1...N1,1},
Reductions(a2) = {b2,n, n = 1...N2,1},
Types(a1) = {B1,n, n = 1...N1,2},
Types(a2) = {B2,n, n = 1...N2,2}

(if):
Γ ` Reductions(if a then a1 else a2) = {if a then b1,n1 else b2,n2 , n1 = 1...N1,1, n2 = 1...N2,1}
Γ ` Types(if a then a1 else a2) = {if a thenB1,n1 elseB2,n2 , n1 = 1...N1,2, n2 = 1...N2,2}

Γ, x : A ` Reductions(b) = {bn, n = 1...N1},
Γ, x : A ` Types(b) = {Bn, n = 1...N2}, b ∈ Tx(abstraction):
Γ ` Reductions(λx : A.b) = {λx : A.bn, n = 1...N1}
Γ ` Types(λx : A.b) = {

∏
x : A.Bn, n = 1...N2}

Γ ` Reductions(a) = A,Reductions(F) = {λx : A.bn, n = 1...N1},
Γ ` Types(a) = {A},Types(F) = {

∏
x : A.Bn, n = 1...N2}(application (1)):

Γ ` Reductions(Fa) =
⋃
a′∈A{Norm(bn[x := a′]), n = 1...N1}

Γ ` Types(Fa) =
⋃
a′∈A{Norm(Bn[x := a′]), n = 1...N2}

4

Γ ` Reductions(a) = A,Types(a) = A′,
∀A ∈ A′, (A : ∗) ∧ (∃(A, b) ∈∈ Z, s. t.∀b′ 6= b,¬((A, b′) ∈∈ Z)∧
(∀a′ ∈ A s. t. a′ : A,∀B ∈ Types(b[x := a′]), B : s) ∧ (b ∈ Tx))(application (2)):

Γ ` Reductions((λx.Z)a) =
⋃
a′∈A,(A,b)∈∈Z,a′:AReductions(b[x := a′])

Γ ` Types((λx.Z)a) =
⋃
a′∈A,(A,b)∈∈Z,a′:A Types(b[x := a′])

Γ ` A : ∗, Γ, x : A ` Reductions(B) = {Bn, n = 1...N1},
Γ, a : A ` Types(B) = {s}, s ∈ {∗,�}, B ∈ Tx(

∏
/
∑

formation):
Γ ` Reductions(

∏
x : A.B) = {

∏
x : A.Bn, n = 1...N1}

Γ ` Reductions(
∑
x : A.B) = {

∑
x : A.Bn, n = 1...N1}

Γ ` Types(
∏
x : A.B) = {s}

Γ ` Types(
∑
x : A.B) = {s}

Γ ` Reductions(a) = A,Types(a) = {
∏
a : A.B}

(products):
Γ ` Reductions(π1a) =

⋃
a′∈A{Norm(π1a

′)}
Γ ` Reductions(π2a) =

⋃
a′∈A{Norm(π2a

′)}
Γ ` Types(π1a) = {A}

Γ ` Types(π2a) =
⋃
a′∈A{Norm(B[x := π1a

′])}.

(7)

All pseudo-expressions τ whose values cannot be set by Eq. 7 are set to Types(τ) = {no-type}, Reductions(τ) =
∅. The expressions proper (legal expressions) of λPρΣ bool are all those for which no-type 6∈ Types(τ) and
∃s ∈ S s. t.∀τ ′ ∈ Types(τ), τ ′ : s (an expression can reduce to either types/type-constructors or terms belonging
to types, not both).

As a consequence of Eqs. 6 and 7, we can show that for any legal expression τ1 and reduction step τ1 →ρ
β τ2,

we have that Types(τ1) ⊇ Types(τ2), and Reductions(τ1) ⊇ Reductions(τ2) (Appendix, Prop. 3). Hence, in
place of a strong preservation property in the framework of [2] in which probabilistic reduction preserves types,
we have a weak preservation property in which probabilistic reduction preserves a non-empty subset of types.
Further, we can show that a progress property holds for →ρ

β reduction, in that for any pseudo-expression τ1 not
in λPΣ bool normal form there exists a ρ and τ2 such that τ1 →ρ

β τ2, and that
∑
{(ρ,τ2)|τ1→ρ

βτ2}
ρ = 1 (i.e.

we can make a probabilistic reduction step, see Appendix, Prop. 4a), and that all valid reduction sequences of
expressions in λPρΣ bool end in an expression of λPΣ bool in normal form (Appendix, Prop. 4b). Finally, we
can show that for any τ3 ∈ Reductions(τ1), τ1 �ρ

β τ3 with ρ > 0, and (a) for each τ3 ∈ Reductions(τ1),
∃τ4 ∈ Types(τ1) s. t. τ3 : τ4; (b) for each τ4 ∈ Types(τ1), ∃τ3 ∈ Reductions(τ1) s. t. τ3 : τ4, i.e. Types(τ1)
contains exactly the normal form types resulting from reductions of τ1 for which ρ > 0 (Appendix, Prop. 6).

Taken together, the above properties imply that probabilistic type judgement is possible by sampling in
λPρΣ bool. Letting ιτ1(τ2) =

∑
{τ3∈NF

λPΣ bool |τ3:τ2} ρτ3 , where τ1 �
ρτ3
β τ3, we can think of ιτ1(.) as a char-

acteristic function for Types(τ1), where ιτ1(τ2) > 0⇒ τ2 ∈ Types(τ1) and ιτ1(τ2) = 0⇒ τ2 6∈ Types(τ1). We
can estimate ιτ1(τ2) by repeated βρ reduction of τ1 to τ3, taking the frequency with which τ3 : τ2 by using the fact
that derivability of type judgments is decidable in λPΣ bool (Appendix, Prop. 7).

Expressions in the system λPρΣ bool can be given a two-level semantics in terms of probability distributions.
Most directly, expressions can place a low level distribution across terms which they reduce to of several types,
which induces a higher level distribution across the types themselves (ιτ1(.) above). Alternatively, since expres-
sions in λPΣ bool may also reduce to types and type-constructors belonging to kinds such as ∗ or A→ ∗, they may
induce a low level distribution across the former entities, and a higher level distribution across kinds. In each case,
reduction of an expression corresponds to sampling explicitly from the low level distribution and implicitly from
the high level distribution (a sampling semantics). We briefly note some special cases here (assuming an empty
context). If Types(τ) = {A}, A : ∗, τ represents a (non-dependent) distribution over a single type. When A : �,
τ is a distribution over a kind, for instance a distribution over types themselves (A = ∗), or type-constructors
(A = B → ∗). If Types(τ) = {A,B,C}, A,B,C : ∗, then τ is distribution over terms of types A,B and C
at the low level, and a distribution over the types at the higher level. If in addition τ has the form Fx, where
Types(x) = {X}, then τ can be thought of as a mixture distribution, where the components are determined by the

5

distribution over X denoted by x. Alternatively, for Types(τ) = {
∏
x : A.Bn, n = 1...N1}, and Bn[x := a] : ∗,

τ can be thought of both as a distribution across functions with types in Types(τ), and as a function itself, which
when given a distribution τ ′ across A returns a distribution across the return types of the functions in Types(τ).
We note also how expressions of the form (λx.Z)τ can be used to transform a general distribution across terms of
several types represented by τ into another general distribution across terms of several types.

4 Relationship to Markov Logic Networks via Curry-Howard Correspondence

We now discuss the relationship between a particular class of PDTS, which we shall call Dependent Type Networks
(DTNs), and Markov Logic Networks (MLNs) as introduced in [4]. As we show, these systems are equivalent
under a probabilistic analogue of the formulae as types interpretation (or Curry-Howard correspondence) for typed
lambda systems. The equivalence provides a further semantics for this class of PDTS in terms of MLNs, which in
turn can be given factor graph semantics. Further, it is suggestive of algorithmic possibilities in that algorithms for
performing inference in either of the representations can be transformed to perform inference in the other.

4.1 Markov Logic Networks

As defined in [4], a Markov Logic Network L is a set of pairs (Fi, wi), where Fi is a formula in first order logic
(constructed using constants, variables, functions, predicates and logical connectives) and wi is a real number. L
acts as a template, which when combined with a finite set of constants C = {c1, c2, ..., c|C|} (which includes and
may extend the constants used to build the Fi’s, defining the domain over which the model ranges) constructs a
ground Markov Network, ML,C . ML,C contains a binary node for every possible grounding of the predicates in
L (a ground predicate being a formula involving only the applications of a predicate to a tuple of constants). For
instance, if P1 is a unary predicate, ML,C contains a node for each application P1(ci), i = 1...|C|, and if P2 is a
binary predicate, a node for each application P2(ci, cj), i, j = 1...|C|. The network also contains cliques for all
possible groundings of each formula F in L (i.e. substitutions of constants for free variables in F)5, where the
clique derived from the j’th grounding of formula i is associated with a clique potential ψi,j which is 1 if the
ground formula is not satisfied, and ewi if it is. A possible world is fixed by a joint setting of the nodes of ML,C

(under the assumptions of unique names, domain closure and known functions, see [4]), which we denote by
x ∈ {0, 1}P , where P is the number of ground predicates (nodes) in the network. ML,C thus defines a distribution
over possible worlds, which can be expressed as a random variable X which ranges over the settings x:

P (X = x) =
1

Z

∏
ij

ψij(xij) =
1

Z

∏
i

(ewi)ni(x), (8)

where Z is the partition function Z =
∑

x

∏
ij ψij(xij), and ni(x) denotes the number of true groundings of

formula Fi in joint setting x. We note that the distribution defined by Eq. 8 is maximum entropy in the sense that
any ground predicates which are independent of the weighted Fi’s (hence probabilistically undecidable) will be
true or false with equal probability.

For convenience, we consider only unconditioned inference. Here, we are interested in the probability that
a given formula holds in a possible world distributed according to Eq. 8, which can be written P (F |L,C) =∑

x∈XF P (x|L,C), where XF is the subset of possible worlds in which query formula F holds (conditional
queries can be simulated by adding the conditioning formula F ′ to the MLN with a weight tending to∞). We give
two examples below. First, consider an MLN L with a formula F1 corresponding to A(x) → B(x) (equivalently
B(x)∨¬A(x)) with weight w1, where A,B are unary predicates and→ implication, and F2 = A(c1) with weight
w2 and c1 a constant (w1, w2 > 0). We then consider the grounded network over over C = {c1}, and the query
B(c1). Writing [b1b2] for the setting of x which impliesA(c1) when b1 = 1 and ¬A(c1) when b1 = 0 and similarly
for B(c1) and b2, the query has the probability:

P (B(c1)|L,C) = P (x = [0 1]) + P (x = [1 1]) =
ew1(1 + ew2)

ew1(2 + ew2) + ew2
, (9)

5 Formulas of the form ∀xF are grounded as a conjunction of all possible groundings of x in F , and ∃xF as a disjunction
of all possible groundings. We will not assume that L is automatically transformed into conjunctive normal form, and so
distinguish between L = {(F1, 0.5 ∗ w), (F2, 0.5 ∗ w)} and L = {(F1 ∧ F2, w)}, as well as L = {(∀xF, |C|w)}
and L = {(F,w)} (FV (F) = {x}), where the latter can be taken as shorthand for L = {(F [x := c1], w), (F [x :=
c2], w)...(F [x := c|C|], w)} (which is only equivalent to L = {(∀xF, |C|w)} if transformation to conjunctive normal form
is assumed).

6

which tends to 1 as w1, w2 tend to ∞. As a second example, consider an MLN L with a formula F1 = A(x),
with weight w1 > 0 and A(x) a unary predicate. We then consider the grounded network over C = {c1, c2}, and
the query ∃xA(x) (equivalently A(c1) ∨ A(c2), under the assumptions above). Writing [b1b2] for the setting of x
which implies A(c1) when b1 = 1 and ¬A(c1) when b1 = 0 and similarly for A(c2) and b2, the query has the
probability:

P (∃xA(x)|L,C) = P (x = [1 0]) + P (x = [0 1]) + P (x = [1 1])

=
ew1(2 + ew1)

ew1(2 + ew1) + 1
, (10)

which again tends to 1 as w1 tends to∞. As detailed in [4], queries in larger networks can be estimated by building
a factor graph representation of the ground Markov Network, and using algorithms such as Gibbs sampling, Loopy
Belief Propagation and variational methods such as mean-field message passing.

4.2 Dependent Type Networks

We now define the notion of a Dependent Type Network (DTN), which will be a probabilistic dependent type system
in the sense of Sec. 3. A ‘language’ for the PDTS will be fixed by specifying a context of the form (assuming only
unary and binary predicates/functions):

Γ0 = Γ ′, Γ ′′

Γ ′ = < A : ∗,⊥ : ∗, c1...NC : A,B1
1...NB1

: A→ ∗,

B2
1...NB2

: A×A→ ∗, g11...Ng1 : A→ A, g21...Ng2 : A×A→ A >

Γ ′′ = < b1n=1...NB1 ,m=1...NC ,1 : B1
n(cm), b1n=1...NB1 ,m=1...NC ,0 : B1

n(cm)→ ⊥,

b2n=1...NB2 ,m=1...NC ,l=1...NC ,1 : B2
n(cm, cl),

b2n=1...NB2 ,m=1...NC ,l=1...NC ,0 : B2
n(cm, cl)→ ⊥ > . (11)

Here, A specifies a domain, to which constants c1...Nc belong. B1
n=1...NB1

, and B2
n=1...NB2

will be used as unary
and binary predicates over the domain respectively, g1n=1...Ng1

and g2n=1...Ng2
as unary and binary functions, ⊥ to

represent a contradiction, and the sets of terms b1 and b2 as ground predicates, while we write B(c) as alternative
notation for application. A DTN is fixed by augmenting this context with a further set of ‘formulas’ in the language,
specified by Γ1 = Γ0, < f1 : F1, ..., fNF : FNF >. Here, a given formula such as B1(c1) ∧B1(c2) is represented
by the type corresponding to the formula by the formulae as types interpretation of typed lambda systems (equiv-
alently, the propositions as types interpretation, see [8]), B1(c1) × B1(c2). In general, X ∧ Y corresponds to
X × Y (X and Y being ground predicates), X ∨ Y to the disjoint product

∑
x : bool .(if x thenX elseY),

X → Y to X → Y , ¬X to X → ⊥, ∀x(X(x)) to
∏
x : A.X(x), and ∃x(X(x)) to

∑
x : A.X(x). Quantifi-

cations over binary and higher order predicates can be represented by nested dependent sums and products. An
expression which can be typed to a formula type corresponds to a proof of that formula, and thus to asserting the
formula itself (a formula is ‘true’ if it is inhabited). We will further equip a DTN with a set of probabilistic weights,
P = {p1, p2, ..., pNF }, where pi will represent the probability that Fi is true as a constant in the meta-language,
taking values in (0 1). We summarize the above in the following definition:

Definition 1. A Dependent Type Network is a probabilistic dependent type system equipped with a context Γ0

representing a language containing a domain, constants, predicates, functions, contradiction and ground predicate
symbols as above, a context Γ1 which augments Γ0 with a set of with a set of formula proofs represented as
constants assigned to types in the language (fi : Fi, i = 1...NF), and a set P of meta-language constants pi,
which assign a probabilistic weight in (0 1) to each formula.

Given a DTN as defined, we will represent a query formula, for instance Q = B1
1(c3), as an expression

(/program) qQ where Types(qQ) = {B1
1(c3), B

1
1(c3) → ⊥,⊥}. That is, the expression reduces to either a proof

of Q, a proof of ¬Q, or a proof of a contradiction (the last possibility corresponding to an inconsistent world). We

7

will canonically define qQ for a particular Q (where Q is a type) as follows:

qQ = letx1 = randomp1(λx : bool . if x then f1 else 1) in

...

letxNF = randompNF
(λx : bool . if x then fNF else 1) in

letxNF+1 = D in

(λx.ZQ)(x1, x2, ..., xNF , xNF+1) (12)

In Eq. 12, D is defined as follows:

D = letx1,1 = random0.5(λx : bool . if x then b1,1,1 else b1,1,0) in

...

letxNB1 ,NC = random0.5(λx : bool . if x then bNB1 ,NC ,1 else bNB1 ,NC ,0) in

letx1,1,1 = random0.5(λx : bool . if x then b1,1,1,1 else b1,1,1,0) in

...

letxNB1 ,NC ,NC = random0.5(λx : bool . if x then bNB2 ,NC ,NC ,1 else bNB2 ,NC ,NC ,0) in

(x1,1, ..., xNB1 ,NC , x1,1,1, ..., xNB2 ,NC ,NC) (13)

representing an expression which randomly samples a possible world. The term ZQ in Eq. 12 is constructed as a
list of pairs [(t, τt), t ∈ Types(T)], where T is:

T = letx1 = randomp1(λx : bool . if x then f1 else 1) in

...

letxNF = randompNF
(λx : bool . if x then fNF else 1) in

letxNF+1 = D in

(x1, x2, ..., xNF , xNF+1) (14)

For each t ∈ Types(T), we consider the context Γt = Γ ′, x : t, and construct the sets RQ,t of expressions r such
that Γt ` r : Q, SQ,t of expressions s such that Γt ` s : Q→ ⊥, and KQ,t of expressions k such that Γt ` k : ⊥.
If K 6= ∅, we set τt = k for an arbitrary k ∈ K. Otherwise, we must have either R = ∅ or S = ∅ (since if neither
is the case (sr) ∈ K for arbitrary s ∈ S, r ∈ R, and the term D in Eq. 14 ensures at least one is non-empty). If
R = ∅ ∧ K = ∅, we set τt = s for an arbitrary s ∈ S, and if S = ∅ ∧ K = ∅, we set τt = r for an arbitrary
r ∈ R. (λx.ZQ) thus returns a proof of Q, ¬Q, or ⊥, depending on which of these can be constructed given the
type of the input argument passed. We define the probability of a query in terms of the probability that qQ reduces
by βρ-reduction to a term τ of type Q given that it does not reduce to an inconsistency (where τ ∈ NFλPΣ bool):

P (Q|Γ0, Γ1, P) =
P (qQ �ρ

β τ : Q)

1− P (qQ �ρ
β τ : ⊥)

. (15)

The probability in Eq. 15 can be evaluated by sampling repeated reductions of Eq. 12, and rejecting those samples
returning τ : ⊥. Writing xW for a type xW ∈ Types(D), i.e. a possible world, it can be shown (see Appendix,
Prop. 8) that:

P (xW |Γ0,1, P) ∝
∑

H∈P({1...NF })

(
∏
j∈H

pj)(
∏
j 6∈H

(1− pj))[∀j ∈ H,∃y s. t. Γ ′, t : xW ` y : Fj], (16)

where [.] is the indicator function, which is 1 for a true condition and 0 otherwise, and P(.) the powerset operator.
Eq. 16 implies that the probability for a world under a DTN is proportional to the combined probabilities of all
subsets of initial formulae it is consistent with.

We can reformulate the examples from the end of Sec. 4.1 as DTNs. For the first, we fix a language via
Γ ′ =< A : ∗,⊥ : ∗, c1 : A,B1

1 : A → ∗, B1
2 : A → ∗ >, i.e. with one constant and two unary predicates.

We then set the formulae Γ1 = Γ0, < f1 : (B1
1(c1) → B1

2(c1)), f2 : B1
1(c1) > with the probabilities P =

{p1 = (1 − e−w1), p2 = (1 − e−w2)}. It can be shown (following the proof of Prop. 1, part (a) below) that the
distribution over worlds is identical to that in Sec. 4.1, and in particular P (B1

2(c1)|Γ0,1, P) =
ew1 (1+ew2)

ew1 (2+ew2)+ew2
as

in Eq. 9 (w1, w2 > 0). For the second example, we let Γ ′ =< A : ∗,⊥ : ∗, c1 : A, c2 : A,B1
1 : A → ∗ >, and

8

Γ1 = Γ0, < f1 : (B1
1(c1)), f2 : (B1

1(c2) >, with probabilities P = {p1 = p2 = (1− e−w1)}. Again, we can show
that the distribution over worlds is equivalent to that in Sec. 4.1. Here, we can write the query ∃xB1

1(x) using the
dependent type Q =

∑
x : A.B1

1(x) (i.e. we desire a pair consisting of x, an element of the domain, and a proof
that it satisfies predicate B1

1). As in Eq. 10, P (
∑
x : A.B1

1(x)|Γ0,1, P) =
ew1 (2+ew1)
ew1 (2+ew1)+1 , (w1 > 0).

4.3 Relating MLNs and DTNs

We now give a proof of the equivalence of the notions of MLNs and DTNs:

Proposition 1 (Theorem 3 in main text). The class of distributions over worlds representable by groundings
of an MLN is the same as the class of distributions over worlds representable by DTNs. In particular we have:
(a) a canonical translation from ground Markov Networks ML,C to DTNs {Γ0, Γ1, P}; and
(b) a canonical translation from a DTNs to ground Markov Networks,
each preserving distributions across worlds.

Proof of Proposition 1, part a: We provide here a canonical translation from an arbitrary ground MLN ML,C

and an equivalent DTN. We assume that L has been expanded so that any pair (F,w) where F contains free
variables has been replaced by (Fj , w), j = 1...J with Fj ranging over all possible groundings of the free variables.
We will writeNF for the number of (formula,weight) pairs in L,NC for the number of constants in C, and x ∈ BP
for a possible world represented as in Sec. 4.1 as a binary vector which specifies the truth or falsity of each ground
predicate p = 1...P .

We begin by transforming L to L′, where, for pair (Fi, wi) ∈ L we set (F ′i , w
′
i) ∈ L′ with F ′i = Fi, w′ = w if

w ≤ 0, and F ′i = ¬Fi, w′ = −w otherwise. This transformation will preserve the distribution across worlds, since
the ratio ψi(x1)/ψi(x2) for a world which satisfies Fi, x1, and one which does not, x2, is ew in both networks
ML,C and ML′,C .

We then construct a DTN by forming Γ0 = Γ ′, Γ ′′ with the same number of constants, predicates and functions
and matching arities as ML,C , and setting Γ1 = Γ0, < fi : F

′′
i , i = 1 : NF >, for F ′′i = F̂ ′i → ⊥, and P = {pi =

(1−exp(w′i)), i = 1 : NF }, where we write F̂ for the translation of formulae F into a DTN type expression, using
the matching constants, predicates and functions from Γ0, and the formulae as types correspondence (discussed in
Sec. 4.2) to translate the logical symbols into matching type constructors.

We now demonstrate that the DTN constructed above gives the same distribution across possible worlds as
ML,C . For a given world x, writeG(x) for the propositionG1(x)∧G2(x)∧ ...GP (x), where for ground predicate
hp, Gp(x) = hp if hp is true in world x, and Gp(x) = ¬hp otherwise. Further, let Rx = {i ∈ {1...NF }|G(x)→
F̂ ′′i } and Sx = {i ∈ {1...NF }|G(x)→ ¬F̂ ′′i }, where F̂ ′′i is the translation of type F ′′i to a logical formula by the
formulae as types correspondence (R is thus the set indices of formulae in Γ1 which are consistent with world x,
and S the set of indices of formulae that are inconsistent). Then, from Eq. 16, we have:

P (Ĝ(x)|Γ0,1, P) ∝
∑

H∈P({1...NF })

(
∏
j∈H

pj)(
∏
j 6∈H

(1− pj))[∀j ∈ H,∃y s. t.

Γ ′, t : Ĝ(x) ` y : F ′′j]

=
∑
r⊂Rx

∏
i∈Rx

((pi)
[i∈r](1− pi)[i 6∈r]) ·

∏
i∈Sx

(1− pi)

= 1 ·
∏
i∈Sx

(1− pi)

=
∏
i∈Sx

exp(w′i). (17)

Similarly, for ML′,C (and thus for ML,C as discussed above) we have:

P (x|L′, C) ∝
∏
i

(ew
′
i)[i∈Sx]

=
∏
i∈Sx

exp(w′i), (18)

thus giving rise to identical distributions.

9

Proof of Proposition 1, part b: We suppose we have a DTN specified by Γ0, Γ1, P , where Γ1 contains state-
ments fi : Fi for i = 1...NF . We use x ∈ BP as above to represent a possible world, by considering all possible
groundings of the predicates in Γ0. Letting Sx = {i ∈ {1...NF }|G(x) → ¬F̂i} (where F̂i is the translation of
type Fi to a logical formula by the formulae as types correspondence), and following the same derivation as Eq.
17 lines 1-3, we have:

P (Ĝ(x)|Γ0,1, P) ∝
∏
i∈Sx

(1− pi). (19)

Consider now a grounded MLN formed using a language containing the same constants, predicates and functions
as the DTN above, where we set L = {(¬F̂i, log(1− pi)), i = 1...NF }. By Eq. 8 we will have

P (x|L,C) = 1

Z

∏
i

(elog(1−pi))[i∈Sx]

∝
∏
i∈Sx

(1− pi), (20)

hence we have identical distributions.

�

Finally, we note that since MLNs provide a universal representation for finite discrete distributions, we have:

Corollary 1. Both MLNs and DTNs are universal representations for distributions across finitely many discrete
variables.

Proof. [4] show that MLNs are such a universal representation, and so by Prop. 1 and the fact that each contain
only finitely-many discrete variables (/ground predicates), the classes of representable distributions must be all
finite discrete distributions for both DTNs and MLNs. In particular, the translation scheme provided in the proof
of Prop. 1 part (a) applied to the canonical MLN representation of a general finite discrete distribution given in [4]
provides a canonical DTN representation of the same distribution.

�

5 Discussion

We have used a restricted system here to show that stochastic functions can be embedded in dependent type theory
(DTT), and how this naturally leads to a probabilistic logic equivalent to Markov Logic Networks. In general, we
would wish to make use of the full resources of DTT [10, 11], such as inductive and recursive definitions, identity
types and higher inductive types to formulate more general PDTS’s, in which richer probabilistic logics may be
embedded. We note however that the current framework is suggestive of a number of directions for investigation
both with respect to the specific models investigated here and more generally. For instance, the relationship between
DTNs and MLNs suggests that automatic theorem proving techniques may be generally applied in the context of
inference in graphical models (which may naturally be expressed as MLNs), since Eq. 15 may be evaluated by
a meta-algorithm which repeatedly samples assumptions and searches for proofs of Q, ¬Q or ⊥. The recent
application of deep-learning techniques to automated and interactive theorem proving [12, 13] is potentially a
powerful tool in this context.

Another suggestive direction is model learning. Recent approaches have shown that deep-learning methods
can be fully integrated with probabilistic programming [14]. Our PDTS framework is naturally treated as a prob-
abilistic programming framework, and we can straightforwardly incorporate deep neural networks as stochastic
or deterministic functions within the PDTS outlined. In the logical context, this corresponds to learning formulae
of arbitrary complexity in a DTN. Additionally, the ambient PDTS of our framework can naturally represent both
models and inference procedures applied to models as stochastic programs, as in [14].

Finally, we note that fully integrating dependent types in probabilistic programming languages has the poten-
tial to draw a tight connection between machine learning techniques and recent computational approaches in the
foundations of mathematics, such as UniMath [15].

10

A Appendix

Proofs of results mentioned in Sec. 2 and 3 are given below.

Proposition 2. β-reduction in λPΣ bool preserves types up to β equivalence.

Proof. We first show the proposition folds for all rules in Eq. 3. From the products(1) and products(2) rules in
Eq. 4 we have:

π1(U1, U2)∑ x:A.B : A→β U1 : A

π2(U1, U2)∑ x:A.B : B[x := U1]→β U2 : B[x := π1(U1, U2)∑ x:A.B], (21)

where, we note that B[x := U1] =β B[x := π1(U1, U2)∑ x:A.B]. Further, if we have τ1 : B[x = true] and
τ2 : B[x = false], from the if rule in Eq. 4:

(if true then τ1 else τ2) : B[x = true]→β τ1 : B[x = true]

(if false then τ1 else τ2) : B[x = false]→β τ2 : B[x = false], (22)

and from the abstraction and application rules in Eq. 4, letting (λx : τ1.τ2) :
∏
x : A.B:

((λx : τ1.τ2)τ3) : B[x := τ3]→β τ2[x := τ3] : B[x := τ3]. (23)

The above cover the base cases of the β-reduction relation. For τ1 →β τ
′
1 where τ2 →β τ

′
2, and τ ′1 is the result of

replacing free sub-expression τ2 for τ ′2 in τ1, we prove the result by induction on the structure of τ1. First we outline
a general induction step for each form that τ1 may take. For τ1 =

∏
x : A.B : s, with either the inductive hypothesis

A : ∗ →β A
′ : ∗ or B : s→β B

′ : s, we have that τ ′1 =
∏
x : A′.B : s or τ ′1 =

∏
x : A.B′ : s respectively by the

type/kind formation rule in Eq. 4 (similarly for Σ-types). For τ1 = (Fa) : B[x := a] with inductive hypothesis
F : (

∏
x : A.B)→β F

′ : (
∏
x : A.B) or a : A→β a

′ : A (where we implicitly use the type conversion rule, Eq.
4, to equalize types which are β-equivalent), we have respectively τ ′1 = F ′a : B[x := a] and τ ′1 = Fa′ : B[x :=
a′] =β B[x := a] by the application rule in Eq. 4. For τ1 = (λx : A.b) : (

∏
x : A.B) and inductive hypothesis

A : s →β A
′ : s or b : B →β b

′ : B, we have respectively τ ′1 = (λx : A′.b) : (
∏
x : A′.B) =β (

∏
x : A.B)

and τ ′1 = (λx : A.b′) : (
∏
x : A.B) by the abstraction rule in Eq. 4. For τ1 = if a then b1 else b2 and inductive

hypothesis b1 : B[x := true] →β b′1 : B[x := true] or b2 : B[x := false] →β b′2 : B[x := false], we have
respectively τ ′1 = if a then b′1 else b2 : B[x := a] and τ ′1 = if a then b1 else b

′
2 : B[x := a] by the if rule in Eq. 4.

Other typing rules in Eq. 4 do not involve sub-expressions, so need not be considered (except the product constant
type-tags in the products (1) rule, which can be handled via the type conversion rule).

For the inductive argument, we begin by considering reductions from expressions τ1 whose maximum sub-
expression nesting depth is 1. Here, τ2 will correspond to an expression nested directly below τ1, and thus the
inductive hypotheses in all cases considered will be satisfied by one of the base cases in Eqs. 21, 22 and 23. For
τ1 with maximum sub-expression nesting depth n greater than 1, τ2 will be nested inside a set of sub-expressions
of τ1. Since these will all have nesting depths less than n, the inductive hypothesis can be applied to them if we
replace τ2 by τ ′2, and hence also for τ1 by one of the cases above.

�

Proposition 3. (Weak-preservation) For expressions τ1 and τ ′1 in λPρΣ bool such that τ1 →ρ
β τ ′1 for non-

zero ρ, we have that Types(τ1) ⊇ Types(τ ′1), and Reductions(τ1) ⊇ Reductions(τ ′1), where Types(τ ′1) and
Reductions(τ ′1) are non-empty.

Proof. We note initially that for any expression τ1 which is identical to an expression in λPΣ bool such that
τ1 : τ2, by Prop. 2 we have that for τ1 →ρ

β τ ′1, Reductions(τ1) = Reductions(τ ′1) = {Norm(τ1)} and
Types(τ1) = Types(τ ′1) = {Norm(τ2)}. For a general expression τ1 →ρ

β τ ′1, we check as base cases each of
the reduction rules in Eq. 6. The projection rules involve only values, and so are covered by the above. For if re-
duction, by the if rule in Eq. 7 we have that for Reductions(τ1) = {b1,n, n = 1...N1,1},Types(τ1) = {B1,n, n =
1...N1,2},Reductions(τ2) = {b2,n, n = 1...N2,1},Types(τ2) = {B2,n, n = 1...N2,2}:

Reductions(if true then τ1 else τ2) = Reductions(τ1) = {b1,n, n = 1...N1,1}
Reductions(if false then τ1 else τ2) = Reductions(τ2) = {b2,n, n = 1...N2,1}

Types(if true then τ1 else τ2) = Types(τ1) = {B1,n, n = 1...N1,2}
Types(if false then τ1 else τ2) = Types(τ2) = {B2,n, n = 1...N2,2}. (24)

11

For random expressions, by the random and application (1) rules in Eq. 7 we have for Reductions(F) = {λx :
bool .an, n = 1...N1}, Types(F) = {

∏
x : bool .An, n = 1...N2}:

Reductions(F true) = {Norm(an[x := true]), n = 1...N1}
⊆

⋃
b∈{true,false}

{Norm(an[x := b]), n = 1...N1}

= Reductions(random(F))

Reductions(F false) = {Norm(an[x := false]), n = 1...N1}
⊆

⋃
b∈{true,false}

{Norm(an[x := b]), n = 1...N1}

= Reductions(random(F))

Types(F true) = {Norm(An[x := true]), n = 1...N2}
⊆

⋃
b∈{true,false}

{Norm(An[x := b]), n = 1...N2}

= Types(random(F))

Types(F false) = {Norm(An[x := false]), n = 1...N2}
⊆

⋃
b∈{true,false}

{Norm(An[x := b]), n = 1...N2}

= Types(random(F)). (25)

For λ applications of the form (Fa) with F = λx : A.b, (b ∈ Tx) and Γ, x : A ` Reductions(b) =
{bn, n = 1...N1},Types(b) = {Bn, n = 1...N2}, where a : A, Reductions(a) = {a}, Types(a) = {A},
Reductions(F) = {λa : A.bn, n = 1...N1}, Types(F) = {

∏
a : A.Bn, n = 1...N2}, we have by the application

(1) and abstraction rules in Eq. 7:

Reductions(Fa) = {Norm(bn[x := a]), n = 1...N1}
= Reductions(b[x := a])

Types(Fa) = {Norm(Bn[x := a]), n = 1...N2}
= Types(b[x := a]). (26)

For λ applications of the form (λ.Z)a, where a : A, Reductions(a) = {a}, Types(a) = {A}, and (A, b) ∈∈ Z,
∀b′ 6= b,¬((A, b′) ∈∈ Z), where Γ, x : A ` Reductions(b) = {bn, n = 1...N1},Types(b) = {Bn, n = 1...N2},
b ∈ Tx, we have by the application (1) and (2) rules in Eq. 7:

Reductions((λ.Z)a) = {Norm(bn[x := a]), n = 1...N1}
= Reductions((λx : A.b)a)

Types((λ.Z)a) = {Norm(Bn[x := a]), n = 1...N2}
= Types((λx : A.b)a). (27)

The above form the base cases for the reduction relation→ρ
β , which show that the proposition holds for each

rule in Eq. 6 in the case that the sub-expression being reduced is the outermost sub-expression. For the general case
(for a proper sub-expression) we can use a similar inductive argument to Prop. 1 above on the structure on τ , the
expression to be reduced, where the induction is on the number of nesting levels n between τ2, the sub-expression
to be reduced, and the outermost level (Eq. 7 providing all cases for relating sub-expressions at level n to those at
level n− 1).

Further, the Reductions(τ ′1) and Types(τ ′1) sets after reduction of a legal expression τ1 →ρ
β τ
′
1 must be non-

empty, since Reductions(τ ′1) = ∅ ⇒ Types(τ ′1) = {no-type}, and we have no-type 6∈ Types(τ1) for legal
τ1.

�

Proposition 4. For any legal expression τ1 in λPρΣ bool we have that: (a) (Progress) Either τ1 is a λPΣ bool

expression in normal form, or there exists a ρ and τ2 such that τ1 →ρ
β τ2, and that

∑
{(ρ,τ2)|τ1→ρ

βτ2}
ρ = 1; and

(b) all valid reduction sequences from τ1 can be extended to a sequence ending in a λPΣ bool normal form.

12

Proof. For part (a) we start by observing that the proposition is already satisfied for terms which are shared
between λPρΣ bool and λPΣ bool (τ1 ∈ TλPΣ bool) since in λPΣ bool we have that leftmost-outermost reduction
always finds a normal form by strong normalization (see [9], Theorem 5.36). The proposition automatically follows
since there is a unique leftmost-outermost reduction for such terms not in normal form with ρ = 1 (the rules in Eq.
3 become deterministic rules in Eq. 6).

For τ1 is not in TλPΣ bool , we consider first the case that it contains no randomρ(τ3) sub-expressions. Then it
must contain at least one (λx.Z)τ3 sub-expression. For such a sub-expression with the lowest nesting depth, τ3 will
contain no further such sub-expressions, and hence τ3 ∈ TλPΣ bool , and thus either this expression, or one with a
higher nesting level (λx.Z)τ ′3 such that τ ′3 ∈ TλPΣ bool , will be the leftmost-outermost reducible expression of this
form, and can be deterministically reduced according to rule 8, Eq. 6 (the full conditions of the rule following from
the application (2) rule in Eq. 7 for a legal expression). Note that sub-expressions of this form are prioritized by
condition (i) following Eq. 6 above free sub-expressions of other forms. Consider now the case that τ1 contains at
least one randomρ′(τ3) sub-expression. Then, we will either have a leftmost-outermost reducible sub-expression
of the form (λx.Z)τ3, or the first random(τ3) sub-expression encountered by leftmost-outermost order will be
available for reduction by rule 5 or 6, Eq. 6, since we placed no further conditions on the reduction of such
expressions and they are prioritized over free sub-expressions of other forms (following Eq. 6). Here, for the two
possible reductions by rules 5 and 6, we have ρ values of ρ′ and 1 − ρ′, and hence

∑
{(ρ,τ2)|τ1→ρ

βτ2}
ρ = 1 as

required.
For part (b), we note again that this follows directly when τ1 ∈ TλPΣ bool by strong normalization of λPΣ bool.

For general terms of λPρΣ bool, part (a) of the proposition ensures that a probabilistic reduction is always possible.
There can be only a finite number of sub-expressions of the form randomρ′(τ3) and (λx.Z)τ5 in τ1 and singly or
multiply nested within Z constructions of (λx.Z)τ5 expressions within τ1. Combining this with the facts that, (1)
from condition (i) following Eq. 6 (prioritizing the reduction of these expressions); (2) randomρ′(τ3) expressions
are always reducible; (3) (λx.Z)τ3 expressions are always reducible if no randomρ′(τ

′
3) or (λx.Z)τ ′3 expressions

are nested beneath them (see part (a) above); and (4) rules 5, 6 and 8 in Eq. 6 always decrease the total number
of such expressions across all sub-expressions and Z constructions of τ1; we can deduce that any valid reduction
sequence can be extended to (or already includes as an initial sub-sequence) one which initially reduces all such
terms and ends in an expression of λPΣ bool. Such a sequence can then be extended to reach a normal form of
λPΣ bool, again by strong normalization.

�

Proposition 5. For legal expressions τ1, τ2 in λPρΣ bool such that τ1 �ρ0
β τ2, ρ0 ≤ 1.

Proof. By Prop. 4, all legal expressions τ of λPρΣ bool have at most two valid reductions, and all maximal
sequences must terminate in a λPΣ bool normal form. We can thus form a reduction tree for τ1, with nodes labeled
by expressions (τ1 at the root, the children of a node labeled by the possible reductions of that node, and λPΣ bool

normal forms at the leaves, repeating expression labels if they are encountered in multiple reductions), and edges
labeled by reduction probabilities. Since by Prop. 4(a) the sum of the edges between a single parent and its children
nodes are non-negative and sum to one, writing ρl for the product of the weights along the branch from the root
leading to leaf l, we have that

∑
l ρl = 1. Since λPρΣ bool does not have general recursion, the given expression

τ2 in the proposition can occur at most once along any branch from root to leaf. Further, we have that for a given
node N , the product of the weights on the path from the root to N is

∑
l∈LN ρl, where LN contains all leaves

whose branches from the root pass through N . Hence, we have ρ0 =
∑
{l|∃N(l∈LN∧ψ(N)=τ2)} ρl ≤ 0, where

ψ(N) returns the expression with which node N is labeled.

�

Proposition 6. For τ1 in λPρΣ bool, and any τ3 ∈ Reductions(τ1), we have that τ1 �ρ
β τ3 with ρ > 0,

and (a) for each τ3 ∈ Reductions(τ1), ∃τ4 ∈ Types(τ1) s. t. τ3 : τ4; (b) for each τ4 ∈ Types(τ1), ∃τ3 ∈
Reductions(τ1) s. t. τ3 : τ4.

Proof. We begin by noting that for expressions τ1 ∈ TλPΣ bool , the proposition holds, since Reductions(τ1) =
{τ3} and Types(τ1) = {τ4} are singletons, and we can set Tτ1(τ3) = τ4 and Rτ1(τ4) = τ3, where we use Tτ1(.)
to denote a function which, for any τ ′3 ∈ Reductions(τ1), picks out a τ ′4 ∈ Types(τ1) for which τ ′3 : τ ′4, and
Rτ1(.) to denote a function which, for any τ ′4 ∈ Types(τ1), picks out a τ ′3 ∈ Reductions(τ1) for which τ ′3 : τ ′4.

13

For the general case, we use an induction on the formation rules for legal expressions in λPρΣ bool, Eq. 7,
where in each case we assume the proposition holds for the expressions in the antecedent of the rule, and derive
from this that it holds for the expression(s) in the consequent.

(random): For τ1 = randomρ(F) we associate with τ3 = Norm(an[x := true]) the reduction which
first reduces τ1 to F true, reduces F true to (λx : bool .an) true (by the inductive hypothesis (IH), noting
that leftmost-outermost reduction will reduce expressions in F first), performs the substitution an[x := true],
and finally reduces an[x := true] to normal form. Letting F �ρ′

β λx : bool .an, we have τ1 �ρ·ρ′
β τ3.

Similarly, for τ3 = Norm(an[x := false]) we have τ1 �(1−ρ)·ρ′
β τ3. Finally, for b ∈ {true, false} we

set Tτ1(Norm(an[x := b])) = Norm(Am[x := b]) where TF (λx : bool .an) =
∏
x : bool .Am, and

Rτ1(Norm(An[x := b])) = Norm((RF (
∏
x : bool .An))b) (for convenience, embedding the meta-language

function RF (.) in the syntax of λPρΣ bool).
(if): For τ1 = if a then a1 else a2 we associate with τ3 = if a then b1,n1

else b2,n2
the reduction which re-

duces a1 to b1,n1 , and a2 to b2,n2 (the exact sequence of reduction of sub-expressions will depend on the or-
dering rules following Eq. 6). Letting a1 �ρ1

β b1,n1 , and a2 �ρ2
β b2,n2 , we have τ1 �ρ1·ρ2

β τ3. Finally, we
set Tτ1(if a then b1,n1

else b2,n2
) = if a thenTa1(b1,n1

) elseTa2(b2,n2
) and Rτ1(if a thenB1,n1

elseB2,n2
) =

if a thenRa1(B1,n1
) elseRa2(B2,n2

).
(abstraction): For τ1 = λx : A.b we associate with τ3 = λx : A.bn the reduction which prefixes all ex-

pressions in a reduction sequence from b to bn (IH) with λx : A, noting that we have that b ∈ Tx, and so
b contains no reducible sub-expressions containing x. Letting b �ρ′

β bn, we have τ1 �ρ′

β τ3. Finally, we set
Tτ1(λx : A.bn) =

∏
x : A.Tb(bn) and Rτ1(

∏
x : A.Bn) = λx : A.Rb(Bn).

(application (1)): For τ1 = Fa we associate with τ3 = Norm(bn[x := a′]) the reduction which first reduces
F to λx : A.bn with weight ρ1 (IH), then a to a′ with weight ρ2 (IH), makes the substitution bn[x := a′], and
then reduces to normal form. For this reduction we have τ1 �ρ1·ρ2

β τ3. Finally, we set Tτ1(Norm(bn[x := a′])) =
Norm(Bm[x := a′]) where TF (λx : A.bn) =

∏
x : A.Bm, and Rτ1(Norm(Bn[x := a′])) = Norm((RF (

∏
x :

A.Bn))a
′).

(application (2)): For τ1 = (λx.Z)a we associate with τ3 ∈ Reductions(b[x := a′]) the reduction which
first reduces a to a′ with weight ρ1 (IH), then reduces (λx.Z)a′ to (λx : A.b)a′ where a′ : A and (A, b) ∈∈ Z,
and finally reduces (λx : A.b)a′ to b[x := a′] and then to τ3 with weight ρ2 (IH). For this reduction we have
τ1 �ρ1·ρ2

β τ3. Further, we set Tτ1(τ3 ∈ Reductions(b[x := a′])) = Tb[x:=a′](τ3) ∈ Types(b[x := a′]), and
Rτ1(τ4 ∈ Types(b[x := a′])) = Rb[x:=a′](τ4) ∈ Reductions(b[x := a′]).

(
∏

/
∑

formation): For τ1 =
∏
x : A.B we associate with τ3 =

∏
x : A.Bn the reduction which prefixes

all expressions in a reduction sequence from B to Bn (IH) with
∏
x : A, noting that we have that B ∈ Tx, and

so B contains no reducible sub-expressions containing x. Letting B �ρ′

β Bn, we have τ1 �ρ′

β τ3. Similarly, by

prefixing the same reduction sequence with
∑
x : A, we have τ ′1 =

∑
x : A.B �ρ′

β τ ′3 =
∑
x : A.Bn. We can

further set Tτ1(
∏
x : A.Bn) = s, Rτ ′

1
(
∑
x : A.Bn) = s, Rτ1(s) =

∏
x : A.B1, and Rτ ′

1
(s) =

∑
x : A.B1.

(products): For τ1 = πna (n = 1, 2) we associate with τ3 = Norm(πna
′) the reduction which first reduces a

to a′ with weight ρ′ (IH), and then reduces πna′ to normal form. For this reduction we have τ1 �ρ′

β τ3. Further, we
set Tπ1a(Norm(π1a

′)) = A, Rπ1a(A) to an arbitrary Norm(π1a
′), Tπ2a(Norm(π2a

′)) = Norm(B[x := π1a
′]),

and Rπ2a(Norm(B[x := π1a
′])) = Norm(π2a

′).

�

Proposition 7 (Theorem 1 in main text). (Probabilistic Type Judgment): Letting ιτ1(τ2) =∑
{τ3∈NF

λPΣ bool |τ3:τ2} ρτ3 , where τ1 �
ρτ3
β τ3, we have (a) ιτ1(τ2) > 0 ⇒ τ2 ∈ Types(τ1) and ιτ1(τ2) =

0⇒ τ2 6∈ Types(τ1); and (b) ιτ1(τ2) can be estimated by the frequency with which τ1 reduces to τ3 ∈ NFλPΣ bool

such that τ3 : τ2.

Proof. Part (a) follows firstly from that fact that we have shown by Props. 3 and 4b that all maximal re-
duction sequences of τ1 end in a single member of Reductions(τ1) having λPρΣ bool normal form, and by
Prop. 6 that every member of Reductions(τ1) has a reduction from τ1 having non-zero probability, implying
together that Reductions(τ1) contains exactly the maximal reductions of all reduction sequences from τ1; and
secondly from the fact that, from Prop. 6 we have that τ2 ∈ Types(τ1) ⇒ ∃τ3 ∈ Reductions(τ1) s. t. τ3 : τ2
and τ3 ∈ Reductions(τ1) ⇒ ∃τ2 ∈ Types(τ1) s. t. τ3 : τ2. Part (b) follows from the fact that all members of
Reductions(τ1) and Types(τ1) are expressions in λPΣ bool, and that βρ reduction corresponds to sampling from
Reductions(τ1) according to the probabilities ρτ3 (which follows from Props. 3a, 5 and 6). Since the derivabil-
ity of type judgments (the truth of statements of the form τ3 : τ2) is decidable in λPΣ bool (see [9], Theorem

14

5.21), we can determine for a given reduction if τ3 : τ2, and use the frequency with which this is true to estimate
ιτ1(τ2) =

∑
{τ3∈NF

λPΣ bool |τ3:τ2} ρτ3 .

�

Proposition 8 (Theorem 2 in main text). For a Dependent Type Network defined by Γ0, Γ1 and P as in
Definition 1 (Sec. 4.2) and xW ∈ Types(D) representing a possible world, with D as in Eq. 13, writing [.] for the
indicator function which is 1 for a true condition and 0 otherwise, and P(.) for the powerset operator, we have:

P (xW |Γ0,1, P) ∝
∑

H∈P({1...NF })

(
∏
j∈H

pj)(
∏
j 6∈H

(1− pj))[∀j ∈ H,∃y s. t. Γ ′, t : xW ` y : Fj]. (28)

Proof. By Eq. 15 we have that P (xW |Γ0,1, P) ∝ P (qQ �ρ
β τ : Q), Q = xw (where the normalizing constant,

1 − P (qQ �ρ
β τ : ⊥) =

∑
W P (xW |Γ0,1, P), by mutual exclusion of possible worlds, xW). For qQ to reduce to

τ : Q, two events must occur. First, D in Eq. 12 (defined in Eq. 13) must reduce to a term τ1 : Q, since otherwise
τ1 will contain a proof for some ground predicate which is false in xW , allowing a proof of xW → ⊥, and thus qQ
will reduce to either τ : Q → ⊥ or τ : ⊥. Writing ND for the size of the tuple τ1 : Q, by Eq. 13 the probability
of this occurring is P1 = 2−ND . Second, the formulae Fi=1...NF for which the binding of xi in Eq. 12 reduces to
fi : Fi must all be consistent with the world represented by xW . Since xW fixes all ground predicates, it also fixes
all formulae built from these, hence a formula is consistent with xW if x̂W → F̂i (where x̂W is the formulae as
types interpretation translation of xw, as discussed in Sec. 4.2), or equivalently, ∃y s. t. Γ ′, t : xW ` y : Fi (xW
being inhabited implies that Fi is inhabited). If xi binds to fi : Fi for an inconsistent formula, we will be able to
construct a proof of xW → ⊥, and hence again qQ will reduce to either τ : Q → ⊥ or τ : ⊥. The probability of
this event is P2 =

∑
H∈P({1...NF }) P (H)[∀j ∈ H,∃y s. t. Γ ′, t : xW ` y : Fj], where P (H) is the probability

that for the indices i in the subset H , xi is bound to fi : Fi, and for all other formulae xi is bound to 1 : unit
(hence we sum across all possible subsets of formulae H , selecting only those subsets consistent with the query).
Since P (H) = (

∏
j∈H pj)(

∏
j 6∈H(1− pj)), we have:

P (xW |Γ0,1, P) ∝ P1 · P2

= 2−ND · P2

∝ P2

=
∑

H∈P({1...NF })

P (H)[∀j ∈ H,∃y s. t. Γ ′, t : xW ` y : Fj]

=
∑

H∈P({1...NF })

(
∏
j∈H

pj)(
∏
j 6∈H

(1− pj))[∀j ∈ H,∃y s. t. Γ ′, t : xW ` y : Fj], (29)

where the step from lines 2 to 3 follows from the fact that ND is constant for all worlds, and hence P1 may be
absorbed into the normalizing constant.

�

References

1. N.D. Goodman, V.K. Mansinghka, D. Roy, K. Bonawitz, and J.B. Tenenbaum. Church: A language for generative models.
UAI, 2008.

2. J. Borgström, A.D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael. Measure Transformer Semantics for Bayesian
Machine Learning. In Programming Languages and Systems, 77-96, Springer Berlin Heidelberg, 2011.

3. P. Martin Löf. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquim, 1973, North-Holland, 1975.
4. M. Richardson, and P. Domingos. Markov Logic Networks. Machine Learning, 62(1-2):107-136, 2006.
5. K.S. Ng, and J.W. Lloyd. Probabilistic Reasoning in a Classical Logic. Journal of Applied Logic, 7(2):218-238, 2007.
6. M. Hutter, J.W. Lloyd, K.S. Ng, and W.T.B. Uther. Probabilities on Sentences in an Expressive Logic. Journal of Applied

Logic, 11(4):386-420, 2013.
7. R. Cooper, S. Dobnik, S. Lappin, and S. Larsson. A Probabilistic Rich Type Theory for Semantic Interpretation. Proceedings

of the EACL 2014 Workshop on Type Theory and Natural Language Semantics, 72-79, 2014.
8. H. P. Barendregt. Lambda Calculi with Types. In Handbook of Logic in Computer Science, Vol 2:1-189, 1992.
9. S. Thompson. Type Theory and Functional Programming, Addison-Wesley, 1991.

15

10. P. Martin-Löf. ”Constructive mathematics and computer programming.” In Studies in Logic and the Foundations of Math-
ematics, vol. 104, pp. 153-175. Elsevier, 1982.

11. The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, Princeton NJ, In-
stitute for Advanced Study, 2013, https://homotopytypetheory.org/book.

12. C. Kaliszyk, F. Chollet, and C. Szegedy. Holstep: A machine learning dataset for higher-order logic theorem proving, ICLR,
2017.

13. T. Rocktäschel, and S. Riedel. End-to-end differentiable proving. NIPS 2017.
14. D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D. M. Blei. Deep probabilistic programming, ICLR,

2017.
15. V. Voevodsky, B. Ahrens, and D. Grayson, UniMath, 2014, https://github.com/UniMath.

16

