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Abstract

Latent variable models parameterized by deep
neural networks are a popular class of prob-
abilistic models for sampling, likelihood esti-
mation and representation learning over large
datasets. These models are often accompanied
with an inference method that both enables
learning as well as allows for approximate
recovery of the unobserved latent variables.
The quality of the inference scheme is particu-
larly important when aiming for good perfor-
mance on downstream tasks. However, cur-
rent training objectives do not enable trading-
off between learning –how well we model the
observations– and inference –how far is our in-
ference model from the true posterior. In this
work, we introduce a new learning objective
that leverages the score matching divergence
and allows balancing learning and inference.
We empirically evaluate this new learning ob-
jective on the MNIST dataset and demonstrate
that we can achieve arbitrarily good inference
(at the cost of likelihood). We also show im-
provement on semi-supervised learning.

1 INTRODUCTION

Latent variable models parameterized by deep neural net-
works have achieved great success at modeling high-
dimensional, complex distributions [9, 13]. In order
to learn these models, directly maximizing the log-
likelihood of observed points is computationally in-
tractable; to remedy that, one can form a variational
lower bound by introducing an approximate posterior.
These models can then be efficiently fitted to large
datasets using stochastic variational inference [4], and
jointly training both the approximate posterior and the
generative model.

When training these models, several choices have to be
made. First of all, we must choose both a variational
family and a family of generative networks. However, in
order to keep training tractable, we are often restricted
to simple variational families and using approximations
such as mean-field. This restriction regularly results in
misspecified problems (i.e. the true posterior is not in
the variational family). Recently, there has been plethora
of work extending the variational family and showing the
impact on the resulting generative model [14, 8, 3, 11].

In this work, we try to adopt a different viewpoint. In-
stead of trying to increase the expressiveness of the vari-
ational posterior, we aim at shifting some of the focus
from the generative model to the inference model. In-
deed, instead of interpreting maximizing the variational
lower bound as a mere surrogate to maximizing the log-
likelihood, we can look at the objective as a penal-
ized log-likelihood where we actually value both terms:
learning and inference. The question then becomes: how
can we efficiently trade-off between those two terms?
However, in the standard VAE framework, this is cur-
rently impossible, as recent work has shown [16].

The long-standing promise of unsupervised learning and
generative models has always been the hope of discover-
ing structure in the data; as such, being able to do effi-
cient inference on useful posterior models remains a key
challenge.

In this work, we introduce a new learning objective that
allows balancing learning and inference by using a sur-
rogate divergence: score matching [5]. This objective
depends on an additional hyper-parameter λ that cor-
responds to the relative preference given to inference
over learning. On the MNIST dataset, we empirically
show that by varying this new parameter, we can arbi-
trarily tighten the variational lower bound. We addition-
ally demonstrate that on the same model class, one can
achieve better performance on a downstream task –here
semi-supervised learning– by choosing the right λ.



2 BACKGROUND

2.1 DEEP LATENT VARIABLE MODELS

Deep latent variable models is an unsupervised model-
ing technique that posits the existence of latent variables
from which the observation is generated. Formally, the
model consists of a latent variable z ∼ p(z), the prior,
and a conditional distribution p(x|z) that generates the
observation x. We often choose p(z) = N (z; 0, I).
Given a family of parametric decoders {p(x|z; θ), θ ∈
Θ}, and a set of samples D = {x(i)}i≤m, the goal is to
find:

θ∗ = arg max
θ∈Θ

p(D; θ). (1)

However, this likelihood is intractable as it involves com-
puting a high-dimensional integral. To circumvent this
issue, one can introduce a variational posterior q(z|x;φ)
to approximate the true (intractable) posterior p(z|x; θ).
Following [9, 13], we can introduce a lower bound
(ELBO) on the log-likelihood of a sample x:

log p(x) ≥ log p(x)−KL(qφ(z|x), pθ(z|x))

= Eqφ [log pθ(x|z)]−KL(qφ(z|x), p(z))

, L(x;φ, θ).

(2)

This lower-bound (and its gradients) can now be effi-
ciently estimated; we can thus maximize it by jointly op-
timizing θ and φ using stochastic gradient methods.

2.2 SCORE MATCHING

Introduced by [5], the score matching divergence is de-
fined as follows:

DSM(p, q) , Ep‖∇x log p(x)−∇x log q(x)‖22. (3)

It is a strictly proper scoring rule as ∀p 6= q,DSM(p, q) >
0 and DSM(p, p) = 0. This divergence is particularly in-
teresting as it can be applied to un-normalized distribu-
tion due to the fact that∇x log p(x) = ∇xp(x)/p(x) and
thus one needs to know p (and q) only up to a constant.
Moreover, convergence in score matching is stronger
than convergence in KL, Hellinger and Total Variation
distances [6]. We additionally defer to [15] for a thor-
ough treatment of training un-normalized models using
such divergences.

3 VAE CANNOT TRADE-OFF
LEARNING AND INFERENCE

The approximate posterior used in Equation 2 to maxi-
mize the log-likelihood can be interpreted in at least two

different ways. One can see qφ as a tool to perform opti-
mization with, that can be discarded after training. Alter-
natively, we can see qφ as the star of the show; allowing
us to perform efficient posterior inference which could
prove very useful for downstream tasks. As such, we can
now see the ELBO not as a lower bound but as a penal-
ized log-likelihood objective where we wish for a model
that not only models the data well but where qφ is a good
approximation of the true posterior. As such, it is natural
to introduce the following objective:

Lλ(x;φ, θ) , log pθ(x)−λKL(qφ(z|x), pθ(z|x)), (4)

where we can vary λ > 0 to trade-off learning and infer-
ence. However, this objective is intractable for all λ 6= 1,
in the sense that one cannot efficiently evaluate or differ-
entiate the objective. We defer to [16] for an enumeration
of tractable models.

A note on β-VAE: introduced in [2], the β-VAE model
allows to trade-off between the two terms of the rewrit-
ten ELBO (i.e. reconstruction and regularization); this is
different from balancing learning and inference.

4 SCORE MATCHING VARIATIONAL
INFERENCE

In the previous section, we acknowledged that 1) we are
interested in the inference gap for downstream task and
2) the VAE model cannot trade-off between learning and
inference. In this section, we introduce a new objective
for learning latent variable models in which we can trade-
off between learning and inference.

We place ourselves in the usual setting of [9]. The prior
is a unit Gaussian, the approximate posterior is a mul-
tivariate Gaussian with diagonal covariance q(z|x) =
N (z;µφ(x),diag(σφ(x))), where µφ and σφ are neu-
ral networks. The generative part is either independent
Bernoulli random variables or a diagonal Gaussian de-
pending on the nature of the inputs; also parameterized
by neural networks.

First of all, we can notice that the score matching di-
vergence between qφ(z|x) and pθ(z|x) is directly com-
putable without the need of additional likelihood term.
Indeed, under the mean-field approximation, we can an-
alytically compute qφ(z|x) and thus its gradients. Simi-
larly,∇zpθ(z|x) can also be computed as:

pθ(z|x) ∝ p(z)pθ(x|z), (5)

and thus we know pθ(z|x) up to a constant. We can thus
form an unbiased estimate of DSM(qφ(z|x), pθ(z|x)).



We can now define the following objective:

L̃λ(x; θ, φ) , L(x; θ, φ)− λDSM(qφ(z|x), pθ(z|x)),
(6)

which can be estimated and optimized for all λ ∈ R. For
λ = 0, we retrieve the original VAE objective, for λ →
∞, the objective only amounts to the inference gap. This
new objective effectively trades-off between learning and
inference. We thus aim to solve:

max
φ,θ

1

m

∑
i≤m

L̃λ(x(i); θ, φ), (7)

which can be done using stochastic gradient methods. It
is important to note that our learning objective is meant to
trade-off learning and inference for a fixed model class;
as such, it can easily be combined with recent advances
in increasing the expressiveness of the variational family.

We now proceed to empirically evaluate this objective
in two different ways: first by measuring the ELBO gap
(i.e. KL(qφ(z|x), pθ(z|x))) and second, by evaluating
the performance of semi-supervised learning for differ-
ent values of λ.

5 EXPERIMENTS

We now evaluate the learning objective we presented in
the previous section. We first show that, by varying the
value of λ, we can arbitrarily tighten the ELBO gap, at
the cost of likelihood. We also show that inference is
somewhat important for downstream tasks and that sac-
rificing some likelihood for better inference can result in
better performance.

Our encoder is a neural network with 2 fully-connected
layers, with 1024 units each and softplus activation func-
tion. It outputs mean and variance for the approximate
posterior. We use the same architecture for the encoder
although it returns Bernoulli activation probabilities for
each pixel. Our model was trained for 300 epochs with
[7] and a learning rate α = 10−3. All experiments were
done on the dynamically binarized MNIST dataset [10].

5.1 ELBO GAP

We start by measuring the KL between the approximate
posterior and the true posterior of various latent variable
models trained using varying values of λ. We also refer
to it as the ELBO gap. To obtain that quantity, we mea-
sure the log-likelihood of a data point using annealed im-
portance sampling (AIS; [12]). While AIS does not give
an exact value for log p(x), it provides much tighter es-
timate. We can also verify that we have a very accurate
estimate by evaluating it for log-scaled number of anneal

steps and making sure the values converge. The ELBO
gap can thus be measured as the difference between the
AIS estimate and the value of the ELBO. We show in
Figure 1, the results on both the train and test set.

We observe that, as expected, increasing the value of λ
allows to arbitrarily shrink the ELBO gap, albeit at the
cost of likelihood.

5.2 SEMI-SUPERVISED LEARNING

We now proceed to evaluate the effect of better inference
on downstream tasks. To that aim, we first train a deep
latent variable model on the full MNIST training set. We
then sub-samples s examples from D for which we pro-
vide labels (equally distributed amongst classes). We ex-
tract features using the trained encoder of the generative
model (namely µφ(·)) and train an SVM [1] on the la-
beled examples. We then report the accuracy on the test
set. We show the results in Figure 2 for varying values of
λ as well as s ∈ {600, 1000, 3000}.
We observe that by increasing the preference on the in-
ference term of the objective, we can improve the perfor-
mance of the semi-supervised learning downstream task.
We also see that for large values of λ, the loss of like-
lihood is too high and thus the learned features are not
useful for the classification task.

6 DISCUSSION

In this work, we presented a new objective to allow
trading-off learning and inference in deep latent variable
models. Additionally, we showed that empirically, we
can tighten the ELBO as well as we wish at the cost of
likelihood. We also showed that sacrificing some likeli-
hood for better inference can improve performance on a
downstream task like semi-supervised learning.

Improving the inference method in latent variable mod-
els has been thoroughly explored in the literature, for ex-
ample by increasing the expressiveness of the variational
family of approximate posteriors. This has been done in
parametric [8] and non-parametric ways [3, 11]. How-
ever, it is important to not that the aim is very different
than our work. Indeed, in this work, we explore balanc-
ing the objective for a fixed model class and thus do not
consider increasing the variational family; it would how-
ever be easy to combine the two.

For future work, there are several ways to use this new
objective. For example, one could want to leverage more
of the advantages of score matching by considering un-
normalized approximate posteriors (e.g. RBM or rejec-
tion sampling). Another direction, would be to consider
the objective L̃ as the Lagrangian of a constrained objec-
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Figure 1: Increasing the value of λ in our new training objective allows us to trade-off learning and inference, i.e.
arbitrarily tightening the ELBO at the cost of likelihood.
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Figure 2: Semi-supervised learning performance for
varying values of λ and s (size of the labeled sample).
Improving inference at the cost of likelihood can improve
performance on downstream tasks.

tive and optimize for λ as well (similar in spirit to [16]).
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