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Abstract

Integrating model-free and model-based ap-
proaches in reinforcement learning has the
potential to achieve the high performance of
model-free algorithms with low sample com-
plexity. However, this is difficult because an
imperfect dynamics model can degrade the per-
formance of the learning algorithm, and in suf-
ficiently complex environments, the dynamics
model will almost always be imperfect. As a re-
sult, a key challenge is to combine model-based
approaches with model-free learning in such a
way that errors in the model do not degrade
performance. We propose stochastic ensem-
ble value expansion (STEVE), a novel model-
based technique that addresses this issue. By
dynamically interpolating between model roll-
outs of various horizon lengths for each indi-
vidual example, STEVE ensures that the model
is only utilized when doing so does not intro-
duce significant errors. Our approach outper-
forms model-free baselines on challenging con-
tinuous control benchmarks with an order-of-
magnitude increase in sample efficiency, and in
contrast to previous model-based approaches,
performance does not degrade in complex envi-
ronments.

1 Introduction

Deep model-free reinforcement learning has had great suc-
cess in recent years, notably in playing video games Mnih
et al. [2013] and strategic board games Silver et al. [2016].
However, training agents using these algorithms requires
tens to hundreds of millions of samples, which makes
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many practical applications infeasible, particularly in real-
world control problems (e.g., robotics) where data collec-
tion is expensive.

Model-based approaches aim to reduce the environment
samples required to learn a policy by modeling the dynam-
ics. A dynamics model can be used to increase sample
efficiency in various ways, for example training the policy
on rollouts from the dynamics model Sutton [1990], us-
ing rollouts to improve targets for TD learning Feinberg
et al. [2018], and using rollout statistics as inputs to the
policy Weber et al. [2017]. Model-based algorithms such
as PILCO Deisenroth and Rasmussen [2011] have shown
that it is possible to learn from orders-of-magnitude fewer
samples.

These successes have mostly been limited to environments
where the dynamics are simple to model. In noisy, com-
plex environments, it is difficult to learn an accurate model
of the environment. When the model makes mistakes, it
can cause the wrong policy to be learned, hindering per-
formance. Recent work has begun to address this issue
Sutton and Barto [1998], Kurutach et al. [2018], Kalweit
and Boedecker [2017], Weber et al. [2017], Gal et al.,
Depeweg et al. [2016], Gu et al. [2016a]; see Appendix G
for a more in-depth discussion of these approaches.

We propose stochastic ensemble value expansion
(STEVE), an extension to model-based value expansion
(MVE), proposed by Feinberg et al. [2018]. Both tech-
niques use a dynamics model to compute “rollouts” that
are used to improve the targets for temporal difference
learning. MVE rolls out a fixed length into the future,
potentially accumulating model errors or increasing value
estimation error along the way. In contrast, STEVE inter-
polates between many different horizon lengths, favoring
those whose estimates have lower uncertainty, and thus
lower error. To compute the interpolated target, we re-
place both the model and Q-function with ensembles, ap-
proximating the uncertainty of an estimate by computing
its variance under samples from the ensemble. Through



these uncertainty estimates, STEVE dynamically utilizes
the model rollouts only when they do not introduce signifi-
cant errors. We systematically evaluate STEVE on several
challenging continuous control benchmarks and demon-
strate that STEVE significantly outperforms model-free
baselines with an order-of-magnitude increase in sample
efficiency, and that in contrast to previous model-based
approaches, the performance of STEVE does not degrade
as the environment gets more complex.

2 Background

Reinforcement learning aims to learn an agent policy that
maximizes the expected (discounted) sum of rewards [Sut-
ton and Barto, 1998]. We focus on the deterministic case
for exposition; however, our method is applicable to the
stochastic case as well. The agent starts at an initial state
s0 ∼ p(s0). Then, the agent chooses an action at ac-
cording to its policy πφ(st) with parameters φ, receives
a reward rt = r(st, at), and transitions to a subsequent
state st+1 according to the Markovian dynamics T (at, st)
of the environment. This generates a trajectory of states,
actions, and rewards τ = (s0, a0, r0, s1, a1, . . .). We ab-
breviate the trajectory by τ . The goal is to maximize
the expected discounted sum of rewards along sampled
trajectories J(θ) = Eτ [

∑∞
t=0 γ

trt] where γ ∈ [0, 1) is a
discount parameter.

2.1 Value Estimation with TD-learning

The action-value function Qπ(s0, a0) =
∑∞
t=0 γ

trt is a
critical quantity to estimate for many learning algorithms.
Using the fact that Qπ(s, a) satisfies a recursion relation

Qπ(s, a) = r(s, a) + γQπ(s′, π(s′)),

where s′ = T (s, a), we can estimate Qπ(s, a) off-policy
with collected transitions of the form (s, a, r, s′) sampled
uniformly from a replay buffer [Sutton and Barto, 1998].
We approximate Qπ(s, a) with a deep neural network,
Q̂πθ (s, a). We learn parameters θ to minimize the mean
squared error (MSE) between Q-value estimates of states
and their corresponding temporal difference targets Sutton
and Barto [1998]:

T TD(r, s′) = r + γQ̂πθ−(s
′, π(s′))

Lθ = E(s,a,r,s′)

[
(Q̂πθ (s, a)− T TD(r, s′))2

]
.

(1)

Note that we use an older copy of the parameters, θ−,
when computing targets [Mnih et al., 2013].

To approximate a policy which maximizes our Q-function,
we use a neural network Lillicrap et al. [2015], learning

parameters φ to minimize the negative Q-value:

Lφ = −Q̂πθ (s, πφ(s)). (2)

2.1.1 Model-Based Value Expansion

Recently, Feinberg et al. [2018] showed that a learned
dynamics model can be used to improve value estimation.
Their method, model-based value expansion, combines a
short term value estimate formed by unrolling the model
dynamics and a long term value estimate using the learned
Q̂πθ− function. When the model is accurate, this reduces
the bias of the targets, leading to improved performance.

The learned dynamics model consists of three learned
functions: the transition function T̂ξ(s, a), which returns
a successor state s′; a termination function d̂ξ(s), which
returns the probability that s is a terminal state; and the re-
ward function r̂ψ(s, a, s′), which returns a scalar reward.
This model is trained to minimize

Lξ,ψ = E(s,a,r,s′)

[
||T̂ξ(s, a)− s′||2

+H
(
d(t | s′), d̂ξ(t | T̂ξ(s, a))

)
+ (r̂ψ(s, a, s

′)− r)2
]
,

(3)

where the expectation is over collected transitions
(s, a, r, s′), d(t | s′) is an indicator function which re-
turns 1 when s′ is a terminal state and 0 otherwise, and H
is the cross-entropy. In this work, we consider continuous
environments; for discrete environments, the first term
can be replaced by a cross-entropy loss term.

To incorporate the model into value estimation, we replace
our standard Q-learning target with an improved target,
T MVE
H , computed by rolling the learned model out for H

steps.

s′0 = s′, a′i = πφ(s
′
i), s′i = T̂ξ(s

′
i−1, a

′
i−1),

Di =

i∏
j=0

(1− d(s′j))
(4)

T MVE
H (r, s′) = r +

(
H∑
i=1

Diγir̂ψ(s
′
i−1, a

′
i−1, s

′
i)

)
+

DH+1γH+1Q̂πθ−(s
′
H , a

′
H).

(5)

To use this target1, we substitute T MVE
H in place of T TD

when training θ using Equation 1. Note that when H = 0,
MVE reduces to TD-learning (i.e., T TD = T MVE

0 ). See
Appendix B for further discussion of MVE.

1This formulation is a minor generalization of the original
MVE objective in that we additionally model the reward func-
tion and termination function; Feinberg et al. [2018] consider
fully observable environments in which the reward function and
termination condition were known, deterministic functions of
the observations.



3 Stochastic Ensemble Value Expansion

From a single rollout of H timesteps, we can compute
H + 1 distinct candidate targets by considering rollouts
to various horizon lengths: T MVE

0 ,T MVE
1 ,T MVE

2 ,...,T MVE
H .

Standard TD learning uses T MVE
0 as the target, while

MVE uses T MVE
H as the target. We propose interpolating

all of the candidate targets to produce a target which is
better than any individual. Naïvely, one could average
the candidate targets, or weight the candidate targets in
an exponentially-decaying fashion, similar to TD-λ Sut-
ton and Barto [1998]. However, we show that we can
do still better by weighting the candidate targets in a
way that balances errors in the learned Q-function and
errors from longer model rollouts. STEVE provides a
computationally-tractable and theoretically-motivated al-
gorithm for choosing these weights. We describe the
algorithm for STEVE in Section 3.1, and justify it in
Section 3.2.

3.1 Algorithm

To estimate uncertainty in our learned estimators, we
maintain an ensemble of parameters for our Q-function,
reward function, and model: θ = {θ1, ..., θL}, ψ =
{ψ1, ..., ψN}, and ξ = {ξ1, ..., ξM}, respectively. Each
parameterization is initialized independently and trained
on different subsets of the data in each minibatch. See
Appendix D for further discussion of our choice to use
ensembles.

We rollout an H step trajectory with each of the M
models, τ ξ1 , ..., τ ξM . Each trajectory consists of H + 1
states, τ ξm0 , ..., τ ξmH , which correspond to s′0, ..., s

′
H in

Equation 4 with the transition function parameterized by
ξm. Similarly, we use the N reward functions and L Q-
functions to evaluate Equation 5 for each τ ξm at every
rollout-length 0 ≤ i ≤ H . This gives us M · N · L
different values of T MVE

i for each rollout-length i.

Using these values, we can compute the empirical mean
T µi and variance T σ2

i for each partial rollout of length i.
In order to form a single target, we use an inverse variance
weighting of the means:

T STEVE
H (r, s′) =

H∑
i=0

w̃i∑
j w̃j
T µi , w̃−1i = T σ

2

i (6)

To learn a value function with STEVE, we substitute in
T STEVE
H in place of T TD when training θ using Equation 1.

3.2 Justification

We wish to find weights wi, where
∑
i wi = 1 that

minimize the mean-squared error between the weighted-

average of candidate targets T MVE
0 ,T MVE

1 ,T MVE
2 ,...,T MVE

H

and the true Q-value.

E

( H∑
i=0

wiT MVE
i −Qπ(s, a)

)2


= Bias

(∑
i

wiT MVE
i

)2

+Var

(∑
i

wiT MVE
i

)

≈ Bias

(∑
i

wiT MVE
i

)2

+
∑
i

w2
i Var(T MVE

i ),

where the expectation considers the candidate targets as
random variables conditioned on the collected data and
minibatch sampling noise, and the approximation is due
to assuming the candidate targets are independent. Exper-
iments suggested that including the covariance terms was
not effective in practice, so we dropped the extra terms
for simplicity.

Our goal is to minimize this with respect to wi. We
can estimate the variance terms using empirical variance
estimates from the ensemble. Unfortunately, we could not
devise a reliable estimator for the bias terms, and this is
a limitation of our approach and an area for future work.
In this work, we ignore the bias terms and minimize the
weighted sum of variances∑

i

w2
i Var(T MVE

i ).

With this approximation, which is equivalent to inverse-
variance weighting Fleiss [1993], we achieve state-of-
the-art results. Setting each wi equal to 1

Var(T MVE
i )

and

normalizing yields the formula for T STEVE
H given in Equa-

tion 6.

4 Experiments

4.1 Implementation

We use DDPG Lillicrap et al. [2015] as our baseline
model-free algorithm. We train two deep feedforward
neural networks, a Q-function network Q̂πθ (s, a) and a
policy network πφ(s), by minimizing the loss functions
given in Equations 1 and 2. We also train another three
deep feedforward networks to represent our worldmodel,
corresponding to function approximators for the transition
T̂ξ(s, a), termination d̂ξ(t | s), and reward r̂ψ(s, a, s′),
and minimize the loss function given in Equation 3.

We use a distributed implementation to parallelize com-
putation. In the style of ApeX Horgan et al. [2018], IM-
PALA Espeholt et al. [2018], and D4PG Barth-Maron
et al. [2018], we use a centralized learner with several
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Figure 1: Learning curves comparing our method to both model-free and model-based baselines. Each experiment was
run four times.

agents operating in parallel. Each agent periodically loads
the most recent policy, interacts with the environment, and
sends its observations to the central learner. The learner
stores received frames in a replay buffer, and continuously
loads batches of frames from this buffer to use as training
data for a model update. In the algorithms with a model-
based component, there are two learners, a policy-learner
and a model-learner. In these cases, the policy-learner
periodically reloads the latest copy of the model.

All baselines reported in this section were re-
implementations of existing methods. This allowed us to
ensure that the various methods compared were consis-
tent with one another, and that the differences reported are
fully attributable to the independent variables in question.
Our baselines are competitive with state-of-the-art im-
plementations of these algorithms Haarnoja et al. [2018],
Feinberg et al. [2018]. All MVE experiments utilize the
TD-k trick. For hyperparameters and additional imple-
mentation details, please see Appendix C.2

4.2 Comparison of Performance

We tested on a variety of continuous control tasks [Brock-
man et al., 2016, Klimov and Schulman]; the results can
be seen in Figure 2. We found that STEVE yields sig-
nificant improvements in both performance and sample
efficiency across a wide range of environments. Impor-
tantly, the gains are more substantial in the more complex
environments. On all of the most challenging environ-
ments, we see that STEVE is the only algorithm to begin
to learn a better-than-random policy within 10M frames.
STEVE also outperforms other recently-published results
on these tasks in terms of sample efficiency Gu et al.

2Our code is available open-source at: https:
//github.com/tensorflow/models/tree/
master/research/steve
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Figure 2: Ablation experiments. Each experiment was
run twice.

[2016b], Haarnoja et al. [2018], Schulman et al. [2017].

4.3 Ablation Study

In order to verify that STEVE’s gains in sample efficiency
are due to the reweighting, and not simply due to the ad-
ditional parameters of the ensembles of its components,
we examine several ablations. Ensemble MVE is the reg-
ular MVE algorithm, but the model and Q-functions are
replaced with with ensembles. Mean-MVE uses the exact
same architecture as STEVE, but uses a simple uniform
weighting instead of the uncertainty-aware reweighting
scheme. Similarly, TDL25 and TDL75 correspond to
TD-λ reweighting schemes with λ = 0.25 and λ = 0.75,
respectively. We also investigate the effect of the hori-
zon parameter on the performance of both STEVE and
MVE. These results, which can be seen in Figure 2, sup-
port the hypothesis that the increased performance is due

https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve


to the uncertainty-dependent reweighting of targets, and
demonstrate that the performance of STEVE consistently
increases with longer horizon lengths.

4.4 Additional Analysis and Discussion

See Appendix E for a comparison of wall-clock time and
Appendix F for an analysis of model usage.

5 Conclusion

In this work, we introduced STEVE, an uncertainty-aware
approach for merging model-free and model-based rein-
forcement learning, which outperforms model-free ap-
proaches while reducing sample complexity on several
challenging tasks. We believe that this is a strong step to-
wards enabling RL for practical, real-world applications.
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A Toy Problem: A Tabular FSM with
Model Noise

0 2000 4000 6000 8000 10000
Updates

0

500

1000

1500

2000

Er
ro

r

STEVE (H=5)
MVE (H=5)
TD Learning (Model-Free)

Toy Environment + Oracle Dynamics Model

0 2000 4000 6000 8000 10000
Updates

0

500

1000

1500

2000

Er
ro

r

STEVE (H=5)
MVE (H=5)
TD Learning (Model-Free)

Toy Environment + Noisy Dynamics Model

Figure 3: Value error per update on a value-estimation
task in a toy environment. When given access to a per-
fect dynamics model, model-based approaches solve this
task with 5× fewer samples than model-free TD learning.
However, when only given access to a noisy dynamics
model, MVE diverges due to model errors. In contrast,
STEVE converges to the correct solution, and does so
with a 2× speedup over TD learning. This is because
STEVE dynamically adapts its rollout horizon to accom-
modate model error. See Appendix A for more details.

To demonstrate the benefits of Bayesian model-based
value expansion, we evaluated it on a toy problem. We
used a finite state environment with states {s0, . . . , s100},
and a single actionA available at every state which always
moves from state st to st+1, starting at s0 and terminat-
ing at s100. The reward for every action is -1, except
when moving from s99 to s100, which is +100. Since
this environment is so simple, there is only one possible
policy π, which is deterministic. It is possible to compute
the true action-value function in closed form, which is
Qπ(si, A) = i.

We estimate the value of each state using tabular TD-
learning. We maintain a tabular function Q̂π(si, A),
which is just a lookup table matching each state to its
estimated value. We initialize all values to random inte-
gers between 0 and 99, except for the terminal state s100,
which we initialize to 0 (and keep fixed at 0 at all times).
We update using the standard undiscounted one-step TD
update, Q̂π(si, A) = r + Q̂π(si+1, A). For each update,
we sampled a nonterminal state and its corresponding
transition (si, r, si+1) at random. For experiments with
an ensemble of Q-functions, we repeat this update once
for each member of the ensemble at each timestep.

The transition and reward function for the oracle dynam-
ics model behaved exactly the same as the true environ-
ment. In the “noisy” dynamics model, noise was added
in the following way: 10% of the time, rather than cor-
rectly moving from st to st+1, the model transitions to
a random state. (Other techniques for adding noise gave
qualitatively similar results.)

On the y-axis of Figure 3, we plot the mean squared error
between the predicted values and the true values of each
state: 1

100

∑99
i=0(Q̂

π(si, A)−Qπ(si, A))2.

For both the STEVE and MVE experiments, we use an
ensemble of size 8 for both the model and the Q-function.
To compute the MVE target, we average across all ensem-
bled rollouts and predictions.

B More on Model-Based Value Expansion

While the results of Feinberg et al. [2018] are promising,
they rely on task-specific tuning of the rollout horizon
H . This sensitivity arises from the difficulty of modeling
transitions and theQ-function, which are task-specific and
may change throughout training as the policy explores
different parts of the state space. Complex environments
require much smaller rollout horizon H , which limits the
effectiveness of the approach (e.g., Feinberg et al. [2018]
used H = 10 for HalfCheetah-v1, but had to reduce to
H = 3 on Walker2d-v1).

When the model is perfect and the learned Q-function
has similar bias on all states and actions, Feinberg et al.
[2018] show that the MVE target with rollout horizon H
will decrease the target error by a factor of γ2H Feinberg
et al. [2018]. Errors in the learned model can lead to
worse targets, so in practice, we must tune H to balance
between the errors in the model and the Q-function es-
timates. An additional challenge is that the bias in the
learned Q-function is not uniform across states and ac-
tions [Feinberg et al., 2018]. In particular, they find that
the bias in the Q-function on states sampled from the re-
play buffer is lower than when the Q-function is evaluated
on states generated from model rollouts. They term this
the distribution mismatch problem, and propose the TD-k
trick as a solution.

The TD-k trick, proposed by Feinberg et al. [2018], in-
volves training the Q-function using every intermediate
state of the rollout:

s′−1 = s

Lθ = E(s,a,r,s′)

[
1

H

H−1∑
i=−1

(Q̂πθ (s
′
i, ai)− T MVE

H (r, s′))2

]

To summarize Feinberg et al. [2018], the TD-k trick is
helpful because the off-policy states collected by the re-
play buffer may have little overlap with the states encoun-
tered during on-policy model rollouts. Without the TD-k
trick, the Q-function approximator is trained to minimize
error only on states collected from the replay buffer, so
it is likely to have high error on states not present in the



replay buffer. This would imply that the Q-function has
high error on states produced by model rollouts, and that
this error may in fact continue to increase the more steps
of on-policy rollout we take. By invoking the TD-k trick,
and training the Q-function on intermediate steps of the
rollout, Feinberg et al. [2018] show that we can decrease
the Q-function bias on frames encountered during model-
based rollouts, leading to better targets and improved
performance.

The TD-k trick is orthogonal to STEVE. STEVE tends to
ignore estimates produced by states with poorly-learned
Q-values, so it is not hurt nearly as much as MVE by
the distribution mismatch problem. However, better Q-
values will certainly provide more information with which
to compute STEVE’s target, so in that regard the TD-k
trick seems beneficial. An obvious question is whether
these two approaches are complimentary. STEVE+TD-k
is beyond the scope of this work, and we did not give it
a rigorous treatment; however, initial experiments were
not promising. In future work, we hope to explore the
connection between these two approaches more deeply.

C Implementation Details

All algorithms were implemented in Tensorflow [Abadi
et al., 2016] and run on Google Cloud Engine.

All models were feedforward neural networks with ReLU
nonlinearities. The policy network, reward model, and
termination model each had 4 layers of size 128, while
the transition model had 8 layers of size 512. All environ-
ments were reset after 1000 timesteps. Parameters were
trained with the Adam optimizer with a learning rate of
3e-4.

Policies were trained using minibatches of size 512 sam-
pled uniformly at random from a replay buffer of size 1e6.
The first 1e5 frames were sampled via random interaction
with the environment; after that, 4 policy updates were
performed for every frame sampled from the environment.
(In wall-clock experiments, the policy updates and frames
were instead de-synced.) Policy checkpoints were saved
every 500 updates; these checkpoints were also frozen
and used as θ−. For model-based algorithms, the most
recent checkpoint of the model was loaded every 500
updates as well.

Each policy training had 8 agents interacting with the
environment to send frames back to the replay buffer.
These agents typically took the greedy action predicted
by the policy, but with probability ε = 0.5, instead took
an action sampled from a normal distribution surrounding
the pre-tanh logit predicted by the policy. In addition,
each policy had 2 purely-greedy agents interacting with
the environment for evaluation.

Dynamics models were trained using minibatches of size
1024 sampled uniformly at random from a replay buffer of
size 1e6. The first 1e5 frames were sampled via random
interaction with the environment; the dynamics model
was then pre-trained for 1e5 updates. After that, 4 model
updates were performed for every frame sampled from the
environment. (In wall-clock experiments, the model up-
dates and frames were instead de-synced.) Model check-
points were saved every 500 updates.

All ensembles were of size 4. During training, each en-
semble member was trained on a disjoint subset of each
minibatch, i.e. each sample in the minibatch was “as-
signed” to one member of the ensemble uniformly at
random. Additionally, M,N,L = 4 for all experiments.

D A Note On Ensembles

This technique for calculating uncertainty estimates will
work equally well for any family of models from which
we can sample. For example, we could train a Bayesian
neural network for each model MacKay [1992], or use
dropout as a Bayesian approximation by resampling the
dropout masks each time we wish to sample a new
model Gal and Ghahramani [2016]. These options could
potentially give better diversity of various samples from
the family, and thus better uncertainty estimates; explor-
ing them further is a promising direction for future work.
However, we found that these methods degraded the ac-
curacy of the base models. An ensemble is far easier
to train, and so we focus on that in this work. This is
a common choice, as the use of ensembles in the con-
text of uncertainty estimations for deep reinforcement
learning has seen wide adoption in the literature. It was
first proposed by Osband et al. [2016] as a technique to
improve exploration, and subsequent work showed that
this approach gives a good estimate of the uncertainty of
both value functions Kalweit and Boedecker [2017] and
models Kurutach et al. [2018].

E Wall-Clock Comparison
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Figure 4: Wall-clock time. The x-axis is hours elapsed
since start of training; the y-axis is mean reward, shaded
area is one standard deviation. Each experiment was run
three times.



In the previous experiments, we synchronized data col-
lection, policy updates, and model updates. How-
ever, when we run these steps asynchronously, we
can reduce the wall-clock time at the risk of instabil-
ity. To evaluate this configuration, we compare DDPG,
MVE-DDPG, and STEVE-DPPG on Humanoid-v1 and
RoboschoolHumanoidFlagrun-v1. Both were trained on
a P100 GPU and had 8 CPUs collecting data; STEVE-
DPPG additionally used a second P100 to learn a model
in parallel. We plot reward as a function of wall-clock
time for these tasks in Figure 4. These results demonstrate
that in spite of the additional computation per epoch, the
gains in sample efficiency are enough that STEVE is com-
petitive with model-free algorithms in terms of wall-clock
time. The speed gains associated with improved sample
efficiency will only be exacerbated as samples become
more expensive to collect, making STEVE a promising
choice for applications involving real-world interaction.
Moreover, in future work, STEVE could be accelerated by
parallelizing training of each component of the ensemble.

F Model Usage
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Figure 5: Average model usage for STEVE on each en-
vironment. The x-axis represents the number of frames
sampled from the environment. The y-axis represents the
amount of probability mass assigned to weights that were
not w0, i.e. the probability mass assigned to candidate
targets that include at least one step of model rollout.

Given that the improvements stem from the dynamic
reweighting between horizon lengths, it may be inter-
esting to examine the choices that the model makes about
which candidate targets to favor most heavily. In Figure
5, we plot the average model usage over the course of
training. Intriguingly, most of the lines seem to remain
stable at around 50% usage, with two notable exceptions:
Humanoid-v1, the most complex environment tested (with
an observation-space of size 376); and Swimmer-v1, the
least complex environment tested (with an observation-
space of size 8). This supports the hypothesis that STEVE
is trading off between Q-function bias and model bias; it
chooses to ignore the model almost immediately when
the environment is too complex to learn, and gradually
begins ignore the model as the Q-function improves if an
optimal environment model is learned quickly.

G Related Work

Sutton and Barto [1998] describe TD-λ, a family of Q-
learning variants in which targets from multiple timesteps
are merged via exponentially decay. STEVE is similar
in that it is also computing a weighted average between
targets. However, our approach is significantly more pow-
erful because it adapts the weights to the specific char-
acteristics of each individual rollout, rather than being
constant between examples and throughout training. Our
approach can be thought of as a generalization of TD-λ,
in that the two approaches are equivalent in the specific
case where the overall uncertainty grows exponentially at
rate λ at every timestep.

Kurutach et al. [2018] propose model-ensemble trust-
region policy optimization (ME-TRPO), which is mo-
tivated similarly to this work in that they also propose
an algorithm which uses an ensemble of models to miti-
gate the deleterious effects of model bias. However, the
algorithm proposed is quite different. ME-TRPO is a
purely model-based policy-gradient approach, and uses
the ensemble to avoid overfitting to any one model. In
contrast, STEVE interpolates between model-free and
model-based estimates, uses a value-estimation approach,
and uses the ensemble to explicitly estimate uncertainty.

Kalweit and Boedecker [2017] train on a mix of real and
imagined rollouts, and adjust the ratio over the course
of training by tying it to the variance of the Q-function.
Similarly to our work, this variance is computed via an
ensemble. However, they do not adapt to the uncertainty
of individual estimates, only the overall ratio of real to
imagined data. Additionally, they do not take into account
model bias, or uncertainty in model predictions.

Weber et al. [2017] use rollouts generated by the dynamics
model as inputs to the policy function, by “summarizing”
the outputs of the rollouts with a deep neural network.
This second network allows the algorithm to implicitly
calculate uncertainty over various parts of the rollout and
use that information when making its decision. How-
ever, I2A has only been evaluated on discrete domains.
Additionally, the lack of explicit model use likely tem-
pers the sample-efficiency benefits gained relative to more
traditional model-based learning.

Gal et al. use a deep neural network in combination with
the PILCO algorithm Deisenroth and Rasmussen [2011]
to do sample-efficient reinforcement learning. They
demonstrate good performance on the continuous-control
task of cartpole swing-up. They model uncertainty in
the learned neural dynamics function using dropout as a
Bayesian approximation, and provide evidence that main-
taining these uncertainty estimates is very important for
model-based reinforcement learning.



Depeweg et al. [2016] use a Bayesian neural network as
the environment model in a policy search setting, learning
a policy purely from imagined rollouts. This work also
demonstrates that modeling uncertainty is important for
model-based reinforcement learning with neural network
models, and that uncertainty-aware models can escape
many common pitfalls.

Gu et al. [2016c] propose a continuous variant of Q-
learning known as normalized advantage functions (NAF),
and show that learning using NAF can be accelerated by
using a model-based component. They use a variant of
Dyna-Q Sutton [1990], augmenting the experience avail-
able to the model-free learner with imaginary on-policy
data generated via environment rollouts. They use an
iLQG controller and a learned locally-linear model to
plan over small, easily-modelled regions of the environ-
ment, but show that using more complex neural network
models of the environment can yield errors that negate
the benefits of model-based rollouts.
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