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Abstract
Bayesian inference was once a gold standard
for learning with neural networks, provid-
ing accurate full predictive distributions and
well calibrated uncertainty. However, scaling
Bayesian inference techniques to deep neural
networks is challenging due to the high dimen-
sionality of the parameter space. In this pa-
per, we construct low-dimensional subspaces
of parameter space that contain diverse sets
of models, such as the first principal compo-
nents of the stochastic gradient descent (SGD)
trajectory. In these subspaces, we are able to
apply elliptical slice sampling and variational
inference, which struggle in the full param-
eter space. We show that Bayesian model
averaging over the induced posterior in these
subspaces produces high accurate predictions
and well-calibrated predictive uncertainty for
both regression and image classification.

1. Introduction
Bayesian methods were once the state-of-the-art ap-
proach for inference with neural networks (MacKay,
2003; Neal, 1996a). However, the parameter spaces
for modern deep neural networks are extremely high
dimensional, posing challenges to standard Bayesian
inference procedures.

In this paper we propose a different approach to ap-
proximate Bayesian inference in deep learning models,
termed Dimensionality Reduced Bayes (DR Bayes).
We design a low-dimensional subspace S of the weight
space and approximate the posterior over the parame-
ters of the model within this subspace. It is our con-
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tention that this subspace S can be chosen to contain a
diverse set of models, over which Bayesian model aver-
aging leads to accurate predictions and well-calibrated
uncertainties.

In Figure 1 we visualize the samples from the approxi-
mate posterior and the corresponding predictive distri-
butions constructed by our method for a 10-dimensional
random subspace, and a rich 2-dimensional subspace
containing a low-loss curve between two independently
trained SGD solutions (see Garipov et al., 2018) on
a synthetic 1-dimensional regression problem. As we
can see, the predictive distribution corresponding to
a random subspace does not capture a diverse set of
possible trajectories, but by sampling from the poste-
rior in the rich subspace we are able to get meaningful
uncertainty over predictions.

Our paper is structured as follows. In Section 2 we
describe the proposed method for inference in low-
dimensional subspaces of the parameter space. We
analyze the effects of using different subspaces and
approximate inference methods on a synthetic regres-
sion problem in Section 3.1 and on image classification
problems (CIFAR-10 and CIFAR-100) in Section 3.2.
Overall, the method achieves strong performance in
terms of both accuracy and likelihood. In particular, we
construct 5-dimensional subspaces that contain enough
diversity for approximate Bayesian model averaging
on a 36 million dimensional WideResNet trained on
CIFAR-100. Additional results on automatic choice
of dimensionality of the subspace can be found in the
appendix.

2. Inference within a Subspace

Algorithm 1 Approximate Bayesian inference using
a subspace

Input: data, D; model, M;
Train M on D with stochastic gradient descent.
Construct subspace, i.e. using Algorithm 2.
Perform inference within subspace using Eq. 3 and
prior with approximate Bayesian inference procedure,
see Section 2.2.



Subspace Inference for Bayesian Deep Learning

Toy Regression
NUTS, Random Subspace

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Toy Regression
Posterior log-density

NUTS, Random Subspace

−0.0029

−0.012

−0.015

−0.019

−0.025

−0.032

−0.042

−0.055

< −0.055

(b)

Toy Regression
NUTS, Curve Subspace

(c)

−5 0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Toy Regression
Posterior log-density

NUTS, Curve Subspace

−0.003

−0.02

−0.047

−0.12

−0.3

−0.76

−1.9

−5

< −5

(d)

Figure 1: Predictive distribution and samples in the parameter space for our method on a synthetic regression
problem in a random subspace (a, b) and subspace containing a constant-loss curve between two independently
trained soultions (c, d) (see Garipov et al., 2018, for details). On the plots (a, c) data points are shown with red
circles, the shaded region represents the 3σ-region of the predictive distribution at each point, and the predictive
mean is shown with a thick blue line and sample trajectories are shown with thin blue lines. Panels (b, d) show
the contour plots of the posterior within the corresponding subspace; magenta circles represent samples from the
posterior in the subspace. In the rich subspace containing the constant loss curve, the samples produce better
uncertainty estimates and more diverse trajectories. We use a small fully-connected network with 4 hidden layers.
See Section 3.1 for more details.

2.1. Model Definition

To perform inference within a subspace, we assume a set
of K + 1 vectors: {v1, v2, . . . , vK , ŵ} in the full weight
space (e.g. Rp); we will do inference in a subspace,
S, of the full weight space, defined by the projection
matrix P :

S = {w|w = ŵ + t1v1 + . . . tKvK}
= {w|w = ŵ + Pt}, (1)

where P = (vT1 , . . . , vTK) ∈ Rp×K , and t =
(t1, . . . , tK)T ∈ RK .

Performing Bayesian inference in the subspace requires
defining a new model over t ∈ RK ; these serve as
coefficients for vectors vi. The new model has the
likelihood function:

p(D|t) = pM(D|w = ŵ + Pt), (2)

where the right-hand-side represents the likelihood for
the model, M, with parameters ŵ + Pt and D is the
dataset.

We can then do approximate Bayesian inference over
the parameters, t, after choosing a prior, p(t), on these
parameters. As we can set the number K of parameters
to be much smaller than the dimensionality p of the
full parameter space, performing Bayesian inference
becomes considerably more tractable (i.e. only large
data issues must be dealt with instead of large data and
large dimensionality). The procedure is summarized in
Algorithm 1, with construction of subspaces, P, being
left to Appendix C and further computational benefits
in Appendix B.

2.2. Sampling

Once we have formed an approximate posterior distri-
bution q ≈ p(t|D), we can use this distribution to do
sampling in the original parameter space. To do so we
first sample t̃ ∼ q, and then construct a sample in the
original space as w̃ = ŵ + P t̃.

For example, if we were to consider the posterior pre-
dictive distribution on new data points, D∗, then we
would be able to compute a Monte Carlo estimate of
the integral

p(D∗|D) =
∫
pM(D∗|w̃ = ŵ + Pt)p(t|D)dt,

using samples from p(t|D) or q. Further description of
the samplers used are in Appendix F.

2.3. Potential Issues

We next outline two potential failings of performing
inference within a subspace. The first is related to
the transformation itself, while the second deals with
posterior concentration.

Loss of Measure When mapping into a lower-
dimensional subspace of the true parameter space, we
lose the ability to invert the transform and thus measure
(i.e. volume of the distribution) is lost. For a more intu-
itive explanation, consider the following simple example
in R2. Form a spherical density, p(x, y) = N(0, I2), and
then fix x and y along a slice, that is x− y = c. How-
ever, the resultant distribution has no area (it is a line,
just a slice with no width).
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For this reason, it is better to not consider the subspace
projected model a re-parameterized version of the same
model1, but to consider this an entirely different model
that just happens to share many of the same functional
capabilities as the fully parameterized model.

To use a full rank posterior, Maddox et al. (2019) pro-
posed to use a low rank plus diagonal approximation to
the covariance; however, here, we embrace the abyss of
lost measure. Alternatively, we could seek to minimize
the loss of measure by constructing a minimal distance
mapping (perhaps a Wasserstein distance) as in Patra
and Dunson (2018).

Posterior Concentration Under some assump-
tions, for a fixed dimensionality of parameters, p, in the
limit of infinite data, that is N →∞, the well-known
Bernstein von Mises theorem from asymptotic statis-
tics (e.g. Chapter 10 of Vaart (1998)) states that the
posterior distribution concentrates at the maximum
likelihood estimate with covariance given by the inverse
of the Fisher information. Due to singularity of the
Fisher information for DNNs (and many other machine
learning models, e.g. Watanabe (2007)2), we would not
expect the posterior of fully parameterized DNNs to
concentrate in this manner. Rather we would expect it
to converge to connected point masses and gorges of
global minima, the degenerate extension of the paths
explored in Garipov et al. (2018).

By contrast, in the model proposed in Section 2.1,
there are only K << N parameters as opposed to
p >> N parameters in the full weight space, while the
number of observed data points, N is constant. In this
under-parametrized setting the posterior concentration
becomes an issue, as there is very little diversity in
samples from the posterior.

2.4. Preventing Posterior Concentration with
Fixed Temperature Posteriors

To address the issue of posterior concentration in the
subspace, we propose to introduce temperature for the
likelihood term in the posterior. More precisely, we
utilize the tempered posterior:

pT (t|D) ∝ p(D|t)︸ ︷︷ ︸
likelihood

1/T
p(t)︸︷︷︸
prior

. (3)

When T = 1 the true posterior is recovered, and as
T → ∞, the tempered posterior pT would approach

1We cannot construct a Jacobian matrix and take its
determinant and apply this to correct the density.

2For example, ReLU neural networks are invariant to
scaling, which immediately produces singular Hessian ma-
trices and then singular Fisher matrices.

the prior p(t).

Tempered posteriors are often used in Bayesian infer-
ence algorithms to enhance multi-modal explorations
(e.g., Geyer, 1991; Neal, 1996b). Similarly, Watanabe
(2013) uses a tempered posterior to recover an expected
generalization error of Bayesian models. In the sub-
space inference setting, we would not necessarily want
T = 1 because of the possibility of posterior concentra-
tion when constructing the subspace. As a heuristic,
we propose to set T = N/K, where N is the number
of observed datapoints. For this setting of T the likeli-
hood term in (3) has the same effect on the posterior
as if the number of data points was K, the number of
projected parameters.

3. Experiments
In this section, we evaluate the proposed method empir-
ically using different approximate inference methods for
sampling from the posterior in the subspace (discussed
in Appendix F). We show that approximate Bayesian
inference within a subspace gives good predictive un-
certainties on a toy regression problem, UCI regression
tasks (see Appendix G.1) and large scale image clas-
sification on CIFAR-10 and CIFAR-100. Overall, we
demonstrate the applicability of the proposed method
across a wide range of datasets.

3.1. Toy Regression

In order to gain intuition about the effect of different
subspaces and inference methods we first apply the pro-
posed method to a synthetic 1-dimensional regression
problem. We use a fully-connected architecture with
hidden layers with 200, 50, 50, 50 neurons respectively.
The network takes two inputs: x and x2 and outputs a
single real value y = f(x). While this feature represen-
tation is redundant, we found that it makes it easier
to train the network.

To generate the data we set the weights of the network
with this same architecture randomly, and evaluate
the predictions f(x) for 400 points sampled uniformly
in intervals [−7.2,−4.8], [−1.2, 1.2], [4.8, 7.2]. We add
Gaussian noise to the outputs y = f(x) + ε(x). The
data is visualized with red circles in Figure 3.

We train an SWA-solution (Izmailov et al., 2018),
and construct 3 subspaces – a 10-dimensional ran-
dom subspace, 10-dimensional PCA-subspace and a
2-dimensional curve subspace (see Section C). We then
run variational inference, elliptical slice sampling, and
MCMC (see Appendix F) in each of the subspaces. We
visualize the predictive distributions for each combina-
tion of method and subspace in Figure 10 and samples
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in Figure 11.

In the random and PCA subspaces the shape of the
posterior is relatively similar to Gaussian, and all meth-
ods are able to produce reasonable samples. In the
curve subspace the posterior has a more complex shape,
and the variational methods were unable to produce a
good fit. Among Monte Carlo methods elliptical slice
sampling was able to produce a better fit on the curve
subspace. In the subsequent experiments we use simple
VI and eliptical slice sampling, as these methods scale
better than NUTS and empirically worked well (except
for VI on the curve subspace).

In the bottom row of Figure 3 we visualize the predic-
tive distributions for elliptical slice sampling in each of
the subspaces. In the random subspace the predictive
distribution does not capture a diverse set of models.
In particular, the variance of the predictive distribu-
tions does not increase outside the regions containing
data points. In the PCA subspace on the other hand,
the uncertainty representation is much more rich. The
variance of the predictive distribution is large far from
the data, and small near the data. Finally, the curve
subspace contains the most diverse set of models, and
correspondingly ESS produces qualitatively an even
better predictive distribution in this subspace.

In the top row of Figure 3 we visualize the predictive
distributions for simple variational inference applied in
the original parameter space (as opposed to a subspace),
Gaussian Process with an RBF kernel and SWAG (Mad-
dox et al., 2019) for comparison. SWAG predictive
distribution is similar to the predictive distribution of
ESS in the PCA subspace, as both methods attempt to
approximate the posterior in the subspace containing
the principal components of the SGD trajctory. Vari-
ational inference in the initial parameter space fails
to provide a meaningful uncertainty representation. A
Gaussian process with a RBF kernel, shown in the
top right box of Figure 3, captures good uncertainties,
particularly on interpolation, but is under-confident for
extrapolation.

3.2. Image Classification Datasets

Next, we test the proposed method on state-of-the-art
convolutional networks on CIFAR datasets. Similarly
to 3.1, we first train an SWA solution, and construct a
5-dimensional random and a 5-dimensional PCA sub-
spaces around it. We also construct a 2-dimensional
curve subspace by connecting our SWA solution to
another independently trained SWA solution. We visu-
alize the samples from ESS in each of the subspaces in
Figure 2. For VI we also visualize the 3σ-region of the
closed-form approximate posterior in the random and

PCA subspaces. As we can see, the proposed method
is able to capture the shape of the posterior in each of
the subspaces.

In the PCA subspace we also visualize the SWAG ap-
proximate posterior distribution. SWAG overestimates
the variance along the first principle component of the
SGD trajectory (horizontal axis; see also Figure 5 in
(Maddox et al., 2019)). VI is able to fix this issue and
provides a better fit for the posterior distribution.

We report the accuracy and negative log-likelihood
for each of the subspaces in Table 1. As expected,
the performance in the random subspace is the worst,
inference in PCA subspace leads to strong performance,
and we get the best results in the curve subspace. In
the remaining experiments we use the PCA subspace,
as it leads to strong performance, and is much cheaper
to obtain compared to the curve subspace.

Table 1: Negative log-likelihood and Accuracy
for PreResNet-164 for 10-dimensional random, 10-
dimensional PCA, and 2-dimensional curve subspaces.

Random PCA Curve
NLL 0.6858± 0.0052 0.6652± 0.004 0.6464
Accuracy (%) 80.17± 0.03 80.54± 0.13 81.28

We next apply ESS and simple VI in the PCA subspace
on VGG-16, PreResNet-164 and WideResNet28x10 on
CIFAR-10 and CIFAR-100. We report the results in
Tables 8, 9. Subspace inference is competitive with
SWAG and outperforms most of the other baselines,
including MC-dropout (Gal and Ghahramani, 2016),
temperature scaling (Guo et al., 2017) and KFAC-
Laplace Ritter et al. (2018) across the board.

4. Conclusion
We proposed a new approach to Bayesian inference
with neural networks: to approximate the posterior
distribution over the low-dimensional subspace of the
parameter space. The performance of the proposed
method crucially depends on the diversity of models
within the subspace. In particular, we have demon-
strated that simple linear subspaces based on the SGD
trajectory contain enough variance for strong Bayesian
model averaging, often out-performing full parameter
space inference techniques. In future work we plan
to design scalable methods for constructing rich sub-
spaces for approximate inference. Being able to perform
approximate Bayesian inference in low-dimensional sub-
spaces of DNN parameter space that contain diverse
models is a step towards automatic and interpretable
Bayesian deep learning.
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Figure 2: Posterior log-density surfaces, ESS samples (shown with magenta circles), and VI approximation
posterior distribution (3σ-region shown with blue dashed line) in (a) random, (b) pca and (c) curve subspaces
for PreResNet-164 on CIFAR-100. In panel (b) the dashed black line shows the 3σ-region of the SWAG predictive
distribution.
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Figure 3: Predictive variances across subspaces for toy regression experiment. Remarkably, elliptical slice sampling
with either a PCA or curve subspace captures predictive variances better than full dimensionality variational
inference or SWAG. The predictive variances are also in line with a fitted RBF kernel GP for interpolation, but
less under-confident for extrapolation.
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A. Related Work
Maddox et al. (2019) proposed SWAG, a procedure
for approximate Bayesian inference that stores a par-
tial trajectory of the SGD iterates, forming a low-rank
plus diagonal covariance matrix for DNN’s parameters.
They successfully used a Gaussian posterior approxima-
tion with this covariance for Bayesian model averaging,
producing strong accuracy and uncertainty quantifica-
tion results on CIFAR and ImageNet datasets. The
low-rank part of the SWAG covariance defines a dis-
tribution over a low-dimensional subspace spanned by
the first principal components of the SGD iterates. We
discuss doing inference in this subspace in Section C.2.

Silva and Kalaitzis (2015) consider the related prob-
lem of Bayesian inference using projected methods for
constrained latent variable models, with applications
to probabilistic PCA.

Pradier et al. (2018) proposes to perform variational
inference (VI) in a subspace formed by an auto-encoder
trained on a set of weights of independently trained
models; however, the method requires many models to
train the auto-encoder, limiting scalability. Similarly,
Karaletsos et al. (2018) propose to use a meta-prior in
low dimensional space to perform variational inference
for BNNs.

Patra and Dunson (2018) give several theoretical guar-
antees for Bayesian inference with posterior projections.
For instance, they show that if a constrained poste-
rior density can be induced with a minimal distance
mapping from an unconstrained posterior density, then
there must also exist a prior density on the constrained
parameter space that produces the constrained pos-
terior density. As a result, the proposed method is
to approximately sample from the unconstrained pos-
terior before using a minimal distance mapping into
the constrained parameter space. In many respects,
this provides theoretical motivation to our method if
we view SGD as an approximate sampling algorithm,
i.e. Mandt et al. (2017); the parameters are then con-
strained to lie in a subspace, i.e. the first 10 components
of the SGD trajectory.

Bayesian coresets (Huggins et al., 2016) and Bayesian
compressed regression (Guhaniyogi and Dunson, 2015)
can be viewed as subspace inference techniques, but
in data space rather than in parameter space. That
is, these methods attempt to find a projection of the
data into lower dimensions before performing inference,
whereas the proposed method uses the full data and
attempts to project the model into a lower dimensional
space.

B. Computational Benefits
For a thought experiment on the potential benefits
from performing black-box MCMC (i.e. no structure
exploitation), we know (see Section 4.4 of Neal et al.
(2011)) that the average time (number of likelihood
and gradient evaluations) for an independent sample
to be drawn using Hamiltonian Monte Carlo (HMC)
grows as p5/4. Similarly, the time for an independent
sample Metropolis-Hastings grows as p2.

Reducing the dimensionality of the problem should
enable much faster mixing of chains in the MCMC
setting. Even if the dimensionality of the subspace
grew as K = log p, then the time per independent
sample using HMC would be (log p)5/4, rather than
p5/4, a significant speed-up. Of course, this thought
experiment ignores the time necessary for likelihood
computations and possible issues with the behavior of
the projected likelihood.

C. Subspace Construction
In the last section we showed how to perform inference
in a given subspace S. We now discuss various ways to
construct S. For each of the subspaces, we also discuss
the choice of prior distribution within the subspace.

C.1. Random Subspaces

The simplest approach to construct a subspace, S, is
to choose it randomly. To do so we draw K random
v1, . . . , vK ∼ N (0, Ip) in the weight space. We then
rescale each of the vectors to have norm 1. Random
subspaces are quick to generate and form, but con-
tain no information about the model. Note that this
is exactly the approach Li et al. (2018a) used to at-
tempt to train networks from scratch, requiring much
higher dimensions than are considered in this paper.
To include some network information, we use the SWA
(Izmailov et al., 2018) solution as the shift vector ŵ of
the subspace definition in Eq. (1).

For the prior within a random subspace we use N (0, σ2 ·
IK), which induces a linear combination of chi-square
random variables as a prior in weight space.

C.2. PCA of the SGD trajectory

Intuitively we want the subspace S that we do infer-
ence in to (1) contain a diverse (producing meaningfully
different predictions on test data) set of models and
(2) be cheap to construct. (Garipov et al., 2018; Iz-
mailov et al., 2018) argue that the subspace spanned
by the SGD trajectory satisfies both (1) and (2). They
run SGD starting from a pre-trained solution with a
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high constant learning rate and then ensemble predic-
tions or average the weights of the iterates. Further,
(Maddox et al., 2019) showed that fitting the SGD
iterates with a Gaussian distribution with a low-rank
plus diagonal covariance and then using this Gaussian
for Bayesian model averaging it is possible to obtain
well-calibrated uncertainty estimates in computer vi-
sion problems. These observations motivate inference
in the subspace spanned by the SGD trajectory.

Similarly to Li et al. (2018b); Maddox et al. (2019) we
propose using the first few PCA components of the
SGD trajectory as basis directions vi for the subspace.
Following (Garipov et al., 2018; Izmailov et al., 2018;
Maddox et al., 2019) we run SGD with a high constant
learning rate from a pre-trained solution and capture
snapshots wi of weights at the end of each of T epochs.
We use the SWA solution (the mean of the iterates
wSWA = 1

T

∑
wi) as the shift vector ŵ in (1). We

also store the deviations vi = wSWA − wi for the last
M epochs. The number M here is determined by the
amount of memory we can use, and is set to M =
20 in the experiments. We then run PCA based on
randomized SVD (Halko et al., 2011)3 on the matrix
D̂ comprised of vectors w1, . . . , wM and use the first K
principal components v1, . . . , vK to define the subspace
(1). We assume here that the vectors vi are have norms
proportional to the singular values of the matrix D̂.

This procedure can be summarized in Algorithm 2.

For the prior in the subspace we use N (0, I). This way
the prior distribution attempts to match the distribu-
tion of the SGD iterates, inducing a low rank version
of the SWAG approximation (Maddox et al., 2019).
Note however, that the SWAG distribution is defined
over the full parameter space and uses a low-rank plus
diagonal covariance, while our prior is only defined over
a subspace, and only includes the low-rank covariance
term from SWAG. Further, SWAG uses a slightly dif-
ferent procedure for computing the deviation vectors
vi, see Maddox et al. (2019) for details.

As generally the amount of weight snapshots we can
store in memory is limited, in the PCA subspace we only
use the last M epochs of SGD trajectory. To remedy
this issue and keep the size of the subspace small,
we could use any online PCA technique instead: one
promising approach is frequent directions (Ghashami
et al., 2016).

3Implemented in sklearn.decomposition.TruncatedSVD.

Algorithm 2 Subspace Construction with PCA of SGD
trajectory
w0: pretrained weights; η: learning rate; T : number
of steps; c: moment update frequency; M : maximum
number of columns in deviation matrix; K: rank of
PCA approximation
Train SWAG

w ← w0 {Initialize mean}
for i← 1, 2, ..., T do

wi ← wi−1 − η∇wL(wi−1) {SGD update}
if MOD(i, c) = 0 then

n← i/c {Number of models}
w ← nw + wi

n+ 1 {Update mean}

if NUM COLS(D̂) = M then
REMOVE COL(D̂[:, 1])

APPEND COL(D̂, wi − w) {Store deviation}
U, S, V T ← SV D(D̂) {Truncated SVD}

return wSWA = w, D = SV T

C.3. Curve Subspaces

Garipov et al. (2018) proposed a method to find paths
of near-constant low loss (and consequently high pos-
terior density) in the weight space between given in-
dependently trained networks. These curves lie in
2-dimensional subspaces of the weight space. We vi-
sualize the loss surface in such space on a synthetic
regression problem in Figure 1 (d). We explore doing
inference in the 2-dimensional subspace containing such
a curve, which we refer to as curve subspace. While
using the curve subspace is of limited practicality (con-
structing the space requires training two independent
networks and then fitting the curve), it serves as an
example of a rich subspace containing a large number
of diverse solutions. It also serves as a gauge of the
ability of sampling procedures in the subspace to find
regions of high posterior density when the posterior is
very non-Gaussian.

We use the point µ = (w0 + w1/2 + w1)/3 as the mean
of the normal prior distribution, where w0 and w1 are
the endpoints, and w1/2 is the midpoint of the curve.
We use a covariance σ2I, where σ = ‖µ− w0‖.

D. Automatic Dimensionality Choice
A critical hyper-parameter in the choice of subspace is
the selection of the subspace size, `. In this section, we
describe how to automatically set this dimensionality
when using Frequent Directions for online low rank
covariance approximation. Minka (2001) utilized a
Laplace approximation to the model evidence of a
probabilistic model for PCA. This probabilistic model
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can be written as

p(x|H, v) ∼ N(0, HH ′ + vI),

where

p(e) ∼ N(0, vId) and p(w) ∼ N(0, I`).

Typically, the maximum likelihood estimate for Ĥ can
be written as

Ĥ = UUU(Λ− v̂Ik)1/2R,

where UUU is orthogonal containing the top ` eigenvectors
of the covariance and v̂ is the maximum likelihood
estimate of the variance, given by:

v̂ =
∑p
i=`+1 λi

p− `
= tr(Σ− Σ`)

p− `
(4)

When the data covariance can be stored in memory, Ĥ
is just the rank ` truncated SVD subtracted by v̂I` and
v̂ is just a scaled version of the remaining eigenvalues.

After much linear algebra, a Laplace approximation to
the model evidence for PCA is given by:

p(S|k) ∝ p(UUU)

∏̀
j=1

λj

−N/2

v̂−N(d−`)/2 (5)

(2π)(m+`)/2|Az|−1/2N−`/2, (6)

where

p(UUU) ∝ 2−k
k∏
i=1

Γ((d− i+ 1)/2)π−(d−i+1)/2,

|Az| =
k∏
i=1

d∏
j=i+1

(λ̂−1
j − λ̂

−1
i )(λi − λj)N,

and m = dk− k(k+ 1)/2, the degrees of freedom of UUU.

Our observations on p(UUU) found that it grows expo-
nentially with k, the number of dimensions, which is
potentially problematic when k << d. As a result,
we place a stronger regularization term on the model
evidence, equivalent to placing a prior on the dimen-
sionality, k, explicitly: adding a term of N−k−3/2m into
Eq 6.4 This yields a marginal likelihood that becomes:

p(S|k) ∝ p(UUU)

 k∏
j=1

λj

−N/2

v̂−N(d−k)/2 (7)

(2π)(m+k)/2|Az|−1/2N−1/2(k+m). (8)
4We developed this term by noticing the dependence on

m in Minka’s BIC approximation for PCA (Minka, 2001).
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Figure 4: Log marginal likelihood as a function of di-
mensionality for PreResNet56 on CIFAR100 using both
versions of the Laplace approximation. The compari-
son is similar to Occam’s razor versus Occam’s hill as
described in MacKay (2003).

As this is is a much stronger regularization term, we
need to test its efficacy on simulated and test data. To
do so, we compared to the sklearn.decomposition.PCA5

implementation of Minka’s approximate marginal like-
lihood for PCA repeating the same trials as in Minka
(2001).

E. Eigen-Gaps of the Hessian and
Fisher matrices

We can see similar behavior within the eigenvalues of
both the Hessian and the empirical Fisher informa-
tion matrix, at the end of training in Figure 6. To
compute these eigenvalues, we used a GPU-enabled
Lanczos method in GPyTorch (Gardner et al., 2018)
on a pre-trained PreResNet164. We ran Lanczos for
100 steps, estimating 100 eigenvalues, before shifting
by the maximum eigenvalue, and running for 200 steps,
estimating 200 eigenvalues. Lanczos tends to converge
from the “outside in” so to speak, see Chaper 7 of
(Demmel, 1997) for theoretical guarantees, so that it
ought to be possible to pick up eigen-gaps. As such, we
would expect the training dynamics of SGD to primar-
ily use these much larger eigenvalues, a finding shown
empirically by Li et al. (2018b); Gur-Ari et al. (2019).

F. Approximate Inference Methods
For inference in the subspace we can use a wide range
of approximate Bayesian inference techniques. We
consider the following methods.

5https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


Subspace Inference for Bayesian Deep Learning

Laplace

Laplace + Pen

Method

3.0

3.5

4.0

4.5

5.0

5.5

6.0

R
ec

ov
er

ed
D

im
en

si
on

al
it

y

N = 100, d = 60, True Signal = 5

Figure 5: Dimensionality recovery over 100 trials for
PCA using estimates of Eq. 8 following experimental
setup of Minka (2001). The dimensionality recovered
with the secondary penalty performs at least as well
as the standard marginal likelihood.

Elliptical Slice Sampling As the dimensionality of
the subspace K is not too high, gradient-free methods
such as elliptical slice sampling (ESS) (Murray et al.,
2010) can be used to sample from the projected poste-
rior distribution. Elliptical slice sampling is designed
to have no tuning parameters, and only requires a
Gaussian prior in the subspace.6

For networks that cannot evaluate all of the training
data in memory at a single time, it is easily possible
to sum the loss over mini-batches computing a full log

6We use the Python implementation at https:
//github.com/jobovy/bovy_mcmc/blob/master/bovy_
mcmc/elliptical_slice.py.
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Figure 6: Plot of 300 eigenvalues of the Fisher and
Hessian matrices for a PreResNet164 on CIFAR100.
A clear separation exists between the top 20 or so
eigenvalues and the rest, which are crowded together.

probability, without storing gradients.

NUTS We also test the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014), an HMC method (Neal
et al., 2011), that dynamically tunes the hyper-
parameters (step-size and leapfrog steps) of HMC.7
NUTS has the advantage of being nearly black-box:
only a joint likelihood and its gradients need to be de-
fined. However, full gradient calls are required, which
can be tricky to cache and a constant factor slower
than a full likelihood calculation.

Simple Variational Inference We experiment
with variational inference in the subspace using the
fully-factoried Gaussian posterior approximation fam-
ily. Fully-factorized Gaussians are among the simplest
and the most common variational families. Unlike ESS
or NUTS, VI can be trained with mini-batches, but it
is limited in the distributions it can represent.

RealNVP The simple fully-factorized Gaussian fam-
ily of distributions can be too constrained, so we also
experiment with normalizing flows, which parametrize
the variational distribution family with invertible neu-
ral networks. We adapt the RealNVP method of (Dinh
et al., 2017), due to its flexibility and success on image
reconstruction and generation tasks.

G. Experiments
G.1. UCI Regression

We next compare subspace inference methods on re-
gression tasks to a variety of methods for approxi-
mate Bayesian inference in BNNs. We use the pre-
processing and standardization in https://github.
com/hughsalimbeni/bayesian_benchmarks.

To ensure fair comparison to other methods, we do
not assess the Bayesian model averaged estimate of
the probability, which would be 1

N

∑N
i=1 p(y|x, θi) =

p(yi|xi, µ(xi; θi), σ2(xi; θi)), where θi ∼ q. Instead,
we compute a sample statistics based estimator
and moment match a fitted Gaussian,8 comput-
ing p(y|µ̂, σ̂2), where µ̂(xi) = 1

N

∑N
i=1 µ(xi; θi) and

σ̂2(xi) = 1
N

∑N
i=1(σ2(xi; θ) + µ(xi; θ)2)− µ̂(xi)2.

In all experiments, we replicated over 10 trials reserving
90% of the data for training and the other 10% for
testing, following the set-up of Bui et al. (2016) and
Wilson et al. (2016).

7Implemented in Pyro (Bingham et al., 2018).
8This is the same estimator used in Wu et al. (2019),

and is closer to how a BNN would be used in practice.

https://github.com/jobovy/bovy_mcmc/blob/master/bovy_mcmc/elliptical_slice.py
https://github.com/jobovy/bovy_mcmc/blob/master/bovy_mcmc/elliptical_slice.py
https://github.com/jobovy/bovy_mcmc/blob/master/bovy_mcmc/elliptical_slice.py
https://github.com/hughsalimbeni/bayesian_benchmarks
https://github.com/hughsalimbeni/bayesian_benchmarks
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Figure 7: Test log-likelihoods for proposed methods on six UCI regression datasets. Inference with a subspace,
particularly using PCA and inferring the posterior with elliptical slice sampling is associated with higher test
log-likelihoods, outperforming SGD and SWAG.

G.1.1. Large Scale UCI Regression Datasets

Here, on all models except skillcraft 9, like in Wilson
et al. (2016), we use a feed forward network with five
hidden layers: [1000, 1000, 500, 50, 2, 2], ReLU activa-
tions and heteroscedastic noise variance. Noting that
Gaussian processes typically include a noise variance
term into the kernel matrix, we additionally learn a
global noise variance, so that the variance of a given
point is given by: σ2(x) = s2 + σ2

θ(x), where σ2
θ(x) is

the variance output from the final layer of the network.
We use softplus parameterizations to ensure positive-
ness of the variance, initializing the global variance at
s2 = 1 (the total variance in the dataset).

On large-scale UCI regression datasets, we compare
to two types of approximate Gaussian processes: or-
thogonally decoupled variational Gaussian Processes
(OrthVGP, Salimbeni et al. (2018)) and Fastfood ap-
proximate kernels (FF, Yang et al. (2015), results from
Wilson et al. (2016))as well as deep kernel learning with
a spectral mixture kernel (DKL, Wilson et al. (2016)).

For SGD trained networks and subspace models, we
additionally report the predictive calibration of the
methods. The test log-likelihoods and RMSEs are
shown in Table 6 and 5, while the coverage of the 95%
predictive intervals are shown in Table 7. We summa-
rize the test log-likelihoods shown in Figure 7, where
it is possible to see that even when predicting with
statistics, the test log-likelihood typically decreases in
comparison to the SGD model. Finally, we plot the
coverage of the 95% predictive intervals in Figure 8.

For the large-scale UCI regression tasks, we manually
tuned hyper-parameters (batch size, learning rate, and
epochs) to match the SGD DNN results in Table 1 of
Wilson et al. (2016). Here, there is one significant dif-
ference which is that our networks use heteroscedastic

9For skillcraft, we use a smaller architecture [1000, 500,
50, 2, 2].

uncertainty, while those networks use homoscedastic
uncertainty (a fixed variance). However, we found that
the results were similar in terms of RMSE, but fit-
ting networks with heteroscedastic uncertainty allows
for a principled comparison of test log-likelihood and
calibration.

We additionally tried fitting models without a global
variance parameter, but found that they were typically
more over-confident than models with a global variance
parameter.

Following Wilson et al. (2016), for the UCI regression
tasks with more than 6,000 data points, we used net-
works with the following structure: [1000, 1000, 500,
50, 2], while for skillcraft, we used a network with:
[1000, 500, 50, 2]. We used a learning rate of 1e− 3,
doubling the learning rate of bias parameters, a batch
size of 400, momentum of 0.9, and weight decay of
4e− 3, training for 200 epochs. For skillcraft and pol,
we only trained for 100 epochs, while for skillcraft we
used a learning rate of 5e− 4 and for keggD, we used a
learning rate of 1e−4. We additionally used a subspace
prior of 1.0.

In Table 5, we report RMSE results compared to two
types of approximate Gaussian processes (Salimbeni
et al., 2018; Yang et al., 2015); note that the results
for OrthVGP are reproduced from Appendix Table F
of Salimbeni et al. (2018) but scaled by the standard
deviation of the respective dataset.

We repeated each model over 10 random train/test
splits; each test set consisted of 10% of the full dataset.
All data was pre-processed to have mean zero and
variance one.

G.1.2. Small UCI Regression Datasets

In this set of experiments, we compare to the state-of-
the-art approximate BNN inference methods including
deterministic variational inference (DVI) (Wu et al.,
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Figure 8: Coverage of 95% prediction interval for models trained on six UCI datasets. In nearly all cases, using a
subspace inference method is associated with closer to 95% coverage than for models trained using only SGD.

Table 2: Unnormalized test log-likelihoods on small UCI datasets for proposed methods, as well as direct
comparisons to the numbers reported in deterministic variational inference (DVI, Wu et al. (2019)) and Deep
Gaussian Processes with expectation propagation (DGP1-50, Bui et al. (2016)), and variational inference (VI)
with the re-parameterization trick (Kingma et al., 2015).

dataset N D SGD PCA+ESS PCA+VI PCA+SWAG DVI DGP1-50 VI
boston 506 13 -2.712 ± 0.258 -2.742 ± 0.275 -3.083 ± 0.460 -2.755 ± 0.285 -2.41 ± 0.02 -2.33 ± 0.06 -2.43 ±0.03
concrete 1030 8 -3.207 ± 0.183 -3.162 ± 0.165 -3.241 ± 0.203 -3.186 ± 0.176 -3.06 ± 0.01 -3.13 ± 0.03 -3.04 ±0.02
energy 768 8 -1.736 ± 1.613 -1.563 ± 1.243 -1.715 ± 1.588 -1.679 ± 1.488 -1.01 ± 0.06 -1.32 ± 0.03 -2.38 ±0.02
naval 11934 16 6.567 ± 0.185 6.541 ± 0.095 6.708 ± 0.105 6.708 ± 0.105 6.29 ± 0.04 3.60 ± 0.33 5.87 ±0.29
yacht 308 6 -0.418 ± 0.426 -0.225 ± 0.400 -0.396 ± 0.419 -0.404 ± 0.418 -0.47 ± 0.03 -1.39 ± 0.14 -1.68 ±0.04

Table 3: RMSE on small UCI datasets. Subspace inference typically performs comparably to SGD and SWAG.

SGD PCA+ESS PCA+VI SWAG
boston 3.856 ± 1.027 3.779 ± 1.034 3.665 ± 1.028 3.742 ± 1.036
concrete 5.279 ± 0.400 5.263 ± 0.396 5.232 ± 0.387 5.250 ± 0.389
energy 1.602 ± 0.275 1.598 ± 0.274 1.587 ± 0.272 1.594 ± 0.273
naval 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
yacht 0.973 ± 0.374 0.972 ± 0.375 0.973 ± 0.375 0.973 ± 0.375

2019), single-layer deep GPs (DGP) with expectation
propagation (Bui et al., 2016), and re-parameterization
VI (Kingma and Welling, 2013). In these experiments,
we follow the set-up of (Wu et al., 2019) and use a single
hidden layer with 50 units and also model the variance
with heteroscedasticity. The test log-likelihoods, RM-
SEs and test calibration results are presented in Tables
2, 3 and 4.

In Tables 2 and 3, we can see that the subspace methods
outperform SGD by a small margin on both RMSE and
test log likelihood and are very competitive with DVI
and deep GPs. In Table 4, we see that the subspace
methods are typically much better calibrated than their
SGD and SWAG counterparts.

For the small UCI regression datasets, we use the ar-
chitecture from Wu et al. (2019) with one hidden layer
with 50 units. We use Adam optimizer, manually tune
learning rate and weight decay, and use batch size of
N/10 where N is the dataset size. All models predict

heteroscedastic uncertainty (i.e. output a variance). In
Table 2, we compare subspace inference methods to
deterministic VI (DVI, Wu et al. (2019)) and deep Gaus-
sian processes with expectation propagation (DGP1-50
Bui et al. (2016)). ESS and VI in the PCA subspace
outperform DVI on two out of five datasets.

G.2. Image Classification Results

For the experiments on CIFAR datasets we are fol-
lowing the framework of (Maddox et al., 2019). We
report the negative log-likelihood and accuracy for our
method and baselines in Tables 8 and 9.

G.3. Automatic Choice of Dimensionality

In Figure 9, we show the eigenvalues of the trajec-
tory computed using randomized SVD as in Section
C.2, where it is possible to see that the eigenvalues
of the trajectory decay extremely quickly (from an
initial eigenvalue above 100). Heuristically, this sug-
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Table 4: Calibration on small-scale UCI datasets. Bolded numbers are those closest to 95% predicted coverage).

N D SGD PCA+ESS PCA+VI SWAG
boston 506 13 0.882 ± 0.042 0.863 ± 0.049 0.802 ± 0.042 0.860 ± 0.045
concrete 1030 8 0.858 ± 0.043 0.859 ± 0.039 0.849 ± 0.042 0.857 ± 0.040
energy 768 8 0.947 ± 0.026 0.953 ± 0.027 0.949 ± 0.027 0.951 ± 0.027
naval 11934 16 0.948 ± 0.051 0.978 ± 0.006 0.967 ± 0.008 0.967 ± 0.008
yacht 308 6 0.895 ± 0.069 0.948 ± 0.040 0.898 ± 0.067 0.898 ± 0.067

Table 5: RMSE comparison amongst methods on larger UCI regression tasks, as well as direct comparisons
to the numbers reported in deep kernel learning with a spectral mixture kernel (DKL, (Wilson et al., 2016)),
orthogonally decoupled variational GPs (OrthVGP, Salimbeni et al. (2018)), and FastFood kernel GPs (FF, Yang
et al. (2015) from Wilson et al. (2016)). Subspace based inference typically outperforms SGD and approximate
GPs and is competitive with DKL.

w
dataset N D SGD PCA+ESS PCA+VI SWAG DKL OrthVGP FF
elevators 16599 18 0.092± 0.003 0.090± 0.002 0.090± 0.002 0.090± 0.002 0.084± 0.02 0.0952 0.089± 0.002
keggD 48827 20 0.121± 0.003 0.122± 0.003 0.123± 0.003 0.134± 0.005 0.10± 0.01 0.1198 0.12± 0.00
keggU 63608 27 0.125± 0.024 0.125± 0.023 0.125± 0.023 0.125± 0.023 0.11± 0.00 0.1172 0.12± 0.00
protein 45730 9 0.443± 0.009 0.440± 0.007 0.444± 0.009 0.447± 0.011 0.46± 0.01 0.46071 0.47± 0.01
skillcraft 3338 19 0.284± 0.015 0.286± 0.016 0.276± 0.015 0.322± 0.015 0.25± 0.00 0.25± 0.02
pol 15000 26 3.018± 0.310 2.816± 0.196 2.705± 0.181 3.289± 0.408 3.11± 0.07 6.61749 4.30± 0.2

Table 6: Normalized test log-likelihoods on larger UCI datasets. Subspace methods outperform an approximate
GP approach (OrthVGP) and SGD, typically often out-performing SWAG.

dataset N D SGD PCA+ESS PCA+VI SWAG OrthVGP
elevators 16599 18 −0.538± 0.108 −0.406± 0.041 −0.442± 0.038 -0.395± 0.030 -0.4479
keggD 48827 20 0.985± 0.022 0.981± 0.017 0.984± 0.018 0.734± 0.013 1.0224
keggU 63608 27 0.700± 0.046 0.707± 0.032 0.702± 0.043 0.707± 0.038 0.7007
protein 45730 9 −0.861± 0.027 -0.834± 0.021 −0.849± 0.025 −0.861± 0.031 -0.9138
skillcraft 3338 19 −1.147± 0.035 −1.159± 0.034 -1.109± 0.036 −1.276± 0.031
pol 15000 26 1.290± 0.1834 1.577± 0.098 1.633± 0.070 0.965± 0.259 0.1586
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Table 7: Calibration on large-scale UCI datasets. Bolded numbers are those closest to 95% predicted coverage).

dataset N D SGD PCA+ESS PCA+VI SWAG
elevators 16599 18 0.857± 0.031 0.893± 0.017 0.878± 0.010 0.904± 0.012
keggD 48827 20 0.965± 0.002 0.966± 0.003 0.965± 0.003 0.982± 0.003
keggU 63608 27 0.962± 0.012 0.965± 0.009 0.962± 0.012 0.965± 0.009
protein 45730 9 0.917± 0.007 0.928± 0.007 0.926± 0.007 0.924± 0.007
skillcraft 3338 19 0.979± 0.010 0.980± 0.009 0.976± 0.010 0.981± 0.008
pol 15000 26 0.941± 0.011) 0.959± 0.013 0.954± 0.007 0.992± 0.004

Table 8: NLL for various versions of subspace inference, SWAG, temperature scaling, and dropout.

Dataset Model PCA + VI PCA + ESS SWA SWAG KFAC-Laplace SWA-Dropout SWA-Temp
CIFAR-10 VGG-16 0.2052± 0.0029 0.2068± 0.0029 0.2621± 0.0104 0.2016± 0.0031 0.2252± 0.0032 0.2328± 0.0049 0.2481± 0.0245
CIFAR-10 PreResNet-164 0.1247± 0.0025 0.1252± 0.0018 0.1450± 0.0042 0.1232± 0.0022 0.1471± 0.0012 0.1270± 0.0000 0.1347± 0.0038
CIFAR-10 WideResNet28x10 0.1081± 0.0003 0.1090± 0.0038 0.1075± 0.0004 0.1122± 0.0009 0.1210± 0.0020 0.1094± 0.0021 0.1064± 0.0004
CIFAR-100 VGG-16 0.9904± 0.0218 1.015± 0.0259 1.2780± 0.0051 0.9480± 0.0038 1.1915± 0.0199 1.1872± 0.0524 1.0386± 0.0126
CIFAR-100 PreResNet-164 0.6640± 0.0025 0.6858± 0.0052 0.7370± 0.0265 0.7081± 0.0162 0.7881± 0.0025 0.6770± 0.0191
CIFAR-100 WideResNet28x10 0.6052± 0.0090 0.6096± 0.0072 0.6684± 0.0034 0.6078± 0.0006 0.7692± 0.0092 0.6500± 0.0049 0.6134± 0.0023

gests that the interesting directions in the trajectory
are well-described in only a very few dimensions. To
automatically choose the dimensionality, we attempted
to apply the Laplace approximation to the probabilis-
tic view of SVD as in Minka (2001) - see Appendix
6 for the equation; however, this failed to reduce the
dimensionality. This failure is explained the marginal
likelihood was estimated using biased estimates of the
trajectory eigenvalues10 and the exponential growth
of the prior on the eigenvector matrix with respect to
dimensionality.

However, a simple modification to impose a prior on the
rank, K, gave maximized likelihoods in 10 dimensions
on a PreResNet 56 on CIFAR100; the likelihood as
a function of rank is shown in Figure 4. Replicating
the prior experiments, we trained for 325 epochs but
stored 140 copies of the model in the covariance matrix.
This modification is given in Appendix Eq. 8, while its
reasonableness on a toy problem is given in Figure 5.

H. Additional Toy Regression Plots
In Figure 10 we present the predictive disribution plots
for all the inference methods and subspaces. We ad-
ditionally visualize the samples over poterior density
surfaces for each of the methods in Figure 11.

10The bounds on reconstruction error for randomized
rank-k SVD are in terms of the k + 1-th singular value (see
Theorem 1.1 of Halko et al. (2011)), suggesting that the k
singular values estimated might be biased, and both the
variance estimate and resulting eigenvalues will be biased.
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Figure 9: Eigenvalues of trajectory covariance esti-
mated from randomized SVD across three architectures
on CIFAR-10 and CIFAR-100. The trajectory decays
extremely quickly, decaying towards 0 around 10-20
setps.
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Figure 10: Toy regression predictive distributions across inference methods and subspaces.
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Table 9: Accuracy for various versions of subspace inference, SWAG, temperature scaling, and dropout.

Dataset Model PCA + VI PCA + ESS SWA SWAG KFAC-Laplace SWA-Dropout SWA-Temp
CIFAR-10 VGG-16 93.61± 0.02 93.66± 0.08 93.61± 0.11 93.60± 0.10 92.65± 0.20 93.23± 0.36 93.61± 0.11
CIFAR-10 PreResNet-164 95.96± 0.13 95.98± 0.09 96.09± 0.08 96.03± 0.02 95.49± 0.06 96.18± 0.00 96.09± 0.08
CIFAR-10 WideResNet28x10 96.32± 0.03 96.38± 0.05 96.46± 0.04 96.32± 0.08 96.17± 0.00 96.39± 0.09 96.46± 0.04
CIFAR-100 VGG-16 74.83± 0.08 74.62± 0.37 74.30± 0.22 74.77± 0.09 72.38± 0.23 72.50± 0.54 74.30± 0.22
CIFAR-100 PreResNet-164 80.52± 0.18 80.54± 0.13 80.19± 0.52 79.90± 0.50 78.51± 0.05 80.19± 0.52
CIFAR-100 WideResNet28x10 82.63± 0.26 82.49± 0.23 82.40± 0.16 82.23± 0.19 80.94± 0.41 82.30± 0.19 82.40± 0.16

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Toy Regression
Posterior log-density

VI, Random Subspace

−0.0029

−0.012

−0.015

−0.019

−0.025

−0.032

−0.042

−0.055

< −0.055

−0.04 −0.02 0.00 0.02 0.04

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Toy Regression
Posterior log-density
VI, PCA Subspace

−0.0028

−0.015

−0.025

−0.043

−0.076

−0.14

−0.24

−0.44

< −0.44

−5 0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Toy Regression
Posterior log-density
VI, Curve Subspace

−0.003

−0.02

−0.047

−0.12

−0.3

−0.76

−1.9

−5

< −5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Toy Regression
Posterior log-density

RealNVP, Random Subspace

−0.0029

−0.012

−0.015

−0.019

−0.025

−0.032

−0.042

−0.055

< −0.055

−0.04 −0.02 0.00 0.02 0.04

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Toy Regression
Posterior log-density

RealNVP, PCA Subspace

−0.0028

−0.015

−0.025

−0.043

−0.076

−0.14

−0.24

−0.44

< −0.44

−5 0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Toy Regression
Posterior log-density

RealNVP, Curve Subspace

−0.003

−0.02

−0.047

−0.12

−0.3

−0.76

−1.9

−5

< −5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Toy Regression
Posterior log-density

NUTS, Random Subspace

−0.0029

−0.012

−0.015

−0.019

−0.025

−0.032

−0.042

−0.055

< −0.055

−0.04 −0.02 0.00 0.02 0.04

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Toy Regression
Posterior log-density

NUTS, PCA Subspace

−0.0028

−0.015

−0.025

−0.043

−0.076

−0.14

−0.24

−0.44

< −0.44

−5 0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Toy Regression
Posterior log-density

NUTS, Curve Subspace

−0.003

−0.02

−0.047

−0.12

−0.3

−0.76

−1.9

−5

< −5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Toy Regression
Posterior log-density

ESS, Random Subspace

−0.0029

−0.012

−0.015

−0.019

−0.025

−0.032

−0.042

−0.055

< −0.055

−0.04 −0.02 0.00 0.02 0.04

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Toy Regression
Posterior log-density
ESS, PCA Subspace

−0.0028

−0.015

−0.025

−0.043

−0.076

−0.14

−0.24

−0.44

< −0.44

−5 0 5 10 15 20 25 30

−3

−2

−1

0

1

2

Toy Regression
Posterior log-density
ESS, Curve Subspace

−0.003

−0.02

−0.047

−0.12

−0.3

−0.76

−1.9

−5

< −5

Figure 11: Toy regression posterior density surfaces across different subspaces and sampling methods.
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