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Abstract
In this work, we explore principled methods for
extrapolation detection. We define extrapolation
as occurring when a model’s conclusion at a test
point is underdetermined by the training data. Our
metrics for detecting extrapolation are based on
influence functions, inspired by the intuition that
a point requires extrapolation if its inclusion in
the training set would significantly change the
model’s learned parameters. We provide interpre-
tations of our methods in terms of the eigendecom-
position of the Hessian. We present experimental
evidence that our method is capable of identifying
extrapolation to out-of-distribution points.

1. Introduction
As machine learning is deployed in increasingly vital areas,
there is increasing demand for metrics that draw attention
to potentially unreliable predictions. One important source
of unreliability is extrapolation. Extrapolation is often used
to refer to making predictions made outside of the support
of training data. A number of machine learning reliability
methods are designed to detect extrapolation in this sense,
most notably those aimed at the out of distribution (OOD)
detection problem.

While well-defined in theory, the support of the training data
can be tricky to define in practice and is, at best, estimable
at rates that scale poorly with the dimension of input data.
To build metrics that practically measure extrapolation, we
focus on a slightly narrower form of the problem. In par-
ticular, we say a trained model is extrapolating on a test
input if the prediction at that test input is underdetermined
by the training data and model architecture: that is, there
exist multiple prediction functions that yield different pre-
dictions for the input point, but fit the training/validation
data similarly. If a model includes no inductive biases, this
notion of extrapolation reduces to the broader notion above.
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However, when the architecture of the model is restricted,
measurements of this narrower notion of extrapolation are
practical to estimate, even with high-dimensional inputs,
and can indicate “blind spots” in a model’s training that
may not be apparent from examining the model’s internal
representations alone.

In this preliminary work, we present some methods for mea-
suring the extent to which a trained model is extrapolating
for a particular test input. To do this, we consider various
summaries of how the model’s learned parameters would
change if the test point were included in our training set.
We use influence functions to approximate this parameter
change. We discuss further intuitions around our method,
and how it can be interpreted in terms of eigenvectors of the
model’s Hessian and sensitivity in parameter space. Exper-
imentally, we show that our method can perform well on
OOD tasks, and explore how it reacts differently to models
with different inductive biases.

2. Related Work
Some recent works explore the relationship between test
points, the learned model, and the training set. Schulam
& Saria (2019) use influence functions to assess reliability
as measured purely with respect to bootstrap samples of
the training set, whereas ours considers points outside of
the training distribution. MacKay (1992) presents a related
information-theoretic criterion for how much information
a test point would add to a model. Several papers examine
reliability criteria that are based on distance in some space:
within/between-group distances (Jiang et al., 2018), a pre-
specified kernel in a learned embedding space (Card et al.,
2019), or the activation space of a neural network (Papernot
& McDaniel, 2018). Our method differs from these in that
we explicitly consider which dimensions of the input the
model considers (ir)relevant, and do not rely on distance in
Euclidean or embedding space as a metric. Additionally,
a range of methods exist for more binary (in or out) OOD
detection (Choi & Jang, 2018; Liang et al., 2017; Gal &
Ghahramani, 2015; Schölkopf et al., 2001) and exploring
calibration (Naeini et al., 2015; Guo et al., 2017).
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3. Preliminaries
3.1. Setup

Let z = (x, y) be an example input-output pair, where x
is a vector of features and y is a label. We define a model
in terms of a loss function L with parameters θ as a sum
over training examples (zi)

n
i=1, i.e., L(θ) =

∑N
i `(zi, θ),

where ` is an example-wise loss (e.g., 0-1 loss or cross
entropy). Let θ? be the parameters of the trained model,
obtained by, e.g., minimizing the loss over this dataset, i.e.,
θ? = argminθL(θ).

We consider the problem of auditing a trained model in
the anomaly detection setting, where unlabeled test points
x′ arrive one at a time in a stream, and we wish to assess
extrapolation on a point-by-point basis. We assume that we
can compute gradients∇θ`(z, θ?) for arbitrary examples z.

3.2. Influence Functions

Influence functions are a central tool in our method (Cook
& Weisberg, 1982; Koh & Liang, 2017). Originally in-
troduced in robust statistics, influence functions approxi-
mate how perturbations to training data translate to changes
in a trained model’s parameters. Specifically, given a
model with trained parameters θ?, and an example z′, in-
fluence functions approximate the change in θ? induced
by upweighting z′ by some small ε > 0 in the loss func-
tion L. This upweighting would yield new parameters
θ?ε,z′ = argminθ [L(θ) + ε`(z′, θ)]. Cook & Weisberg
(1982) define this influence as

I(z′) =
dθ?ε,z′

dε

∣∣∣
ε=0

= −H−1θ? ∇θ?`(z
′, θ?). (1)

where H is the Hessian of the model. This method es-
sentially takes a Newton step in a quadratic bowl formed
around θ?. In many ML applications, the loss function is
non-convex, even locally around the trained parameters θ?

(Sagun et al., 2017), and so we make use of a regularized
HessianHθ?,λ = Hθ?+λI , where λ is chosen so thatHθ?,λ

is positive definite, as suggested by Koh & Liang (2017).
We denote the influence computed with this regularized Hes-
sian as Iλ(z′). We discuss methods for computing these
quantities using only gradient information in Section 4.3.

4. Method
In this section, we describe a set of methods for measuring
extrapolation on a test input. Our method is built off of an
intuition about a duality between extrapolation at predic-
tion time and information at training time. Specifically, if
the prediction at a test input x′ is underdetermined by the
training data, then a training example at that input would
be highly informative, and thus have high influence on the

model’s parameters and predictions. Each heuristic that we
propose here measures some aspect of this influence.

4.1. Measuring influence of test points

Here, we provide a general specification for our extrapola-
tion heuristics. Our heuristics operate at prediction time on
unlabeled test inputs x′, but estimate the potential influence
of labeled training instances with input values x′. To do
this, for each test input x′, we construct a set of candidate
training examples {(x′, y′)}y′∈Y , where Y is a set of candi-
date labels. We then aggregate our metrics over the full set
Y , where the aggregation can be a function like min,max,
mean or variance. Currently, the set of candidate labels and
the aggregation function are left as tuning parameters. To
make decisions using the aggregated influence value, we
compare it to the distribution of the same aggregated values
calculated on a held-out validation set.

We define several extrapolation metrics using this general
specification. Our first metric simply measures the squared
norm of the influence on model parameters.

Pλ(x′) = aggy′∈Y‖Iλ((x′, y′))‖22. (2)

Our second metric measures the influence that an example
at the test input x′ would have on its own prediction, in-
spired by notions of leverage in the linear regression setting
(Chatterjee et al., 1986). Following the formulation in Koh
& Liang (2017),

Aλ(x′) = aggy′∈Y∇θ`((x′, y′), θ?)>Iλ((x′, y′)). (3)

Our final metric is based on the recognition that the influence
Iλ((x

′, y′)) is sensitive to the choice of λ, but that this
sensitivity is indicative of indeterminacy in the prediction
at x′. Thus, we directly measure this sensitivity at z′ by
evaluating the squared norm of the derivative with respect
to λ:

Dλ(x′) = aggy′∈Y

∥∥∥∥dIλ((x′, y′))dλ

∥∥∥∥2
2

, (4)

where

dIλ(z)
dλ

= −
dH−1θ?,λ
dλ

∇θ`(z, θ?)

(?)
= −H−1θ?,λ

dHθ?,λ

dλ
H−1θ?,λ∇θ`(z, θ

?)

= −H−2θ?,λ∇θ`(z, θ
?),

and where (?) uses the identity for a derivative of a matrix
inverse (Petersen et al., 2008). We note that, using this same
identity, dAλ(x)dλ = Pλ(x).

4.2. Interpretation of Metrics

Although each of these metrics has a slightly different mo-
tivation, they are each aggregations of a quadratic form
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involving the gradient of the loss at the candidate test point
and powers of the inverse Hessian:

∇θ`(z, θ?)>H−kθ?,λ∇θ`(z, θ
?). (5)

In particular, setting k = 1 yields Aλ; setting k = 2 yields
Pλ; and setting k = 4 yields Dλ.

Casting our metrics in this way allows an interpretation in
terms of the eigendecomposition of the regularized Hes-
sian, similar to the interpretation provided in Schulam &
Saria (2019). The Hessian Hθ?,λ, which we assume has all
eigenvalues λ 6= 0, can be decomposed into UDUT , where
U contains the eigenvectors of Hθ?,λ, (ξ(1), · · · , ξ(p)), and
D is a diagonal matrix with eigenvalues, (d(1), · · · , d(p)),
on the diagonal. Using this decomposition, we rewrite the
quadratic form in (5) as

p∑
j=1

d−k(j) (∇θ`(z, θ
?)>ξ(j))

2.

For a candidate example z′, this quadratic form has large
norm if the candidate gradient ∇θ`(z′, θ?) is aligned with
eigenvectors of Hθ?,λ with small eigenvalues, correspond-
ing to directions in the parameter space θ in which the loss
L(θ) has low curvature around the chosen parameters θ?.
The loss evaluated on the training data provides little infor-
mation to discriminate between parameter values in these
directions. We expect that test examples whose gradients
align with these dimensions to have predictions that are
underdetermined by the training data.

4.3. Computational Issues

Computing influence functions for complex models is not
trivial. The first challenge is inverting the Hessian. For
large models with thousands or millions of parameters, even
instantiating the Hessian is expensive, let alone inverting it.
To get around this, we use tricks for calculating Hessian-
vector products implicitly (HVPs). These methods allow
one to calculate the product Hv for any vector v – where H
is the implicit Hessian of a function f , for which we only
have oracle access to f(u) and∇f(u) (Pearlmutter, 1994).

Using these HVP methods, Koh & Liang (2017) outline
two ways to calculate the product of the inverse Hessian
with a vector (iHVP). The first involves transforming the
iHVP problem into an optimization problem: H−1v =
argminu

1
2u

THu− uT v, assuming that H is positive defi-
nite. Then this optimization problem is solved using con-
jugate gradient (CG) descent. The second method involves
using the second-order LiSSA optimization method from
Agarwal et al. (2017) to approximate the Taylor expansion
of H−1 — this method is intended to be more robust to
stochastic (minibatch) estimates of H .

5. Experiments
In this section, we show experimental evidence that our
methods can detect extrapolation in some simple models.
First, we present experiments with toy data to gain intuition.
Then, we apply our techniques to OOD detection for con-
volutional neural networks (CNNs) trained on MNIST. We
note that while these two tasks do not quite test the subtle
extrapolation detection we are ultimately interested in, stan-
dard OOD detection work usually examines more extreme
distribution shift than the tasks we present (e.g. train on
CIFAR, test on SUN — see (Hendrycks & Gimpel, 2016;
Liang et al., 2017) for examples). Therefore, we think these
tasks are useful for our purposes; the OOD data “looks like”
the training data, but still requires extrapolation.

5.1. Toy Data

We generate 1-D data points y = βx2 + N (0, 1), where
N represents a sample from a Gaussian distribution and
β ∈ R. Our training set consists of x drawn uniformly
from [−0.5, 0.5] and [2.5, 3.5]. However, at test time, we
will consider x ∈ [−3, 6]. We expect stronger evidence of
extrapolation for extreme values of x > 3.5 or x < −0.5,
some mild extrapolation between the modes of the training
distribution for x ∈ [0.5, 2.5], and no extrapolation when
the test input overlaps with the training distribution.

We generate 200 training points and train three small neural
networks (2 hidden layers of 5 units each) with different
activation functions on this data. We show results here
only for the ReLU network (Figure 2); see Appendix A for
results from Tanh and Softplus networks, demonstrating
these models’ varying inductive biases. Next, we calcu-
late Aλ(x),Pλ(x) and Dλ(x) for a number of test inputs
x ∈ [−6, 9], with y varying across the output range of the
training data. This creates a grid of test points which range
from high to zero probability under the training distribution.

In Figure 1, we show A,P,D using max aggregation for
the ReLU network over various values of x, λ. Note that we
are able to calculate and invert the Hessian exactly for these
models, due to their smaller number of parameters (∼ 50).
In general, we observe the desired W-shaped behaviour for
all three metrics — the extreme-valued inputs have higher
scores, the in distribution have lowest, and the inputs be-
tween the training modes have slightly higher values. We
note some interesting phenomena. Firstly, the metric values
general increase as λ decreases. This is as expected — since
the value of λ is effectively the value of the smallest (posi-
tive) eigenvalue of H , we would expect the inverse of H to
grow proportional to 1

λ . Interestingly, the desired W-shape
holds for values of λ which are smaller in magnitude than
the smallest eigenvalue of H , meaning that the influence
function is meaningful even when H + λI is not positive
definite. Secondly, the results for the higher powers of H
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Figure 1. From left to right: Aλ(x),Pλ(x),Dλ(x) for a range of λ with a small two-layer neural network with ReLU hidden units.
In-distribution x are at 0 and 3. Aggregation function is max.
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(P and D) are more consistent in shape across values of λ.
We note that when using implicit Hessian techniques, these
small values of λ are not feasible since we need the Hessian
to be positive definite. We noted qualitatively similar results
in the tanh and softplus networks — see Appendix B.

5.2. MNIST

To explore our method’s ability to scale up to larger datasets
and models, we present experiments using a CNN on the
handwritten digit dataset MNIST. The CNN we trained
has two convolutional layers and one fully connected layer,
containing ∼ 8000 parameters. We separated the 5s as an
OOD class and trained on the other 9 digits. Then we test
by calculating each metric for a batch of validation data as a
calibration set, as well as batches of held-out in-distribution
and OOD data. For each held-out point, we can calculate a
p-value (Shafer & Vovk, 2008): the percentage of validation
points which have more extreme values of that metric. We
then report the AUC of this p-value for OOD detection.

We used CG descent (see Sec. 4.3) to calculate the IHVP.
We used 1000 points from each of the validation, test, and
OOD sets. We used a weighted average for the aggregation
function — the value of each Iλ((x, y′)) was weighted by
the predicted probability of the label at that point by the
network (see Appendix C). This can be framed as an ap-

Metric Noise = 0
Aλ(x) 0.920
Pλ(x) 0.919
Dλ(x) 0.920

Max Prediction 0.916
NN-Activations 0.960

NN-Pixels 0.819
Ens: Activs+Preds 0.968
Ens: Activs+Pλ(x) 0.970

Table 1. MNIST OOD Experiment for λ = 3. AUC for OOD
prediction shown. Aggregation function is weighted average. Max
Prediction baseline uses the largest predicted probability. NN-
Activations uses 1-NN in concatenated activation space. NN-Pixels
uses 1-NN in pixel space. “Ens” denotes ensembling of methods
by p-value averaging. Best methods within 95%-CI in bold.

proximation to the Bayesian evidence criterion proposed in
MacKay (1992). In Table 2, we show our metrics (A,P ,
and D) outperform some standard baselines, and can be use-
ful when ensembled with others. We note that the strongest
baseline metric is taking the distance to the nearest neigh-
bour in the validation set in activation space across the
network (Papernot & McDaniel, 2018). These results sug-
gest there is promise in our proposed class of methods for
detecting extrapolation in trained models.

6. Conclusion
In this work, we presented a method for detecting extrapo-
lation in a trained model. We use influence functions as a
major building block of this method, and discuss the relation-
ships between this method and other previously proposed
approaches from robust machine learning. In future work,
we hope to scale up these methods to larger models and
datasets, and to test on tasks more suited to what we believe
are the unique strengths of our method. We also hope to
explore applications in fairness and interpretability, where
connecting test points to training points is of paramount
importance.
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Metric WtdAvg Min Max Var Mean
Aλ(x) 0.919 0.867 0.454 0.432 0.327
Pλ(x) 0.919 0.864 0.478 0.452 0.348
Dλ(x) 0.921 0.873 0.511 0.485 0.382

Max Pred 0.897

Table 2. AUCs for MNIST OOD Experiment for λ = 1 and 10%
label noise. Max Prediction baseline uses the largest predicted
probability.

A. Trained Neural Networks on Toy Data
In Figure 3, we show the results of the trained models on
toy data. Note that the only difference was the activation
function. The models result in similar predictions inside the
training domain but differ outside of it, indicating extrapola-
tion.

B. Influence Functions on Toy Data
In Figures 4, 5, and 6, we show the results for each net-
work (ReLU, Tanh, Softplus) for Aλ(x),Pλ(x), and Dλ(x)
respectively.

C. Aggregation Functions
Here, we show that WtdAvg is the only aggregation function
which beats the baseline. min also does almost as well,
but max, mean, and variance all perform at or worse than
random chance. Further work is needed to understand the
properties of these aggregation functions, and when each
is suitable - we note that in the 1-D experiment, max and
variance seemed to outperform min.

D. Batch Effects of CG Optimization
When solving the IHVP problem with CG, we estimated
the HVP for minibatches of points, to improve speed. We
noticed some batch effects — different minibatches of CG
computations had different statistics. We hypothesize that
even though we do not share parameters between examples,
sharing a tolerance parameter between examples caused the
resolution of the optimization of each example to depend
on the other examples in the batch. We were not able to run
CG for all points at once due to memory restrictions, so this
is a potential concern — it is possible that different batches
of CG will give wildly different results, and therefore p-
values calculating by comparing results across CG batches
are invalid. In Figures 7 and 8, we show boxplots for each
metric across each of 50 CG batches (each consisting of 20
validation points) for MNIST with 0 and 10% label noise
respectively. We notice batch effects more strongly in the
lower noise version. To counteract the batch effects, we
subtracted the median validation value for that minibatch

from each metric in order to compare between batches. This
yielded a performance improvement, particularly for the
stronger batch effects in the noiseless version.
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Figure 3. Three small neural networks trained on a one-dimensional regression problem. Note that each network has similar error
in-distribution (InD) but very different error out-of-distribution (OOD). This differing behaviour outside the training domain reflects
underdetermination of that problem in that area of the input space — hence the networks must extrapolate (i.e., rely on inductive biases)
for those inputs.
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Figure 4. |Aλ(x)| for a range of λ on 1-D data. In-distribution x are at 0 and 3. Aggregation function is max.
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Figure 5. |Pλ(x)| for a range of λ on 1-D data. In-distribution x are at 0 and 3. Aggregation function is max.
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Figure 6. |Dλ(x)| for a range of λ on 1-D data. In-distribution x are at 0 and 3. Aggregation function is max.
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Figure 7. Batch effects for |Aλ(x)|, |Pλ(x)|, |Dλ(x)| on MNIST. Each batch contains 20 validation points.
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Figure 8. Batch effects for |Aλ(x)|, |Pλ(x)|, |Dλ(x)| on MNIST with 10% noise. Each batch contains 20 validation points.


