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Abstract
Neural networks can be highly sensitive to noise
and perturbations. In this paper we suggest that
high dimensional sparse representations can lead
to increased robustness to noise and interference.
A key intuition we develop is that the ratio of the
match volume around a sparse vector divided by
the total representational space decreases expo-
nentially with dimensionality, leading to highly
robust matching with low interference from other
patterns. We analyze efficient sparse networks
containing both sparse weights and sparse activa-
tions. Simulations on MNIST, the Google Speech
Command Dataset, and CIFAR-10 show that such
networks demonstrate improved robustness to ran-
dom noise compared to dense networks, while
maintaining competitive accuracy. We propose
that sparsity should be a core design constraint
for creating highly robust networks.

1. Introduction
The literature on sparse representations dates back many
decades, with neuroscience as a primary motivation (Kan-
erva, 1988; Olshausen & Field, 1997). More recent work
has shown that hierarchical sparse representations can lead
to natural looking hierarchical feature detectors (Lee et al.,
2008; Chen et al., 2018), and that sparsity can sometimes
lead to improved test set accuracies (Lee et al., 2009; Nair
& Hinton, 2009; Srivastava et al., 2013; Rawlinson et al.,
2018). Despite the above literature the majority of neural
networks today rely on dense representations.

In this paper we propose that robustness to random pertur-
bations is an inherent property of high dimensional sparse
representations. We offer two main contributions. First,
we analyze high dimensional sparse representations, and
show that such representations are naturally more robust to
noise and interference from random inputs. When matching
sparse patterns, corrupted versions of a pattern are “close” to
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the original whereas random patterns are exponentially hard
to match. Our second contribution is a simple sparse layer
formulation that can be dropped into standard networks
trained with backpropagation. We demonstrate improved
robustness to noise while maintaining competitive accuracy
in the standard zero noise scenario. At the end of the paper
we discuss some possible areas for future work.

2. High Dimensional Sparse Representations
We develop properties of sparse representations as they re-
late to noise robustness and interference. In a typical neural
network an input vector is matched against a weight vec-
tor using a dot product followed by a non-linearity such as
tanh(·) or ReLU(·). When comparing two sparse vectors
via a dot product, the results are unaffected by the zero com-
ponents of either vector. Ideally we would like the outputs
of each layer to be invariant to random noise or perturba-
tions. A key quantity therefore is the ratio of the matching
volume around a candidate vector divided by the volume
of the whole space. The larger the match volume around a
vector, the more robust it is to noise. The smaller the ratio,
the less likely it is that random inputs can affect the match.

We quantify the above ratio using binary vectors (following
(Ahmad & Hawkins, 2016)) and show that the ratio de-
creases exponentially with increased dimensionality, while
maintaining a large match volume. Let x be a binary vector
of length n, and let |x| denote the number of non-zero en-
tries. The dot product xi · xj counts the overlap, or number
of shared bits, between two such vectors. We would like to
understand the probability of two vectors having significant
overlap, i.e. overlap greater than some threshold θ.

We define the overlap set, Ωn(xi, b, k), as the set of all
vectors of size k that have exactly b bits of overlap with xi.
The number of such vectors is given by:

|Ωn(xi, b, k)| =
(
|xi|
b

)(
n− |xi|
k − b

)
(1)

If we select vectors from a uniform random distribution, the
probability of significant overlap can be calculated as:
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P (xi · xj ≥ θ) =

∑|xi|
b=θ | Ωn(xi, b, |xj |) |(

n
|xj |
) (2)

where
(
n
|xj |
)

is the set of all vectors (details in Supplemen-
tary section A.1).

We can generalize Eq. 2 to handle scalar representations.
Binary and scalar vectors are similar in that the components
containing zero do not affect the dot product, and thus the
combinatorics in Eq. 2 are still applicable. Let xw and xi
represent two sparse vectors such that ‖xw‖0 and ‖xi‖0
counts the number of non-zero entries in each. Let each
non-zero component be independent and sampled from the
distributions Pθw(xw) and Pθi(xi). The probability of a
significant match is then:

P (xw · xi ≥ θ) =∑‖xw‖0
b=θ pb | Ωn(xw, b, ‖xi‖0) |(

n
‖xi‖0

) (3)

where pb is the probability that the dot product is
>= θ given that the overlap is exactly b components:
pb = P (xw · xi ≥ θ | ‖xw · xi‖0 = b)

2.1. Impact of Dimensionality and Sparsity

Two key factors are the number of non-zero components,
|xi|, and the dimensionality, n. Figure 1 provides an intu-
itive description of their impact in Eq. 2. Assume we have
M prototype vectors, and we want to match noisy versions
of these vectors. Around each prototype there is a set of
matching vectors (small white circles in Figure 1A). If the
threshold is very high, the set of matching vectors is small
and there will be quite a bit of space between these sets. As
you decrease θ matching is less strict and you can match
noisier versions of each prototype. The cost is that the
chance of matching the other vectors also increases because
there is less free space in between (Figure 1B). It turns out
that for sparse vectors, this cost is offset as you increase
n. That is, as n increases, the denominator in Eq. 2 (and
the corresponding free space) increases much faster than
the numerator. For a fixed sparsity level, you can maintain
highly tolerant matches without the cost of additional false
positives simply by increasing the dimensionality.

Fig 2 illustrates these properties (details in A.3). The chart
shows that for sparse vectors, match rates with random vec-
tors drop rapidly as the underlying dimensionality increases.
The probability of dense matches stays relatively high and
unaffected by dimensionality, indicating that both sparse-
ness and high dimensionality are key to robust matches
(Ahmad & Hawkins, 2016).

Figure 1. An illustration of the conceptual effect of decreasing the
match threshold θ and increasing n, the dimensionality (see text.)

3. A Simple Differentiable Sparse Layer
We extend our previous work (Hawkins et al., 2011; Cui
et al., 2017) and create a drop-in sparse layer for neural net-
works trained with back-propagation. Consider a network
with L hidden layers. Let yl denote the vector of outputs
from layer l, respectively, with y0 as the input vector. W l

and ul are the weights and biases for each layer. The feed
forward outputs are then calculated as follows:

ŷl = W l · yl−1 + ul

yl = f(ŷl)

where f is an activation function such as ReLU(·).

We make two modifications to this basic formulation. First,
we initialize the weights using a sparse random distribution,
such that only a fraction of the weights contain non-zero val-
ues. The rest of the connections are treated as non-existent,
i.e. the corresponding weights are zero throughout the life
of the network. Second, only the top-k active units within
each layer are maintained in yl, and the rest set to zero.
This k-winners step can be thought of as a substitute for the
ReLU function, with an adaptive threshold corresponding
to the k’th largest activation (Makhzani & Frey, 2013).

One practical issue is that a small number of units can ini-
tially dominate and then, through learning, become active
for a large percentage of patterns (also noted in (Makhzani &
Frey, 2015; Cui et al., 2017)). Eq. 2 suggests we maximize
the duty cycle of units in order to maximize the represen-
tational space. To address this we employ a boosting term
which favors recently inactive units (see A.4.1 for details).

It is straightforward to extend the above to sparse convolu-
tional layers (Section A.5). Overall this formulation leads
to a simple efficient layer can be dropped into any standard
network and trained using standard gradient descent. The
implementation is closely related to the k-winner take all
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A B

Figure 2. A: The probability of matches to random binary vectors (with a active bits) decreases exponentially with n. Dotted lines denote
the theoretically predicted probabilities using Eq. 2. B: Sparse scalar vectors (with a non-zero components) behave similarly. The
probability for a dense vector, a = n

2
stays relatively high, and does not decrease with dimensionality.

NETWORK TEST SCORE NOISE SCORE

DENSE CNN-1 99.14 ± 0.03 74,569 ± 3,200
DENSE CNN-2 99.31 ± 0.06 97,040 ± 2,853

SPARSE CNN-1 98.41 ± 0.08 100,306 ± 1,735
SPARSE CNN-2 99.09 ± 0.05 103,764 ± 1,125

DENSE CNN-2 SP3 99.13 ± 0.07 100,318 ± 2,762
SPARSE CNN-2 D3 98.89 ± 0.13 102,328± 1,720
SPARSE CNN-2 W1 98.2± 0.19 100,322± 2,082
SPARSE CNN-2 DSW 98.92 ± 0.09 70,566 ± 2,857

Table 1. Classification accuracies and total noise scores for MNIST.
CNN-1 and CNN-2 = 1 or 2 convolutional layers.

networks in (Majani et al., 1989) and fixed sparsity networks
in (Makhzani & Frey, 2015).

4. Simulation Results
4.1. MNIST

We tested both dense and sparse networks on MNIST, with
added random noise (see Figure 3 (A), details in A.6). State
of the art accuracies on MNIST sans augmentation are in
the range 98.3− 99% respectively. Our accuracies (Table 1)
are in the same range for both sparse and dense networks.
We also computed an overall noise score which counted the
total number of correct classifications across all noise levels.
(Table 4 lists the key parameters.)

In Table 1, networks in the top section of the table (Dense
CNN-1 and Dense CNN-2) are composed of standard dense
convolutional and hidden layers. Networks in the middle
section (Sparse CNN-1 and Sparse CNN-2) are composed
of sparse convolutional and sparse hidden layers. Networks
in the last section demonstrate the effects of ablation stud-

ies and contain a mixture of dense and sparse layers (see
Section A.6). Overall the architectures with sparse layers
performed significantly better on the noise score than the
fully dense networks. Sparse CNN-2, the two layer com-
pletely sparse network, had the best noise score. The two
fully dense networks performed substantially worse than
the others on noise, even though their test accuracies were
comparable. Figure 3 plots the accuracy of fully dense and
sparse networks at different noise levels.

4.2. Google Speech Commands Dataset

In order to test sparsity on a domain other than vision, we
used the Google Speech Commands dataset (GSC). GSC
was made available in 2017 (Warden, 2017) and consists of
65,000 one-second long utterances of 30 keywords spoken
by thousands of individuals. Standard convolutional nets
using ten categories achieve accuracies in the range 91 −
92% (Sainath & Parada, 2015; Tang & Lin, 2017), whereas
ResNets (He et al., 2015a;b) lead to accuracies in the range
of 95− 96% (Tang & Lin, 2017).

We trained dense and sparse versions of standard convolu-
tional networks and achieved test set accuracies in the range
of 96.5− 97.2% for 10 categories (see Supplementary Sec-
tion A.7 for training details and parameters). Table 2 (left
column) shows mean accuracy on the test set. Both dense
and sparse networks had about the same test set accuracy.

We created noisy versions of the test set by blending in ran-
dom noise. An overall noise score accumulates the correct
classifications across all noise levels. Table 2 shows that
sparse networks performed significantly better than the best
dense network. Overall these results demonstrate that the
robustness of sparse networks can apply across domains.
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Figure 3. A. Example MNIST images with varying levels of noise. B. Classification accuracy as a function of noise level.

NETWORK TEST SCORE NOISE SCORE

DENSE CNN-2 (DR=0.0) 96.37± 0.37 8,730± 471
DENSE CNN-2 (DR=0.5) 95.69± 0.48 7,681± 368
SPARSE CNN-2 96.65± 0.21 11,233± 1013
SUPER-SPARSE CNN-2 96.57± 0.16 10,752± 942

Table 2. Scores for Google Speech Commands, averaged over 10
random seeds, ± one standard deviation. Dr = dropout levels.

4.3. CIFAR-10

There are a large number of different architectures that have
been successfully applied to CIFAR-10, and many of these
have scaled to larger datasets, such as ImageNet. Here we
used CIFAR-10 to gauge the applicability of sparse represen-
tations to deeper networks, focusing on variants of DenseNet
(Huang et al., 2016), VGG (Simonyan & Zisserman, 2014),
and MobileNet (Howard, 2017).

Initial results on DenseNet and VGG are promising. Table 3
shows the results for various noise levels. For DenseNet,
we applied our sparse convolutional layers to the transi-
tion blocks only, creating a ”NotSoDenseNet”. These had
comparable accuracy with zero noise but demonstrated im-
proved noise robustness as shown in Table 3. Our results
on VGG networks were similar. Although the raw accuracy
of VGG19-Sparse was slightly lower than its dense counter-
part, its accuracy for even slightly noisy images were higher.
With 10% of the pixels corrupted, accuracy of the sparse
network was 12% higher than its dense counterpart.

We did not achieve improved results with MobileNet, pos-
sibly due to its factored convolutions. Level skipping is an
interesting challenge. It is unclear how to introduce sparsity
into ResNet architectures (He et al., 2015a) where level skip-
ping connections have an additive effect on activity. We also
did not apply sparsity to level skipping blocks in DenseNet.
Applying sparsity to level skipping connections remains a
topic for future study.

NOISE DENSENET NSDN VGG19D VGG19S

0.0% 92.80 93.09 93.24 92.10
2.5% 86.34 87.50 85.07 86.21
5.0% 77.19 79.10 75.88 79.00
7.5% 66.22 69.52 63.60 71.34

10.0% 55.10 61.13 52.41 64.18
12.5% 45.79 52.10 42.25 56.49
15.0% 38.67 45.25 35.25 50.86
17.5% 33.03 39.60 29.37 45.00

Table 3. Scores for CIFAR-10 as a function of noise. NSDN,
VGG19D, and VGG19S stand for “NotSoDenseNet”, VGG19-
Dense and VGG19-Sparse, respectively.

5. Discussion
In this paper we proposed that sparse representations can
be beneficial to the underlying robustness of networks. We
developed intuitions and theory for the structure of vector
matching in the context of binary sparse representations. We
then constructed efficient neural network formulations of
sparse networks and showed that this formulation seems to
increase the overall robustness of the system to noisy inputs.
A consistent finding in all our experiments was that raw test
score was not a predictor of noise robustness, suggesting
that focusing on pure test set accuracy alone is not sufficient
for gauging performance under adverse conditions. Both
dense and sparse networks showed high accuracies, but the
sparse nets were significantly more robust.

We stress that the work here is still preliminary. In this paper
we primarily focused on one perturbation type, random jitter
to inputs, as a test of robustness. There are other types of
perturbations that may be important to consider (Hendrycks
& Dietterich, 2018). In addition there is still work remaining
to demonstrate how to best apply sparsity to other network
structures such as MobileNet, ResNet, and level skipping
connections. Nevertheless, our results suggest that sparsity
does not hurt, and that sparse networks should be given
serious consideration in the overall design of robust systems.
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A. Supplementary Material
These supplementary sections complement the main text,
and provide additional detail as referenced above.

A.1. Mathematical Details

We define the overlap set, Ωn(xi, b, k), as the set of all
vectors of size k that have exactly b bits of overlap with xi.
The number of such vectors is given by:

|Ωn(xi, b, k)| =
(
|xi|
b

)(
n− |xi|
k − b

)
(4)

The left half of the above product counts all the ways we
can select exactly b bits out of active bits in |xi|. The right
half counts the number of ways we can select the remaining

k − b bits from the components of xi that are zero. The
product of these two quantities represents the number of
all vectors with exactly b bits of overlap with |xi|. We can
now count the number of vectors that match xi, i.e. where
xi · xj ≥ θ as:

|xi|∑
b=θ

| Ωn(xi, b, |xj |) | (5)

If we select vectors from a uniform random distribution, the
probability of significant overlap can be calculated as:

P (xi · xj ≥ θ) =

∑|xi|
b=θ | Ωn(xi, b, |xj |) |(

n
|xj |
) (6)

where
(
n
|xj |
)

is the set of all possible comparison vectors.

A.2. Impact of Dimensionality and Sparsity

As the underlying dimensionality n increases, the denomina-
tor in Eq. 6 (and the corresponding ”free” space) increases
much faster than the numerator. For a fixed sparsity level,
you can maintain highly tolerant matches without the cost
of additional false positives simply by increasing the dimen-
sionality. Fig 2 A illustrates this trend for some example
sparsities. In this figure we simulated matching with ran-
dom vectors and plotted match rates with random vectors as
a function of the number of active bits and the underlying
dimensionality. In the simulation we repeatedly generated
a random prototype vector with |xi| = 24 bits on and then
attempted to match against random test vectors with a bits
on. We matched using a threshold θ of 12 which meant that
even vectors that were up to 50% different from xi would
match. We varied a and the dimensionality of the vectors,
n. The dotted line shows the probabilities predicted by the
equation, whereas the black dots are the values obtained
through simulation.

The chart shows that for sparse binary vectors, match rates
with random vectors drop rapidly as the underlying dimen-
sionality increases. The horizontal line indicates the proba-
bility of matching xi against dense vectors, with a = n/2.
The probability of dense matches stays relatively high and
unaffected by dimensionality, indicating that both sparse-
ness and high dimensionality are key to robust matches. In
(Ahmad & Hawkins, 2016) we develop additional properties,
including the probability of false negatives.

A.3. Matching Sparse Scalar Vectors

Binary and scalar vectors are similar in that the components
containing zero do not affect the dot product, and thus the
combinatorics in Eq. 2 are still applicable. Eq. 1 represents
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the set of scalar vectors where the number of non-zero mul-
tiplies in the dot product is exactly b, and Eq. 2 represents
the probability that the number of non-zero multiplies is
>= θ. However, an additional factor is the distribution of
scalar values. If components in one vector are extremely
large relative to θ, the likelihood of a significant match will
be high even with a single shared non-zero component.

We wanted to see if the exponential drop in random matches
for binary vectors, demonstrated by Figure 2 (A) can be
obtained using scalar vectors, and if so, the conditions un-
der which they hold. Let xw and xi represent two sparse
vectors such that ‖xw‖0 and ‖xi‖0 counts the number of
non-zero entries in each. Let each non-zero component be
independent and sampled from the distributions Pθw(xw)
and Pθi(xi). The probability of a significant match is then:

P (xw · xi ≥ θ) =∑‖xw‖0
b=θ pb | Ωn(xw, b, ‖xi‖0) |(

n
‖xi‖0

) (7)

where pb is the probability that the dot product is >= θ
given that the overlap is exactly b components:

pb = P (xw · xi ≥ θ | ‖xw · xi‖0 = b) (8)

There does not appear to be a closed form way to compute
pb for normal or uniform distributions so in Figure 2 (B)
we show simulation results only. As before, we generated a
large number of random vectors xw and xi, and plotted the
frequency of random matches. With ‖xw‖0 = k, we focus
on simulations where the non-zero entries in xw are uniform
in [−1/k, 1/k], and the non-zero entries in xi are uniform
in S ∗ [0, 2/k]. We focus on this formulation because of
the relationship to common network structures and weight
initialization. xw is a putative weight vector and xi is an
input vector to this layer from the previous layer (we assume
unit activations are positive, the result of a ReLU-like non-
linearity). S controls the scale of xi relative to xw.

Figure 2 (B) shows the behavior with k = 32 and S = 1.
We varied the activity of the input vectors ‖xi‖0 = a and the
dimensionality of the vectors, n. We set θ = E[xw·xw]/2.0.
The chart demonstrates that under these conditions we can
achieve robust behavior similar to that of binary vectors.
Figure 4 plots the effect of S on the match probabilities with
a fixed n = 1000. As this chart shows, the error increases
significantly as S increases. Taken together, these results
show that the fundamental robustness properties of binary
sparse vectors can also hold for sparse scalar vectors, as
long as the overall scaling of vectors are in a similar range.

Figure 4. The impact of scale on vector matches with a fixed n =
1000. The larger the scaling discrepancy, the higher the probability
of a false match.

A.3.1. NON-UNIFORM DISTRIBUTION OF VECTORS

Eq. 6 assumes the ideal case where vectors are chosen with
a uniform random distribution. With a non-uniform distri-
bution the error rates will be higher. The more non-uniform
the distribution the worse the error rates. For example, if
you mostly end up observing 10 inputs, your error rates will
be bounded at around 10%. Thus, to optimize error rates,
it is important to be as close to a uniform distribution as
possible.

A.4. Sparse Layer Details

The network formalism for our sparse layer is an extension
of our previous work on the HTM Spatial Pooler, a sparse
coding algorithm that models sparse representations in the
neocortex (Hawkins et al., 2011; Cui et al., 2017). Specif-
ically, we formulated a version that is a drop-in layer for
neural networks trained with back-propagation. The im-
plementation is also closely related to the k-winner take all
networks in (Majani et al., 1989) and fixed sparsity networks
in (Makhzani & Frey, 2015).

The k-winners step can be thought of as a substitute for
the ReLU function, with an adaptive threshold correspond-
ing to the k’th largest activation (Makhzani & Frey, 2013).
Similar to ReLU, the gradient of the layer is calculated as 1
above the threshold and 0 elsewhere. Non-zero weights are
initialized using standard Kaiming initialization (He et al.,
2015a). During inference we increase k by 50%, which led
to slightly better accuracies. In all our simulations the last
layer of each network is a standard linear output layer with
log-softmax activation function.
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Algorithm 1 k-winners layer

1: ŷl = wl · y(l−1) + ul

2: bli(t) = eβ(â
l−dli(t))

3: topIndicesl = topk(bl � ŷl)
4: yl = 0
5: yl[topIndicesl] = ŷl

6: dli(t) = (1− α)dli(t− 1) + α · [yli(t) ∈ topIndicesl]

A.4.1. BOOSTING

One practical issue with the above formulation is that it is
possible for a small number of units to initially dominate and
then, through learning, become active for a large percentage
of patterns (this was also noted in (Makhzani & Frey, 2015;
Cui et al., 2017)). Having a small number of active units
negatively impacts the available representational volume.
It is desirable for every unit to be equally active in order
to maximize the robustness of the representation in Eq. 2.
To address this we employ a boosting term (Hawkins et al.,
2011; Cui et al., 2017) which favors units that have not
been active recently. We compute a running average of each
unit’s duty cycle (i.e. how frequently it has been one of the
top k units):

dli(t) = (1− α)dli(t− 1) + α · [i ∈ topIndicesl] (9)

A boost coefficient bli is then calculated for each unit based
on the target duty cycle and the current average duty cycle:

bli(t) = eβ(â
l−dli(t)) (10)

The target duty cycle âl is a constant reflecting the percent-
age of units that are expected to be active, i.e. âl = k

|yl| .
The boost factor, β, is a positive parameter that controls the
strength of boosting. β = 0 implies no boosting (bli = 1),
and higher numbers lead to larger boost coefficients. In
(Hawkins et al., 2011; Cui et al., 2017) we showed that
Eq. 10 encourages each unit to have equal activation fre-
quency and effectively maximizes the entropy of the layer.

The boost coefficients are used during the k-winners step
to select which units remain active for this input. Through
boosting, units which have not been active recently have
a disproportionately higher impact and are more likely to
win, whereas overly active units are de-emphasized. To
determine the output of the layer, the non-boosted activity
of each winning unit is kept and the remaining units are set
to zero. The duty cycle is then updated. A pseudo-code
description for the k-winners layer is in the Supplementary
section (Algorithm 1). In our simulations we used β =
1.0 or 1.5 for all sparse simulations.

A.5. Sparse Convolutional Layers

We can apply the above algorithm to convolutional networks
(CNNs) (LeCun et al., 1989). A canonical CNN layer uses
a linear convolutional layer containing a number of filters,
followed by a max-pooling (downsampling) layer, followed
by ReLU. In order to implement sparse CNN layers, the
k-winners layer is applied to the output of the max-pooling
layer instead of ReLU (just as in our non-convolutional
layers). However, since each filter in a CNN shares weights
across the image, duty cycles are accumulated per filter.
In our simulations dense and sparse CNN nets both have a
hidden layer (which is dense or sparse, respectively) after the
last convolutional layer, followed by a linear plus softmax
layer. We used 5X5 filters throughout with a stride of 1.

A.6. MNIST Training Details

For MNIST (LeCun et al., 1998) each network consisted
of one or two convolutional layers, followed by a hidden
layer, followed by a linear + softmax output layer. Sparse
nets consisted of sparse convolutional layers followed by a
sparse hidden layer.

Networks were trained using standard stochastic gradient
descent to minimize cross entropy loss. We used starting
learning rates in the range 0.01 − 0.04, and the learning
rate was decreased by a factor between 0.5 and 0.9 after
each epoch. We also tried batch normalization (Ioffe &
Szegedy, 2015) and found it did not help for MNIST (it
did help significantly for Google Speech Commands results
- see below). For sparse networks, we used a small mini-
batch size (around 4), for the first epoch only, in order
to let duty cycle calculations update frequently and settle.
Hyperparameters such as the learning rate and network size
were chosen using a validation set consisting of 10, 000
randomly chosen training samples. We then report final
results on the test set using networks trained on the full
training set.

For each test image we randomly set η% of the pixels to
a constant value near white (the constant value was two
standard deviations over the mean pixel intensity). Figure 3
(A) shows sample images for different noise levels. We
generated 11 different noise levels with η ranging between
0 and 0.5 in increments of 0.05. We also computed an over-
all noise score which counted the total number of correct
classifications across all noise levels. Results shown in Ta-
ble 1 are averaged over 10 random seeds, ± one standard
deviation.

Ablation studies: In order to judge the relative contribu-
tions of sparse layers we ran experiments where we replaced
various sparse components with their dense counterparts,
i.e. dense CNNs with sparse hidden layers, and vice versa.
Dense CNN-2 SP3 contained two dense CNN layers fol-
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lowed by the sparse third layer from Sparse CNN-2. Sparse
CNN-2 D3 contained the same CNN layers as Sparse CNN-
2 followed by the dense third layer from Dense CNN-2.
Sparse CNN-2 W1 was identical to Sparse CNN-2 except
that the weight sparsity was 1 (i.e. fully dense weights).
Sparse CNN-2 DSW contained a third layer with dense
outputs, but with a weight sparsity of 0.3%.

The results of these networks are shown in the bottom third
of Table 1. From a noise robustness perspective, most of the
variants (except for Sparse CNN-2 DSW) performed well,
better than the best pure dense network. This supports the
idea that sparsity in many forms may be helpful with robust-
ness. It is interesting to note that the standard deviation of
the noise score in these variants was also higher than that
of the pure sparse networks. Overall the results with mixed
networks were encouraging, and suggest a clear benefit to
introducing sparsity at any level.

Impact of Dropout: The above results did not use dropout
(Srivastava et al., 2014), which is generally thought to im-
prove robustness. We found that dropout did occasionally
improve the robustness of dense networks, but any improve-
ments were modest and the dropout percentage had to be
tuned carefully. For sparse nets dropout consistently reduced
accuracies. Even with the optimal dropout percentage, the
noise scores of dense networks were significantly lower than
sparse nets.

A.7. Google Speech Commands Training Details

The GSC dataset contains predefined training, validation,
and test sets. Reference convolutional nets using ten of the
keyword categories (plus artificial ”silence” and ”unknown”
categories created during training augmentation) achieve
accuracies in the range 91− 92% (Sainath & Parada, 2015;
Tang & Lin, 2017). In (Tang & Lin, 2017) they demon-
strated improved accuracies in the range of 95− 96% using
residual networks (ResNets (He et al., 2015a;b)).

A Kaggle competition using GSC (also limited to 10 cate-
gories) took place between November 2017 and early 20181.
For our simulations we use the preprocessing code pro-
vided by one of the top-10 contestants (Tuguldur, 2018)
who achieved around 97− 97.5% accuracies using variants
of ResNet and VGG (Simonyan & Zisserman, 2014) archi-
tectures. Following this implementation, audio samples in
our simulations are converted to 32-band Mel spectograms
before being fed to the network. During training we aug-
ment the data by randomly adjusting the amplitude, speed,
and pitch of each training sample, and by randomly shifting
and stretching samples in the frequency domain. No data
augmentation is performed on the validation or test sets.

1https://www.kaggle.com/c/
tensorflow-speech-recognition-challenge

We trained dense and sparse convolutional networks, with
hyperparameters chosen based on the validation set. We
were able to achieve reasonable accuracies using two con-
volutional layers, followed by a hidden layer and then a
linear + softmax output layer. Our sparse networks had
sparse convolutional layers as well as a sparse hidden layer.
Unlike MNIST we found that batch normalization (Ioffe &
Szegedy, 2015) accelerated learning significantly, and we
used it for every layer.

We included a ”Super-Sparse CNN-2” with a significantly
sparser hidden layer. The hidden layer for this network had
10% weight sparsity, and a lower output sparsity (Table 4).
This network had slightly lower noise score, but its score
was still significantly higher than that of the dense networks.

Using the above setup we were able to achieve test set
accuracies in the range of 96.5 − 97.2% classifying the
ten categories corresponding to the digits ”zero” through
”nine”. Table 2 (left column) shows mean accuracy on the
test set. Both dense and sparse networks had about the same
accuracy. Dropout had a negative effect on the accuracy.
Table 4 lists the key parameters in each network.

Generating Noisy Test Patterns: For each test audio sam-
ple A we generated a random white noise sample and
blended them together:

A∗ = (1− η)A + ηwhiteNoise

We generated 11 different noise levels, with η ranging from
0 to 0.5 in increments of 0.05. Our overall noise score
counted the total number of classifications across all noise
levels.

A.8. Key Parameters

Table 4 lists the key sparsity related parameters used in the
MNIST and GSC networks.

A.9. CIFAR-10 Training Details

For CIFAR-10 we focused on DenseNet (Huang et al.,
2016), VGG (Simonyan & Zisserman, 2014), and Mo-
bileNet (Howard, 2017). We generated images with varying
levels of noise by corrupting individual channels on ran-
domly chosen pixels. For each test image we randomly
choose η% of the pixels to corrupt. Within each pixel we
randomly chose one of the three channels and set it to a
constant value that is either plus or minus two standard de-
viations from the mean pixel intensity. η ranged between 0
and 0.175 in increments of 0.025.

Network implementations were based
on https://github.com/bearpaw/
pytorch-classification. For DenseNet we
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NETWORK L1 F L1 SPARSITY L2 F L2 SPARSITY L3 N L3 SPARSITY WT SPARSITY

MNIST
DENSE CNN-1 30 100% 1000 100% 100%
DENSE CNN-2 30 100% 30 100% 1000 100% 100%

SPARSE CNN-1 30 9.3% 150 33.3% 30%
SPARSE CNN-2 32 8.7% 64 29.3 % 700 14.3% 30%

DENSE CNN-2 SP3 30 100% 30 100% 700 14.3% 30%
SPARSE CNN-2 D3 32 8.7% 64 29.3 % 1000 100% 100%
SPARSE CNN-2 W1 32 8.7% 64 29.3 % 700 14.3% 100%
SPARSE CNN-2 DSW 32 8.7% 64 29.3 % 1000 100% 30%

GSC
DENSE CNN-2 64 100% 64 100% 1000 100% 100%
SPARSE CNN-2 64 9.5% 64 12.5% 1000 10% 40%
SUPER SPARSE CNN-2 64 9.5% 64 12.5% 1500 6.7% 10%

Table 4. Key parameters for each network. L1F and L2F denote the number of filters at the corresponding CNN layer. L1,2,3 sparsity
indicates k/n, the percentage of outputs that were enforced to be non-zero. 100% indicates a special case where we defaulted to traditional
ReLU activations. Wt sparsity indicates the percentage of weights that were non-zero. All parameters are available in the source code.

used a growth rate of 12. We used four blocks with sizes
“[2, 4, 8, 4]”. In addition, for our sparse NotSoDenseNet we
substituted our k-winner layer in place of the ReLU used in
the Transition blocks, with a sparsity level of 20%.

For VGG we used the standard VGG19 with BatchNorm in
the “cifar” directory of the above repository. All learning
parameters, including learning rate schedule, were identical
to the values in the repository. For VGG19-Sparse we used
a sparsity level of 25% for all layers. Weight sparsity was
50% for all layers except those in the first block, which were
100%.

A.10. Software

All code and experiments are available at https://
github.com/numenta/nupic.torch and https:
//github.com/numenta/nupic.research as
open source.


