
Uncertainty estimates and out-of-distribution detection with Sine Networks

Hartmut Maennel 1

Abstract

When a network makes predictions, how can we
assess the (un)certainty of those predictions? How
can we know when the network does not know?
A simple approach uses ensembles of networks
which give a set of predictions instead of only
one. However, we find that different networks
often produce similar outputs even for test inputs
which have nothing to do with the training inputs.

A surprising remedy is replacing the usual ReLU
(or sigmoid) activation functions by sin(x) and
adjusting the initialization. While this has little
effect inside the training distribution, it greatly
enhances the ability to detect model uncertainty
outside of the training distribution.

1. Introduction
In this note we will focus on classification problems (but
the method presented here applies equally to the regression
case, see appendix A.1 for a toy example). The problem we
investigate is how to estimate a useful uncertainty measure
of such a prediction. We treat the training data set as fixed
and consider only the model uncertainty.

We evaluate this uncertainty mainly with view to out-of-
distribution detection: If we have meaningful uncertainties,
the classifier should in particular “know when it does not
know the answer”. This means it should only concentrate
all probability on one label for input that “belongs to the
same type of input” as the training examples.

We also evaluate the method with respect to flagging of
“difficult” examples inside the training distribution.

The “classical” approach to getting a distribution of possi-
ble labels instead of a single prediction is to use Bayesian
Neural Networks ((Neal, 1996), (Barber & Bishop, 1998),
(Blundell et al., 2015)). However, their use is computation-
ally demanding.

1Google Brain, Zurich, Switzerland. Correspondence to: Hart-
mut Maennel <hartmutm@google.com>.

Presented at the ICML 2019 Workshop on Uncertainty and Ro-
bustness in Deep Learning. Copyright 2019 by the author(s).

On the other extreme, the simplest approach is to use the
softmax output of a neural net as a confidence measure. It
is well known that the softmax output tends to be “overcon-
fident”, so we cannot interpret it directly as a probability for
the chosen class. However, it still tends to be more confident
for samples from the correct distribution than for outliers,
so setting a threshold for the softmax output can to some
extent distinguish between “in distribution” and “out of dis-
tribution” samples. This is the “baseline method” for outlier
detection suggested in (Hendrycks & Gimpel, 2017).

In (Lakshminarayanan et al., 2017) this baseline is improved
by using an ensemble of classifiers (and adversarial training):
Often each random initialization of a neural network gives
an overconfident classifier, but different classifiers disagree -
averaging the softmax output over an ensemble of classifiers
then gives an improved signal.

Related is the suggestion of “MC dropout” (Gal & Ghahra-
mani, 2016), here the ensemble of networks is replaced by
one network, from which different predictions are produced
by Dropout at prediction time.

2. Proposed method
A limiting factor for outlier detection with ensembles of net-
works seems to be that often outputs of different networks
agree to an “unreasonable” extent on inputs outside of the
training distribution. To illustrate this potential problem, we
look at a 2-dimensional toy example, in which we can plot
how the classifiers generalize from the training distribution
to other points.

As input we use only a line, with labeled training samples
given as blue dots in the middle and red dots at the end
(Figure 1).

Figure 1. Input for the 2-dim example.

We will use a ReLU network with one hidden layer of 100
neurons to classify all points in the surrounding area of the
plane. Colors encode the “probabilities” that the softmax
computes from the output layer, with blue / red signifying

Uncertainty estimates and out-of-distribution detection with Sine Network

“probability 1”. The result is in Figure 2.

Figure 2. ReLU networks, extrapolating to 2d.

We see that most points (even far away from the training set)
are either blue or red, i.e. the classifier is very confident;
also there is only limited variation for classifiers initialized
from different randomly chosen weights.

If we change the activation function of the hidden layer from
to ReLU to sin(x), we obtain different results outside of
the training distribution (Figure 3). While individual points
are still mostly red or blue, i.e. the individual classifiers are
still “overconfident”, the different classifiers now tend to
disagree.

Figure 3. Sine Networks, extrapolating to 2d.

Averaging the softmax outputs over several of them we get
much more realistic confidences for the Sine Networks than
for the ReLU networks, see Figure 4.

Figure 4. ReLU and Sine network ensembles, averaged.

In general, our proposed new method modifies the ensemble
networks in two ways:

• Use higher initialization than usual for the first hidden
layers.

• Use sin(x) as activation function in the last hidden
layer.

We will see that this has little effect inside the training distri-
bution, but significantly increases the observable uncertainty
outside of the training distribution.

3. Main example
We look at fully connected networks with two hidden layers
of 200 neurons, which we train on MNIST. For the base-
line network, we use ReLU activations and the standard
initialization of the weights (σ =

√
2/n with n = 784 for

the first layer, n = 200 for the second layer). For the Sine
Network we change the activation function of the deeper
layer to sin and use σ1 = 0.5 and σ2 = 0.001.

We train the networks on the training set of MNIST (60000
images), and evaluate them both on the test set of MNIST
and on other data sets, here we use notMNIST (Bulatov,
2011) as the “outlier” data set (see the appendix A.2 for
other data sets and the corresponding results).

By choosing a threshold for the “probability” (softmax out-
put) given to the predicted label, we can measure which
fraction of samples from MNIST (x-axis) and notMNIST
(y-axis) are below the threshold, varying the threshold gives
the ROC curve, see Figure 5. We get similar curves for other
data sets, see appendix A.2.

Figure 5. ROC curves for network ensembles trained on MNIST,
evaluated on notMNIST.
x-axis: MNIST samples not recognized as belonging to MNIST,
y-axis: notMNIST samples recognized as not belonging to MNIST.

While using an ensemble of ReLU nets gives a very sub-
stantial improvement over using one ReLU net, the result
is still not close to what humans would achieve: The clas-
sifiers used here have some 98% accuracy, if we allow not
recognizing an image as MNIST digit in 2% of the cases,
we might expect to recognize that the printed letters of the
alphabet are no handwritten digits in most cases, but in the
above graph 2% error rate for MNIST corresponds to “only”
80% success rate on notMNIST. However, the ensembles of
Sine Networks recognizes most of notMNIST images (98%)
if we allow 2% error rate on MNIST.

In the literature, the performance of such “out of distribution”
detection is often measured by the area under the ROC curve,

Uncertainty estimates and out-of-distribution detection with Sine Network

in our example this would be 97.4% for the ensemble of
ReLU networks, and above 99.9% for the ensemble of Sine
Networks. As comparison, (Hendrycks & Gimpel, 2017)
report 97% in Table 1 for their “baseline” classifier (they use
a slightly larger network and GELU activation functions),
and (Liang et al., 2018) report 98.2% with their method
that uses “outlier exposure”, i.e. trains also on images that
do not belong to MNIST (but also not on the “notMNIST”
images that are used for evaluation).

To compare our method also to the evaluation given in (Lak-
shminarayanan et al., 2017), we compute for each image
the entropy of the softmax output and plot a histogram over
the MNIST and the notMNIST data set for the ensemble
sizes 1,5,10. The first three columns of Figure 6 (copied
from Figure 3 in (Lakshminarayanan et al., 2017)) show the
resulting entropy of the softmax output for ReLU networks.

Figure 6. Histogram of the predictive entropy from Figure 3 in
(Lakshminarayanan et al., 2017) (first three columns) compared to
the corresponding Sine Networks (last column). Top row: Known
classes (MNIST), bottom row: Unknown classes (notMNIST).

For input from the MNIST test set (first row, blue curves)
the entropy is almost always close to 0, i.e. the classifier
puts almost all probability on one label. For input from the
notMNIST data set the classifier ensembles distribute the
probability over several labels, resulting in much higher en-
tropy. Use of adversarial training (second column) increases
the entropy even a bit further for the notMNIST examples.

The fourth column shows the results for the corresponding
Sine Networks. On the MNIST test set the behavior is
basically the same as the usual network, but on notMNIST
even one network often is unsure about the label, and an
ensemble of 10 networks gives most of the time an entropy
around 2 (the maximum would be log(10) ≈ 2.3 for the
uniform distribution across all 10 labels).

So far we have used the “confidence” estimate only for

detecting input which does not belong to the training distri-
bution. Another application rather targets the low density
parts of the input distribution: We can use it to flag “difficult”
cases. We use the label with the highest averaged softmax
output as the prediction, and the corresponding value (av-
eraged softmax) as the confidence. Then we abstain for
x% of the inputs with the confidence below a threshold. If
the confidence is a good predictor of the classifier’s ability
to predict the correct label, the precision for the inputs for
which we don’t abstain should be high.

To get a significant number of “difficult” cases, we train
only on the 10000 elements of the “test set” and evaluate on
the 60000 elements of the “training set”.

We get in this way:

Abstention error rate, ReLU error rate, sin
no abstention 4.9% 4.0%
abstain in 5% 2.5% 1.8%
abstain in 10% 1.3% 0.8%
abstain in 25% 0.30% 0.16%

4. What are the best initializations for ReLU
and Sine networks?

In the case of two hidden layers it seems to be a good
strategy to use a low standard deviation for the second (sine)
layer, and then choose the standard deviation for the weights
of the first (ReLU) layer as large as possible (such that
training still converges).

In the case of one layer, we can only vary the σ for weights
between the input and the first hidden layer (we keep the
initialization of the output layer at the standard σ =

√
2/n).

On the x-axis we plot log(σ), on the y-axis the negative
logarithm of the “error” := area above the ROC curve.

Figure 7. Influence of initialization
x-axis: log(σ), y-axis: − log(error), higher is better

Figure 7 shows these curves for the “test set” notMNIST,

Uncertainty estimates and out-of-distribution detection with Sine Network

see Figure 17 in the appendix for the results for eight other
“outlier” sets, and Figure 18 for results from training on
fashionMNIST instead of MNIST.

The vertical line corresponds to σ = 0.2, which seems to
be close to optimal for Sine Networks for all test sets. This
corresponds to a standard deviation of around 1.4 for the
input to the sin(x) activation function (for our encoding of
the MNIST pixels, which we scale into the interval [−1, 1]).

We also see that “larger than usual” initialization alone
already helps for ReLU networks, but using the sin(x) acti-
vation function gives an additional significant benefit.

5. Convolutional Networks
Since MNIST vs. notMNIST is too easy to profit from
better classifiers, we use a more difficult problem: Train on
classes 0-4, see whether we detect classes 5-9 as “out of
distribution”. We use two convolutional layers with 7× 7
windows and max pooling in 3× 3 windows with stride 2,
and add two fully connected layers with 200 / 100 neurons.
We also use data augmentation by randomly cropping to
24×24 pixels. For the sine network we change the activation
function of the last layer to sin(x).

First experiments seem to indicate that a good way to choose
the initialization for the different layers of the sine network
is to start with small initializations for the first layers and
the last layer, and then choose the second last initialization
as large as possible.

With this setup we get for the area under the ROC curve:

Network standard ReLU, large init sin(x)
convolutional 95.9% 98.1% 99.1%
fully connected 95.2% 96.2 96.3%

For more complicated networks we probably need to modify
the usual tricks of the trade, e.g. L2 regularization decreases
the disagreement between different networks, so it should
be replaced by a different method, e.g. a regularization that
adds a loss depending not on the size of the weights, but
on the distance to the initial initialization. Also, as further
motivated in appendix A.3, we should use more general
ways to encourage diversity in the lower layers than just
using larger initialization. This is an area for future work.

6. How does this work?
At the moment a precise theory of how this works is still
missing, but we can give some heuristics.

6.1. How large initialization increases diversity

We expect that Gradient Descent finds local optima “close to”
the initial point. If we start with high random initializations,

we may have a better chance that they are far apart and
converge to different solutions.

This could be made more precise for ReLU networks with
one hidden layer: (Maennel et al., 2018) shows that for given
training data and infinitesimal initialization, there are only
finitely many possibilities to which networks can converge
(independent of network size). The arguments given in
that paper should also show that with increasing number of
weights we should with high probability end up at the same
possibility (that is in a way “maximal”). So at least in this
scenario we should avoid too small initialization.

We can also make a provable connection between high ini-
tialization and diversity of the network in the special case
that the training input is in a lower dimensional subspace
of all possible inputs. This actually happens when we train
on MNIST, but evaluate on notMNIST: In the MNIST data
set (but not in the notMNIST data set), some points at the
corners are always white. While this does contribute to
notMNIST being “easy” to detect, our proposed method
works equally well for other data sets (like the “flipped
MNIST” or the “masked notMNIST”) so this effect does
not seem to be the most important one for our method.

6.2. Non-monotonic activation functions

If we start from small initialization, the input to the sine neu-
rons will be x ≈ 0, and sin(x) ≈ x. As training progresses,
|x| usually increases. For sin(x) activation the increase will
usually stop at the first maximum or minimum of sin(x), i.e.
at x ≈ ±π/2. This means that on the training set, features
(i.e. the output of the sin(x) neurons in the last hidden layer)
get a large value by tuning the input to around x ≈ ±π/2,
which is difficult to achieve “accidentally” for input that
is not in the training set. By contrast, for ReLU or tanh
activation, the inputs only have to achieve any high value.

A similar reasoning applies if the initialization is not nec-
essarily small, but still such that the inputs of the sin(x)
neurons do not vary too much compared to the distance of
different minima / maxima of the sin(x) activation function.
Indeed we observed that in the trained networks, applied to
the training set, the inputs to sin tend to cluster around one
maximum or minimum (depending on the label and the sign
of the weight connecting the neuron to the corresponding
output).

This reasoning also applies to other functions with maxima
and minima, and indeed some of the benefit of the sin(x)
activation function can be replicated by using e.gReLU(x)·
e−x

2

. However, in general the sin(x) activation functions
still seem to give better results for ensembles of networks,
which we might attribute to more disagreement for large
activations (as illustration, see the graphs of A.1 in the
appendix).

Uncertainty estimates and out-of-distribution detection with Sine Network

References
Barber, D. and Bishop, C. Ensemble learning in bayesian

neural networks. In Generalization in Neural Networks
and Machine Learning, pp. 215–237. Springer Verlag,
January 1998.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. Weight uncertainty in neural networks. In
https://arxiv.org/abs/1505.05424, 2015.

Bulatov, Y. notmnist dataset. 2011. URL
http://yaroslavvb.blogspot.com/2011/
09/notmnist-dataset.html.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059, 2016.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples. In ICLR,
2017.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In 31st Conference on Neural Information
Processing Systems (NIPS), 2017.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability of
out-of-distribution image detection in neural networks. In
International Conference on Machine Learning (ICML),
2018.

Maennel, H., Bousquet, O., and Gelly, S. Gradi-
ent descent quantizes relu network features. In
https://arxiv.org/abs/1803.08367, 2018.

Neal, R. M. Bayesian Learning for Neural Networks.
Springer, 1996.

Sirignano, J. and Spiliopoulos, K. Mean field analy-
sis of neural networks: A central limit theorem. In
https://arxiv.org/abs/1808.09372, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747, 2017.

A. Appendix
A.1. Regression in 1D

Maybe the simplest toy example to study the difference
between ReLU, tanh, and sin activation functions is one
dimensional regression (using the standard L2 loss).

If we start a ReLU network with one hidden layer

f(x) =
∑
i

w′i ·ReLU(wi · x+ bi)

from small initialization bi, wi, w
′
i ≈ 0 and optimize it with

Gradient Descent to fit n points (x1, y1), ..., (xn, xn), then
(see (Maennel et al., 2018)) the kinks µi := −bi/wi will
initially cluster at at most 2n points and give contributions
of the form

λj ·ReLU(x− µ) (1)

During the Gradient Descent the number of these kink clus-
ters does not change, and since a sum of such terms with
the same kink µ will again have the form (1), this gives a
simple piecewise linear function with at most 2n kinks.

However, for the activation function sin(x) it is no longer
true that the sum of contributions

w′i · sin(wi · x+ bi)

with the same µ := −bi/wi can be expressed by one such
function, and also Gradient Descent will change them in
different ways. This makes it plausible that even for small
initialization, for which a ReLU network will converge to
a simple function, the sin-Network will converge to a far
more complex function. Indeed this is what we can observe
experimentally, see Figure 9 and 10. The activation function
tanh is sort of “in between” these two cases: For small
x� 0 or large x� 0 the sum of

w′i · tanh(wi · x+ bi)

only depends on the sum of w′i · sign(wi), see Figure 11.

Figure 8. Regression input

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

Uncertainty estimates and out-of-distribution detection with Sine Network

Figure 9. Sample regression functions (activation function ReLU)

Figure 10. Sample regression functions (activation function sin)

So we see that extrapolating from the training points, ReLU
and tanh networks display much less uncertainty than Sine
Networks.

A.2. Test data sets

As input distributions that are “clearly different” from
MNIST we can use the fashionMNIST (Xiao et al., 2017)
and notMnist (Bulatov, 2011) data sets, see Figure 12.

We also use some constructed data sets:

• “Masked fashionMNIST”:

In MNIST some pixels are always or almost always
white, see Figure 14. Out of fashionMNIST we derive
this data set by setting all pixels to 0 (white) that have

Figure 11. Sample regression functions (activation function tanh)

Figure 12. FashionMNIST (top) and notMNIST (bottom) data sets.

an average gray value of below 0.01.

• “Masked notMNIST”:

This is derived from notMNIST in the same way.

• Circles and lines:

Two lines and two circles in random positions.

• Flipped MNIST:

Derived from MNIST by mirroring the digits 3,4,6,7,9
horizontally and the digits 4,6,7,9 vertically.

• IID noise:

Uniform iid pixel values from [0.256].

• Independent pixels:

Each pixel is randomly sampled from pixels at the
same position at MNIST training images, independent
of the other pixel values.

• PseudoMNIST: Here we try to mimic not only the
value distribution for each pixel, but also local corre-
lations. We start with an image in which each pixel
is independently sampled like in the previous distribu-
tion. Then we perform 1000 (PseudoMNIST1) or 1500
(PseudoMNIST2) updates of the following form: We
randomly select a 3× 3 window, and find the closest

Uncertainty estimates and out-of-distribution detection with Sine Network

match in 1000 randomly sampled images from MNIST,
where “closest” is with respect to the L2 distance of the
8 outer pixels of the 3× 3 window. Then we replace
the middle pixel in our image with the value of the
middle pixel in this “closest match” from MNIST.

We will also use a “masked version” with a mask from
MNIST: see figure 14 for the origin of the mask, and figure
13 for examples.

Figure 13. Constructed data sets.
Top row: Masked fashionMNIST, masked notMNIST, circles and
lines, flipped MNIST. Bottom row: IID noise, independent pixels,
pseudoMNIST1, pseudoMNIST2.

Figure 14. Average pixel value ≤ thresholds 0, 0.0001, 0.001, 0.01,
0.1 on MNIST

With these data sets we can again compute the ROC curves
that show how well we can distinguish the training set from
the outlier set by setting a threshold on the “confidence”.
As confidence we take again the averaged softmax output
of the predicted label over an ensemble of 10 classifiers,
in which the weights are randomly sampled from a nor-
mal distribution with mean 0 and standard deviation σ. We
gave in Figure 5 the results for training fully connected net-
works with two hidden layers of 200 neurons on MNIST,
and detecting notMNIST as outliers. Figure 15 shows the
corresponding figure for detecting fashionMNIST as out-
liers. Similarly, Figure 16 shows the corresponding figures
when training in fashionMNIST and detecting notMNIST /
MNIST.

For fully connected networks with one hidden layer we have
only one parameter for the initialization and can thus di-
rectly plot the influence of this parameter: We consider the

Figure 15. ROC curves for training on MNIST, detecting fashion-
MNIST

Figure 16. ROC curves for training on fashionMNIST, detecting
notMNIST / MNIST

area above the ROC curve as “error” and plot − log(error)
against the initialization σ used for the networks. The re-
sulting graphs are in Figure 17.

To obtain the error bars, we train 50 networks, and randomly
select 10 networks for an ensemble. Each ensemble selected
in this way gives one data point, we use the average y–value
to draw the curve, and ±2 times the standard deviation to
draw the error bar.

We can also train on fashionMNIST and try to detect images
from MNIST or notMNIST or circles & lines, it again looks
similar to the results we got when training on MNIST, see
Figure 18,

A.3. Influence of the distribution from which weights
are sampled

Our method for getting a variety of networks relies on dif-
ferent randomly sampled initializations giving different net-
works. According to (Sirignano & Spiliopoulos, 2018) this
actually no longer happens if the number of neurons is very
large: Then the networks converge to an idealized network

Uncertainty estimates and out-of-distribution detection with Sine Network

Figure 17. Influence of initialization
x-axis: log(σ), y-axis: − log(error), higher is better
Top row: notMNIST, fashionMNIST, flipped MNIST,
Middle row: Independent pixels, masked fashionMNIST, masked
notMNIST
Bottom row: IID noise, pseudoMNIST1, pseudoMNIST2.

in which there are infinitely many neurons that have their
weights distributed according to the probability distribution
from which we sample. We can actually see this effect in
our 2-dimensional example: When we use 20000 neurons
(instead of the 100 we used in the above pictures), the re-
sults of different initializations become more similar to each
other: See figure 19

So in this case, we can no longer rely on different sampling
from the same distribution, but need to change the distribu-
tion itself. For higher dimensional input, this effect may be
more theoretical because the number of neurons required to
get into that regime is no longer realistic.

However, even for a moderate number of neurons it makes
sense to vary the distribution of initial weights from which
we sample to obtain a greater diversity. Here is an example
in our case of 2-dimensional input, 100 neurons, ReLU
activation:

The weights in the 2-dimensional case have 3 coordinates:
Two for the direction and one for the bias. We sample the
“direction” weights according to a Normal Distribution with
standard deviation σ1, and the “bias” weight according to a

Figure 18. Influence of initialization, networks trained on fashion
MNIST
x-axis: log(σ), y-axis: − log(error), higher is better
Test sets: notMnist, MNIST, circles and lines.

Figure 19. Different Sine networks with weights initialized by sam-
ples from same distribution, 20000 hidden sin-neurons

Normal Distribution with standard deviation σ2. Depending
on σ1, σ2 we observe different outcomes (Figure 20).

Figure 20. Ensemble average, 100 hidden ReLU-neurons
Left to right: σ1, σ2 = (3, 1), (0.01, 0.01), (5, 5) (0.01, 1)

In particular, the networks initialized by σ1, σ2 = (5, 5)
could in theory contain the same initializations as the net-
works initialized by σ1, σ2 = (0.01, 1). However, the latter
give blue cones extending downwards most of the time,
whereas such a result is not among the 50 samples I ob-
tained for σ1, σ2 = (5, 5).

So it would make sense to restrict the distribution of weights
from which we sample in different ways to obtain a more
diverse set of networks.

