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Abstract
Deep approaches to anomaly detection have re-
cently shown promising results over shallow de-
tectors on large and high-dimensional data. Most
of these approaches view this task as an unsuper-
vised learning problem. In practice however, one
may have—in addition to a large set of unlabeled
samples—access to a small pool of labeled sam-
ples, e.g. samples verified by some domain expert.
Semi-supervised approaches to anomaly detection
make use of such labeled data to improve detec-
tion performance, but so far only few, domain-
specific deep methods have been proposed for
semi-supervised anomaly detection. In this work,
we present a generalization of the recently in-
troduced Deep Support Vector Data Description
method from the unsupervised to the more general
semi-supervised anomaly detection setting. We
demonstrate experimentally that our method con-
sistently outperforms both deep unsupervised and
deep supervised baselines on MNIST, Fashion-
MNIST, and CIFAR-10, even when provided with
only small amounts of labeled training data.

1. Introduction
Anomaly detection (AD) (Chandola et al., 2009; Pimentel
et al., 2014) is the task of identifying unusual samples in
data. This task lacks a supervised learning objective and
AD methods typically formulate an unsupervised problem to
find a “compact” description of the “normal” class, e.g. find-
ing a set of small measure that contains most of the data
as in one-class classification (Moya et al., 1993). Samples
that deviate from this description are deemed anomalous.
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The limitations of shallow AD methods such as the One-
Class SVM (Schölkopf et al., 2001), Support Vector Data
Description (SVDD) (Tax & Duin, 2004), Isolation Forest
(Liu et al., 2008), or Kernel Density Estimation (Parzen,
1962; Kim & Scott, 2012; Vandermeulen & Scott, 2013) in
their scalability to large datasets and their need for manual
feature engineering motivated research on novel deep ap-
proaches to AD that recently have shown promising results
(Sakurada & Yairi, 2014; Erfani et al., 2016; Zhai et al.,
2016; Chen et al., 2017; Ruff et al., 2018; Deecke et al.,
2018; Golan & El-Yaniv, 2018; Hendrycks et al., 2019).

In many real-world applications verified (i.e., labeled) nor-
mal or anomalous examples are often available, in addition
to a large set of unlabeled data. Such samples could be hand
labeled by a domain expert, for example. An unsupervised
approach would ignore this valuable information. A fully
supervised approach to AD, on the other hand, learns to
separate the anomalies from the normal data. This works
well when the anomalies at test time are drawn from the
same distribution as in training. In practice however, this is
rarely the case: for instance in computer security attacks are
generated adversarially. Figure 1 illustrates this situation on
a toy example.

Semi-supervised approaches (Wang et al., 2005; Liu &
Zheng, 2006; Blanchard et al., 2010; Muñoz-Marı́ et al.,
2010; Görnitz et al., 2013) aim to bridge the gap between
supervised and unsupervised AD. These approaches do not
assume some common pattern among the “anomaly class”
and thus do not impose the typical cluster assumption semi-
supervised classifiers build upon (Zhu, 2008; Chapelle et al.,
2009). Instead, semi-supervised approaches to AD aim to
find a “compact description” while still correctly classifying
the labeled data. Through this, semi-supervised AD meth-
ods do not overfit to the labeled anomalies and generalize
to novel anomalies (Görnitz et al., 2013).

Existing work on deep semi-supervised learning has mainly
focused on the classification task (Kingma et al., 2014; Ras-
mus et al., 2015; Odena, 2016; Dai et al., 2017; Oliver et al.,
2018). So far, only a few deep semi-supervised approaches
to AD have been proposed, most of which are domain or
data-type specific (Ergen et al., 2017; Kiran et al., 2018;
Min et al., 2018).
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Figure 1. The need for semi-supervised AD methods: We consider a setting with only one known anomaly class (orange) at training time
(illustrated in (a)) and two new unknown anomaly classes appearing at testing time (bottom left and bottom right of Figure (b) and (c)).
The purely unsupervised method (shown in (b)) ignores the known anomalies, which are deemed normal. The purely supervised approach
(shown in (c)) overfits to the previously seen anomalies but fails to generalize to the novel anomalies.

2. Deep Support Vector Data Description
Here, we introduce a generalization of Deep Support Vector
Data Description (Deep SVDD) to the more general semi-
supervised AD setting that contains the unsupervised Deep
SVDD method (Ruff et al., 2018) as a special case.

2.1. Unsupervised Deep SVDD

For input space X ⊆ Rd and output space F ⊆ Rp, let
φ(· ;W) : X → F be a neural network with L ∈ N hidden
layers and weightsW = {W 1, . . . ,WL}. The objective of
Deep SVDD is to learn a neural network transformation φ
that minimizes the volume of a data-enclosing hypersphere
with radiusR > 0 and fixed center c ∈ F in output spaceF .
Given n ∈ N (unlabeled) training samples x1, . . . ,xn ∈ X ,
the Soft-Boundary Deep SVDD objective is defined by

min
R,W

R2 +
1

νn

n∑
i=1

max{0, ‖φ(xi;W)− c‖2−R2}. (1)

Points mapped outside the sphere (‖φ(xi;W)− c‖2 > R2)
get penalized and the network weights W are optimized
such that most of the data falls within the hypersphere
centered at c. Minimizing the volume of the sphere via
R2 enforces this learning process. In consequence, nor-
mal points get closely mapped to the hypersphere center,
whereas anomalies are mapped further away or outside the
sphere. Hyperparameter ν ∈ (0, 1] controls this trade-off
between volume and boundary violations (Ruff et al., 2018).

If the unlabeled training data x1, . . . ,xn is not polluted,
i.e. if most of the training examples are normal, the simpli-
fied One-Class Deep SVDD objective, which penalizes the
mean squared distance of all the mapped data points (not
just the outliers), is preferable:

min
W

1

n

n∑
i=1

‖φ(xi;W)− c‖2. (2)

2.2. Semi-Supervised Deep SVDD

Now we assume we also have access to m ∈ N labeled
samples (x̃1, ỹ1), . . . , (x̃m, ỹm) ∈ X ×Y in addition to the
n ∈ N unlabeled samples x1, . . . ,xn ∈ X with X ⊆ Rd

and Y = {−1,+1}. We denote ỹ = +1 for known normal
examples and ỹ = −1 for known anomalies.

We establish a Semi-Supervised Deep SVDD (SS-DSVDD)
generalization by extending the objectives (1) and (2) with
terms that enables learning from labeled data. We formulate
the Soft-Boundary SS-DSVDD problem as

min
R,W

R2 +
1

ν(n+m)

n∑
i=1

l
(
R2 − ‖φ(xi;W)− c‖2

)
+

η

ν(n+m)

m∑
j=1

l
(
ỹj
(
R2 − ‖φ(x̃j ;W)− c‖2

))
,

(3)

where l(z) = max{0,−z} is the hinge loss. That is, we
require normal examples (ỹ = +1) to lie inside the hy-
persphere and labeled anomalies (ỹ = −1) to lie outside.
We achieve this by penalizing accordingly: if a labeled
anomaly lies inside the sphere, the penalty is given by
R2−‖φ(x̃j ;W)−c‖2 and ‖φ(x̃j ;W)−c‖2−R2 elsewise.
If a labeled data point is already mapped onto the correct
side, there is no penalty. To generalize (2), we propose the
following One-Class SS-DSVDD objective:

min
W

1

n+m

n∑
i=1

‖φ(xi;W)− c‖2

+
η

n+m

m∑
j=1

(
‖φ(x̃j ;W)− c‖2

)ỹj
.

(4)

Here, we impose a quadratic loss on the distances of the
mapped points to the fixed center c, for both the unlabeled
samples and the labeled normal points. For the labeled
anomalies, we penalize the inverse such that anomalies must
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Figure 2. Experimental results when gradually increasing the ratio of labeled training examples. We report the average AUC with standard
deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various ratios for the approaches. Our
Semi-Supervised Deep SVDD shows significant improvements already with small amounts of labeled data.

be mapped further away from the center.1 In both semi-
supervised objectives (3) and (4), the hyperparameter η > 0
controls the balance between the labeled and unlabeled term.
For the case that only unlabeled data is available (m = 0),
we recover (1) and (2) from (3) and (4) respectively.

The Deep SVDD anomaly score is then given by the distance
to the center of the hypersphere: s(x) = ‖φ(x;W∗) −
c‖. We optimize all four non-convex objectives (1)–(4) via
SGD using backpropagation, where we add weight decay
regularization for improved generalization. We provide
further details on the optimization in Appendix A.

3. Experiments
We evaluate SS-DSVDD on MNIST, Fashion-MNIST, and
CIFAR-10. Our focus in the evaluation lies on the semi-
supervised setting and the detection performance in specific
experimental scenarios. We compare our semi-supervised
method to the corresponding natural ends on the learning
spectrum: the unsupervised Deep SVDD and a fully su-
pervised deep classifier. To control for architectural ef-
fects, we always employ the same underlying deep network
φ(· ;W) : X → F for all three methods. Appendix B
and C contain additional details regarding architecture and
competitors. For a comparison of various deep anomaly
detectors we refer to other recent works (Ruff et al., 2018;
Golan & El-Yaniv, 2018; Hendrycks et al., 2019).

3.1. Semi-Supervised Anomaly Detection Setup

All three datasets have ten classes from which we derive ten
AD setups on each dataset. In every setup, we consider one
of the ten classes to be the normal class whereas samples
from the remaining nine classes represent anomalies. The
original training data of the respective normal class forms
the unlabeled part of our training set. The training data of

1To ensure numerical stability, we add a machine epsilon (eps
∼ 10−6) to the denominator of the inverse.

the respective nine anomaly classes forms the data pool from
which we draw anomalies for training. We use the AUC
metric to quantitatively evaluate the detection performance
of the different approaches on the original respective test
sets using ground truth labels, i.e. ỹ = +1 for the normal
class and ỹ = −1 for the respective nine anomaly classes.

3.2. Experimental Scenarios

We examine three scenarios in which we vary the following
three experimental parameters: (i) the ratio of labeled train-
ing data, (ii) the ratio of pollution of the unlabeled training
data with (unknown) anomalies, and (iii) the number of
anomaly classes we draw the labeled anomalies from.

(i) Adding labeled anomalies We gradually increase the
ratio of labeled training data m/(n+m) by adding addi-
tional known anomalies x̃1, . . . , x̃m with ỹj = −1 to the
training set. In each of the ten AD setups, we take the train-
ing data of the respective normal class for the unlabeled
part of the training set and then add labeled anomalies from
one a priori randomly drawn anomaly class (out of the nine
remaining ones) at training time. At testing time, we always
consider all nine remaining classes as anomalies, i.e. there
are eight novel classes at testing. This setup was chosen
to highlight the performance on out-of-distribution, novel
anomalies. Note that the unlabeled part of the training set is
unpolluted. We repeat this training set generation process
for multiple seeds.

(ii) Polluted training data In this setup, we gradually
pollute the unlabeled part of the training set with (unknown)
anomalies drawn from all nine respective anomaly classes
in each AD setup. We again repeat experiments for multiple
seeds in each of the ten AD setups. In these experiments,
we fix the ratio of labeled training samples at 5% which
are again sampled only from one previously drawn anomaly
class in every seed. We hypothesize that the semi-supervised
approach alleviates the negative impact pollution has on
detection performance, since labeled anomalies should help
to “filter out” similar unknown anomalies.



Deep SVDD for Unsupervised and Semi-Supervised Anomaly Detection

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 3. Experimental results when gradually polluting the unlabeled part of the training set with anomalies. We report the average AUC
with standard deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various ratios for the approaches.
Our Semi-Supervised Deep SVDD methods proves to be the most robust towards training set pollution.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 4. Experimental results when gradually increasing the number of known anomaly classes. We report the average AUC with
standard deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various numbers of known anomaly
classes for the approaches. The more anomaly classes are given at training time, the better Semi-Supervised Deep SVDD performs.

(iii) Increasing the number of known anomaly classes
In the last scenario, we compare performance for an in-
creasing number of known anomaly classes. In (i) and (ii),
we always sample labeled anomalies for the training set
from only one of the nine anomaly classes per seed in each
AD setup. Here, we now gradually increase the number of
anomaly classes the labeled anomalies are drawn from for
the training set. Since we have a limited number of anomaly
classes (nine) in our setups, we expect the supervised classi-
fier to catch up with the semi-supervised approach at some
point. We fix the overall ratio of labeled training examples
again at 5% and consider a pollution ratio of 10% for the
unlabeled part of the training set in this scenario.

3.3. Results and Discussion

The results of the experimental scenarios (i)–(iii) are shown
in Figures 2–4. We see significant improvements in detec-
tion performance for SS-DSVDD over the unsupervised
baseline already with only little labeled data in Figure 2.
In comparison to the supervised classifier, which is vul-
nerable to novel anomalies at testing, our semi-supervised
method generalizes well to novel anomalies. Figure 3 con-
firms that performance drops for all methods as pollution

increases, where SS-DSVDD is the most robust. Finally,
Figure 4 demonstrates that the more diverse the known,
labeled anomalies in the training set are, the better the detec-
tion performance becomes. We see that the performance of
the supervised approach is very sensitive to the number of
anomaly classes, but since the number of anomaly classes
is limited in our setups, the classifier catches up at some
point. However, on CIFAR-10 5% labeled training data
seems to be insufficient to represent the variation in the
anomaly classes, which explains the bad supervised perfor-
mance even at a high number of known anomaly classes.
We give detailed results of all the variants in Appendix D.

4. Conclusion
We have generalized Deep SVDD to the more general
semi-supervised setting in this work. The resulting Semi-
Supervised Deep SVDD is an end-to-end deep method for
semi-supervised anomaly detection on high-dimensional
data. We demonstrated experimentally, that SS-DSVDD
significantly improves detection performance already with
only small amounts of labeled data. Our results suggest that
semi-supervised approaches to AD should be preferred in
applications where some labeled information is available.
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A. Semi-Supervised Deep SVDD
Optimization

The two SS-DSVDD objectives (3) and (4) are generally
non-convex in the network weightsW which usually is the
case in deep learning. We rely on (mini-batch) SGD to
optimize the network weights using backpropagation. For
Soft-Boundary SS-DSVDD, it would be inefficient to also
update radius R via SGD using some shared learning rate,
since the network parameters W and R generally are on
different scales. Instead, analogously to Ruff et al. (2018),
we suggest an alternating minimization approach. First, we
update the network weightsW using SGD keeping radius R
fixed; then, given the most recent network representations of
the data, we directly solve for radius R (e.g. via line search).
To save some computational load, we suggest to update R
on the mini-batches. With this approximation, we empiri-
cally found similar results but avoid forward passes on the
full training data. For improved generalization, we add `2
weight decay regularization with hyperparameter λ > 0 to
the objectives. Algorithm 1 summarizes the SS-DSVDD
optimization routine. For One-Class SS-DSVDD, hyperpa-
rameter ν and radius R are dropped from the algorithm and
only the network weightsW are updated via SGD.

Algorithm 1 Optimization of SS-DSVDD
Input:

Unlabeled data: x1, . . . ,xn

Labeled data: (x̃1, ỹ1), . . . , (x̃m, ỹm)
Hyperparameters: ν, η, λ
SGD learning rate: ε

Output:
Trained model: (R∗,W∗)

Initialize:
Neural network weights: W
Hypersphere parameters: R, c

for each epoch do
for each mini-batch do

Draw mini-batch B
W ←W − ε · ∇WJ(R,W;B)
Solve for R on mini-batch B

end for
end for

Using SGD allows SS-DSVDD to scale with large datasets
as the computational complexity scales linearly in the num-
ber of training batches and computations in each batch can
be parallelized (e.g. by training on GPUs). SS-DSVDD
also has low memory complexity as a trained model is fully
characterized by the final parameters (R∗,W∗) and no data
must be saved or referenced for prediction. Instead, the pre-
diction only requires a forward pass on the network which
usually is just a concatenation of simple functions.

Initialization of network weights W We empirically
found the best results by establishing an autoencoder pre-
training routine for initialization. That is, we first train an
autoencoder that has an encoder with the same architecture
as network φ on the reconstruction loss using only the un-
labeled training data. After training, we then initializeW
with the converged parameters of the encoder.

Initialization of center c and radiusR After initializing
the network weights W , we fix the hypersphere center c
as the mean of the network representations that we obtain
from an initial forward pass on the data (excluding labeled
anomalies). As also observed in Ruff et al. (2018), we found
SGD convergence to be smoother and faster by fixing center
c in the neighborhood of the initial data representations. If
many labeled normal examples are available, using only
those examples for a mean initialization would be another
strategy to minimize distortions from polluted unlabeled
training data. Radius R can be initialized with R = 0, for
example, which emphasizes unlabeled and labeled normal
samples in the beginning of the learning procedure. Adding
center c to the optimization variables would allow a trivial
“hypersphere collapse” solution for Deep SVDD.

Preventing a hypersphere collapse A “hypersphere col-
lapse” describes the trivial solution that the neural network
φ converges to the constant function φ ≡ c, i.e. the hyper-
sphere collapses to a single point. In Ruff et al. (2018), we
demonstrate theoretical network properties that prevent such
a collapse which we adopt for SS-DSVDD. Most impor-
tantly, network φ must have no bias terms and no bounded
activation functions. We refer to Ruff et al. (2018) for further
details.

B. Network Architectures
We employ LeNet-type convolutional neural networks
(CNNs) for all datasets, where each convolutional module
consists of a convolutional layer followed by leaky ReLU
activations with leakiness α = 0.1 and (2×2)-max-pooling.
On MNIST, we employ a CNN with two modules, 8×(5×5)-
filters followed by 4×(5×5)-filters, and a final dense layer
of 32 units. On Fashion-MNIST, we employ a CNN also
with two modules, 16×(5×5)-filters and 32×(5×5)-filters,
followed by two dense layers of 64 and 32 units respec-
tively. On CIFAR-10, we employ a CNN with three mod-
ules, 32×(5×5)-filters, 64×(5×5)-filters, and 128×(5×5)-
filters, followed by a final dense layer of 128 units. For
Deep SVDD, we remove all bias terms from the network to
prevent a hypersphere collapse.
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C. Details on Competing Methods
Unsupervised Deep SVDD Baseline We consider both
variants, Soft-Boundary Deep SVDD and One-Class Deep
SVDD as unsupervised baselines and always report the
better performance as the unsupervised result. For Soft-
Boundary Deep SVDD, we optimally solve for the ra-
dius R on every mini-batch and run experiments for ν ∈
{0.01, 0.1}. We set the weight decay hyperparameter to
λ = 10−6.

Semi-Supervised Deep SVDD We also consider both of
our SS-DSVDD objectives and again report the better per-
formance as the semi-supervised result. For Soft-Boundary
SS-DSVDD, we also run experiments for ν ∈ {0.01, 0.1}.
Again, we set λ = 10−6. We equally weight unlabeled and
labeled examples by setting η = 1.

Supervised Deep Binary Classifier To interpret AD as
a binary classification problem, we rely on the typical as-
sumption that most of the unlabeled training data is normal
by assigning y = +1 to all unlabeled examples. Already
labeled normal examples and labeled anomalies retain their
assigned labels of ỹ = +1 and ỹ = −1 respectively. We
train the supervised classifier on the binary cross-entropy
loss.

SGD Optimization Details We use the Adam optimizer
with recommended default hyperparameters (Kingma & Ba,
2014) and apply Batch Normalization (Ioffe & Szegedy,
2015) in SGD optimization. For all three approaches and
on all datasets, we employ a two-phase (“searching” and
“fine-tuning”) learning rate schedule. In the searching phase
we first train with a learning rate ε = 10−4 for 50 epochs.
In the fine-tuning phase we train with ε = 10−5 for another
100 epochs. We always use a batch size of 200. For the
supervised classifier, we initialize the network with uniform
Glorot weights (Glorot & Bengio, 2010). For unsupervised
and semi-supervised Deep SVDD, we establish an unsu-
pervised pre-training routine via convolutional autoencoder
(CAE) as explained in Appendix A. We set the network
φ to be the encoder of the CAE that we train beforehand,
and symmetrically construct the decoder where we replace
max-pooling with simple upsampling. After training the
CAE on the MSE reconstruction loss, we use the resulting
encoder weights for initialization.

D. Detailed Tables of Experimental Results
Below we give detailed results of the experiments for all five
methods considered: the unsupervised Soft-Boundary Deep
SVDD and One-Class Deep SVDD, our semi-supervised
Soft-Boundary SS-DSVDD and One-Class SS-DSVDD,
as well as the supervised binary classifier. Table 1 lists

the results from the experimental scenario (i) where we
gradually increase the proportion of labeled training data.
Table 2 lists the results from the experimental scenario (ii)
with polluted unlabeled training data. Table 3 lists the results
from the experimental scenario (iii) where we gradually
increase the number of anomaly classes from which we
draw the labeled anomalies from.
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Table 1. Detailed experimental results when gradually increasing the ratio of labeled training examples. We report the average AUC with
standard deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various ratios.

% LABELED SOFT ONE-CLASS SOFT ONE-CLASS SUPERVISED
DATA SET TRAIN SET DSVDD DSVDD SS-DSVDD SS-DSVDD CLASSIFIER

MNIST 0% 94.1±1.0 95.0±0.8 94.1±1.0 95.0±0.8
1% 94.1±1.1 96.2±0.8 90.1±4.0
5% 94.7±1.2 96.8±0.9 92.6±3.4
10% 95.0±1.2 97.0±1.0 93.0±3.2
20% 95.3±1.2 97.1±1.0 93.8±2.6

FASHION-MNIST 0% 91.1±0.5 91.6±0.5 91.1±0.5 91.6±0.5
1% 91.3±0.7 92.8±1.0 78.6±10.9
5% 91.7±1.0 93.1±1.2 84.1±7.2
10% 91.9±1.2 93.2±1.3 85.4±5.8
20% 92.0±1.3 93.3±1.3 87.5±4.9

CIFAR-10 0% 63.9±1.7 64.7±1.7 63.9±1.7 64.7±1.7
1% 64.6±1.9 69.6±3.1 55.6±5.0
5% 68.3±2.3 73.6±4.2 63.5±8.0
10% 69.4±2.8 75.3±4.6 67.7±9.6
20% 71.7±3.0 77.0±4.4 80.5±5.9

Table 2. Experimental results when gradually polluting the unlabeled part of the training set with anomalies. We report the average AUC
with standard deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various pollution ratios.

% POLLUTION SOFT ONE-CLASS SOFT ONE-CLASS SUPERVISED
DATA SET TRAIN SET DSVDD DSVDD SS-DSVDD SS-DSVDD CLASSIFIER

MNIST 0% 94.1±1.0 95.0±0.8 94.7±1.2 96.8±0.9 92.6±3.4
1% 90.3±1.6 94.4±0.8 89.9±3.9 96.0±0.9 90.3±4.2
5% 86.6±1.6 92.1±1.2 85.9±2.3 94.4±1.3 85.5±5.4
10% 83.2±1.6 89.6±1.4 82.7±1.8 92.4±1.4 82.4±6.4
20% 79.3±1.5 85.5±1.5 78.9±1.5 88.9±1.5 78.2±7.6

FASHION-MNIST 0% 91.1±0.5 91.6±0.5 91.7±1.0 93.1±1.2 84.1±7.2
1% 88.5±1.1 89.4±0.8 84.7±7.1 91.3±1.0 79.1±9.6
5% 83.0±1.0 84.5±0.8 82.6±2.5 87.3±1.8 71.9±11.4
10% 78.6±1.1 80.5±1.1 79.5±2.0 83.8±2.8 69.8±11.8
20% 74.5±1.4 76.1±1.2 75.7±1.6 79.8±3.3 64.5±12.6

CIFAR-10 0% 63.8±1.5 64.4±1.7 68.3±2.3 73.6±4.2 63.5±8.0
1% 62.7±1.7 63.9±1.5 70.7±6.3 70.8±3.8 62.9±7.3
5% 61.5±1.6 62.5±1.4 67.6±4.3 69.4±3.8 62.2±8.2
10% 60.6±1.6 61.7±1.7 64.6±3.1 69.6±4.6 60.6±8.3
20% 59.0±1.6 59.8±1.7 61.2±2.1 68.4±5.0 58.5±6.7
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Table 3. Experimental results when gradually increasing the number of known anomaly classes. We report the average AUC with standard
deviation computed over the 10 AD setups with 10 seeds per setup (i.e. overall 100 runs) at various numbers of known anomaly classes.

# KNOWN SOFT ONE-CLASS SOFT ONE-CLASS SUPERVISED
DATA SET CLASSES DSVDD DSVDD SS-DSVDD SS-DSVDD CLASSIFIER

MNIST 0 83.2±1.6 89.6±1.4 83.2±1.6 89.6±1.4
1 82.7±1.8 92.4±1.4 82.4±6.4
2 83.9±1.6 93.7±1.4 89.7±3.0
3 84.7±1.6 94.6±1.3 92.6±2.5
5 85.4±1.4 95.5±1.2 96.2±1.0

FASHION-MNIST 0 78.6±1.1 80.5±1.1 78.6±1.1 80.5±1.1
1 79.5±2.0 83.8±2.8 69.8±11.8
2 81.2±1.9 86.4±2.6 78.6±8.2
3 82.3±1.7 88.7±2.1 83.9±6.1
5 83.5±1.4 91.7±1.4 89.0±3.4

CIFAR-10 0 60.6±1.6 61.7±1.7 60.6±1.6 61.7±1.7
1 64.6±3.1 69.6±4.6 60.6±8.3
2 64.9±2.5 71.7±4.6 61.0±6.6
3 65.0±2.3 72.1±4.4 62.7±6.8
5 65.2±1.8 73.0±4.5 60.9±4.6


