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Abstract
Despite apparent human-level performances of
deep neural networks (DNN), they behave funda-
mentally differently from humans. They easily
change predictions when small corruptions such
as blur and noise are applied on the input (lack
of robustness), and they often produce confident
predictions on out-of-distribution samples (im-
proper uncertainty measure). While a number of
researches have aimed to address those issues, pro-
posed solutions are typically expensive and com-
plicated (e.g. Bayesian inference and adversarial
training). Meanwhile, many simple and cheap
regularization methods have been developed to
enhance the generalization of classifiers. Such reg-
ularization methods have largely been overlooked
as baselines for addressing the robustness and
uncertainty issues, as they are not specifically de-
signed for that. In this paper, we provide extensive
empirical evaluations on the robustness and uncer-
tainty estimates of image classifiers (CIFAR-100
and ImageNet) trained with state-of-the-art reg-
ularization methods. Furthermore, experimental
results show that certain regularization methods
can serve as strong baseline methods for robust-
ness and uncertainty estimation of DNNs.

1. Introduction
Recent studies have shown that inner mechanisms of DNNs
are different from those of humans. For example, DNNs are
easily fooled by human-imperceptible adversarial perturba-
tions (adversarial robustness (Szegedy et al., 2013; Goodfel-
low et al., 2015)) and semantics-preserving transformations
like noising, blurring, and texture corruptions (natural ro-
bustness (Geirhos et al., 2018b; Hendrycks & Dietterich,
2019; Geirhos et al., 2018a)). Another limitation of DNNs
is their inability to produce sound uncertainty estimates for
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their predictions. They are known to be inept at producing
well-calibrated predictive uncertainties (known unknowns)
and detecting out-of-distribution (OOD) samples (unknown
unknowns) (Hendrycks & Gimpel, 2017).

For adversarial robustness, it has been shown that augment-
ing adversarial perturbations during training, or adversarial
training, makes a model more adversarially robust (Kurakin
et al., 2016; Madry et al., 2017; Xie et al., 2018). However,
it is computationally challenging to employ it on large-scale
datasets (Kurakin et al., 2016; Xie et al., 2018). Adver-
sarially trained models overfit to the specific attack type
used for training (Sharma & Chen, 2017), and the perfor-
mance on unperturbed images drops (Tsipras et al., 2019).
On the other hand, methods which improve robustness to
non-adversarial corruptions are relatively less studied. Re-
cently it is shown that training models by augmenting a
specific noise enhances the performance on the target noise
but can not be generalized to the other unseen noise types
(Geirhos et al., 2018b). ImageNet-C dataset (Hendrycks &
Dietterich, 2019) is proposed to evaluate robustness to 15
corruption types including blur and noise while a network
should not observe the distortions during the train time. The
authors have shown that the natural robustness is improved
via adversarial training (Kannan et al., 2018) and Stylized
ImageNet augmentation (Geirhos et al., 2018a), but have
not considered more common and simpler regularization
types; we provide those baseline experiments in this paper.

Efforts to improve uncertainty estimates of DNNs have fol-
lowed two distinguishable paths: improving calibration of
predictive uncertainty and out-of-distribution (OOD) sam-
ple detection. On the predictive uncertainty side, variants
of Bayesian neural networks (Gal & Ghahramani, 2016;
Kendall & Gal, 2017) and ensemble methods (Lakshmi-
narayanan et al., 2017) have mainly been proposed. These
approaches, however, are expensive and often require mod-
ifications of training and inference stages. On the OOD
detection front, methods including threshold-based binary
classifiers (Hendrycks & Gimpel, 2017) and real or GAN-
generated OOD sample augmentation (Lee et al., 2018) have
brought about improvements in OOD detections. Above
approaches have demonstrated sub-optimal performances in
our experiments, even compared to simple baselines.
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As an independent line of research, many regularization
techniques have been proposed to improve the generaliza-
tion of DNN classifiers. For example, Batch Normaliza-
tion (BN) (Ioffe & Szegedy, 2015) and data augmentation
strategies such as random crop and random flip (Krizhevsky
et al., 2012; Szegedy et al., 2016a) have become standard
design choices for deep models. Despite their simplicity
and efficiency, the effects of state-of-the-art regularization
techniques such as label smoothing (Szegedy et al., 2016b),
MixUp (Zhang et al., 2017) and CutMix (Yun et al., 2019)
on the robustness and the uncertainty of deep models are
still rarely investigated. A few works have shown indeed
the effects of a few regularization techniques on DNN ro-
bustness (Zhang et al., 2017; Kannan et al., 2018; Yun et al.,
2019), but we provide a more extensive analysis with both
robustness and uncertainty perspectives.

We empirically evaluate state-of-the-art regularization tech-
niques and show that they improve the classification, robust-
ness, and uncertainty estimates for large-scale classifiers at
marginal additional costs. We argue that certain regulariza-
tion techniques must be considered as strong baselines for
future researches in robustness and uncertainty of DNNs.

2. Revisiting Regularization Methods
In this section, we revisit several regularization methods
including the state-of-the-art regularization methods used in
our experiments.

Input augmentation: With proper data augmentation
methods, a model can generalize better to the unseen sam-
ples. For example, random cropping and flipping are widely
used to improve classification performances (Krizhevsky
et al., 2012; Szegedy et al., 2016a; Huang et al., 2017).
However, it is not always straightforward to distinguish
augmentation types that improves the generalizability. For
example, adversarial samples, geometric transformations,
and pixel inversion are rarely helpful for improving clas-
sification performances (Tsipras et al., 2019; Cubuk et al.,
2018). One of the most effective augmentation methods is
Mixup (Zhang et al., 2017) which generates the in-between
class samples by the pixel level interpolation. Another ex-
ample of data augmentation is Cutout which erases pixels
in a region sampled at random (DeVries & Taylor, 2017;
Zhong et al., 2017). Recently proposed CutMix fills the pix-
els from other images instead of erasing pixels (Yun et al.,
2019). While being simple and efficient, Mixup, Cutout
and CutMix have shown significant improvements in clas-
sification performance. We consider their contribution to
robustness and uncertainty estimates in our experiments.

Label perturbation: Deep models often suffer from over-
confident predictions; they often produce predictions with
high confidence even on random Gaussian noise input
(Hendrycks & Gimpel, 2017). One straightforward way

to mitigate the issue is to penalize over-confident predic-
tions by perturbing the target y. For example, label smooth-
ing (Szegedy et al., 2016b) changes ground-truth label to
a smoothed distribution whose probability of non-targeted
labels are α/K, where α is a smoothing parameter whose
default value is often 0.1 and K is the number of classes.
By smoothing target predictions, models learn to regularize
overconfident predictions. Another examples are Mixup
(Zhang et al., 2017) and CutMix (Yun et al., 2019) which
blend two one-hot labels into one smooth label by the mix
ratio. Label smoothing is also known to offer a modest
amount of robustness to adversarial perturbations (Kannan
et al., 2018). It is thus widely used in adversarial training
to achieve better adversarial robustness. We consider label
smoothing as one of the axes for our investigation.

Other strategies for deep networks: Many researches
have achieved more stable convergence and better general-
ization performance via weight regularization (weight de-
cay) or feature-level manipulations like dropout (Srivastava
et al., 2014) and Batch Normalization (Ioffe & Szegedy,
2015). Recently, randomly adding noises on intermediate
features (Ghiasi et al., 2018; Gastaldi, 2017; Huang et al.,
2016; Yamada et al., 2018), or adding extra paths to the
model (Hu et al., 2017; 2018) have been proposed. We
present robustness and uncertainty experiments on a selec-
tion of above regularization techniques.

3. Experimental Results
In this section, we evaluate the effects of the state-of-the-
art regularization techniques on the various robustness and
uncertainty benchmarks. We show that well-regularized
models are powerful baselines.

3.1. Experimental Settings

We first describe the settings for training models used in the
robustness and the uncertainty benchmarks. To ensure the
effectiveness of each regularization methods, we employ a
powerful baseline, PyramidNet-200 (Han et al., 2017). The
model shows the state-of-the-art performance on CIFAR-
100 (top-1 error is 16.45%). Due to page limits, we report
ImageNet results in the appendix; the conclusion is largely
similar to that of CIFAR-100 results.

We consider the state-of-the-art regularization methods of
Cutout (DeVries & Taylor, 2017), Mixup (Zhang et al.,
2017), CutMix (Yun et al., 2019), label smoothing (Szegedy
et al., 2016b), ShakeDrop (Yamada et al., 2018), and their
combinations for experiments. We optimize the models
with the SGD with momentum. We set the batch size to 64
and training epochs to 300. The learning rate is initially set
to 0.25 and is decayed by the factor of 1/10 at 150th and
225th epochs. We also employ random crop and random flip
augmentations for all methods, unless specified otherwise.
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Table 1. CIFAR-100 classification, robustness to adversarial and non-adversarial noises, and uncertainty benchmark results. For non-
adversarial corruptions, we report top-1 error in CIFAR-100-C dataset and top-1 error in occluded CIFAR-100 test samples. We report
out-of-distribution (OOD) detection errors averaged over seven OOD datasets. We fix the base architecture as PyramidNet-200 with
α = 240. LS stands for label smoothing. Lower is better for all reported numbers and all values are percentage.

Classification Robustness Uncertainty
CIFAR-100 FGSM CIFAR-C Occlusion Expected OOD

Method LS Top-1 Err. Top-1 Err. Top-1 Err. Top-1 Err. Calibration Err. Detection Err.

Baseline − 16.45 84.20 45.11 72.19 8.00 18.05
3 16.73 82.82 46.50 74.40 2.51 17.59

ShakeDrop − 15.08 77.91 44.37 78.69 8.01 19.76
3 15.05 63.09 43.74 82.22 2.53 25.59

Cutout − 16.53 91.07 51.65 27.00 7.67 28.73
3 15.61 77.77 48.74 27.03 4.24 17.92

Cutout + ShakeDrop − 15.91 88.66 50.00 26.19 6.63 19.55
3 13.49 69.59 43.86 26.33 1.45 18.40

Mixup − 15.63 63.85 42.81 56.80 7.89 39.09
3 15.91 55.84 42.20 57.60 15.20 28.56

Mixup + ShakeDrop − 14.91 61.91 40.60 57.07 7.28 22.92
3 14.79 56.32 40.32 56.76 15.85 18.54

CutMix − 14.23 88.88 49.83 32.16 4.92 10.95
3 15.55 74.00 51.01 35.68 7.91 13.56

CutMix + ShakeDrop − 13.81 70.75 43.36 35.83 2.46 19.82
3 13.83 62.72 44.99 34.96 5.26 18.89

Adversarial Logit Pairing 3 24.75 51.32 50.04 92.27 6.67 21.57
Adversarial Training 3 26.85 51.80 51.85 93.59 8.71 28.06
w/o Random Crop & Flip − 21.83 90.63 48.71 77.46 7.99 26.91
Add Gaussian Noise − 19.49 85.08 42.01 73.23 9.79 25.16
OOD augment (SVHN) − 38.80 97.35 67.03 79.13 46.37 43.53
OOD augment (GAN) − 34.78 94.65 57.09 85.30 38.22 33.35

For the comparison methods for adversarial robustness, we
train the baseline model with adversarial training (Kurakin
et al., 2016; Madry et al., 2017) and adversarial logit paring
(ALP) (Kannan et al., 2018). We use Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) with ε = 8/255
as the threat model. All the results are evaluated with ap-
plying label smoothing to achieve better performances. We
mix the clean and adversarial samples with the same ratio
as proposed in (Kurakin et al., 2016). The optimizer for
adversarial training is ADAM (Kingma & Ba, 2014).

As the baseline method for CIFAR-C, we consider Gaussian
noise augmentation; the same type of perturbation taken
from the CIFAR-C dataset (Hendrycks & Dietterich, 2019).
For out-of-distribution (OOD) detection baseline, we aug-
ment OOD samples and the target labels to be the uniform
label as proposed in (Lee et al., 2018). We augment two
types of OOD samples used in (Lee et al., 2018): Street View
House Numbers (SVHN) dataset and generated samples by
GAN. In our experiments, we use WGAN-GP (Gulrajani
et al., 2017) instead of DC-GAN (Radford et al., 2015).

In Table 1, we report classification, adversarial and natural
robustness, and uncertainty measure evaluations. Classifi-
cation performances are measured on CIFAR-100 test set;

adversarial robustness is measured against the FGSM (Good-
fellow et al., 2015) attack on CIFAR-100; natural robustness
is measured on CIFAR-C (Hendrycks & Dietterich, 2019).
Uncertainty qualities are measured in terms of expected cal-
ibration error (Guo et al., 2017) and OOD detection error
rates (Hendrycks & Gimpel, 2017). We report the OOD
detection errors at method-specific optimal thresholds. De-
tailed benchmark settings are reported in the appendix.

3.2. Analysis

Here we analyze the following questions from Table 1.

Can data augmentation improve robustness against various
perturbations at once? Data augmentation is a straightfor-
ward solution to improve robustness against specific type
of noise, e.g., adversarial perturbation, Gaussian noise, and
occlusion. In Table 2, we have observed that different type
of augmentation methods improve robustness against the
target noise. For example, ALP improves adversarial ro-
bustness but it fails to improve robustness against occlusion
and other natural corruptions. Similarly, in Table 2, Cutout
is only method that improves occlusion robustness among
the other augmentation methods. However, Cutout degrades
other types of robustness, such as adversarial robustness,
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Table 2. Comparison of noise augmentations on robustness to various noises. Noise, blur, weather and digital are a subset of CIFAR-C.
CIFAR-100 FGSM Occlusion CIFAR-C Noise Blur Weather Digital

Methods Top-1 Err. Top-1 Err. Top-1 Err. mCE Top-1 Err. Top-1 Err. Top-1 Err. Top-1 Err.

Baseline 16.45 84.20 72.19 45.11 74.62 46.77 30.66 38.65
Adversarial Logit Pairing 24.75 51.32 92.27 50.04 69.94 51.75 40.62 44.70
Cutout 16.53 91.07 27.00 51.65 89.77 51.40 34.24 43.20
Add Gaussian Noise 19.49 85.08 73.23 42.01 54.63 48.42 31.54 38.48

Table 3. Comparison of well-regularized networks and baseline methods to improve robustness and uncertainty. SD stands for ShakeDrop.
CIFAR-100 FGSM CIFAR-C Occlusion Expected OOD

Method Top-1 Err. Top-1 Err. Top-1 Err Top-1 Err. Calibration Err. Detection Err.

Baseline 16.45 84.20 45.11 72.19 8.00 18.05
Cutout + SD + LS 13.49 69.59 43.86 26.33 1.45 18.40
Mixup + SD + LS 14.79 56.32 40.32 56.76 15.85 18.54
CutMix + SD + LS 13.83 62.72 44.99 34.96 5.26 18.89

Adversarial Logit Pairing 24.75 51.32 50.04 92.27 6.67 21.57
Add Gaussian Noise 19.49 85.08 42.01 73.23 9.79 25.16
OOD augment (SVHN) 38.80 97.35 67.03 79.13 46.37 43.53
OOD augment (GAN) 34.78 94.65 57.09 85.30 38.22 33.35

compare to the baseline. By adding Gaussian noise to the
input, robustness to the common corruptions is enhanced,
especially for the “noise”. In summary, we have observed
that it would be difficult to improve the robustness against
various type of corruptions at once. A similar phenomenon
was also observed by (Geirhos et al., 2018b).
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Figure 1. Average top-1 prediction probability by models trained
with state-of-the-art regularization methods. Models with label
smoothing (LS) produce less confident predictions.

Can label smoothing help adversarial robustness and uncer-
tainty estimates? In our experiments, adding label smooth-
ing (LS) alone does not generally improve classification
accuracies. Surprisingly, however, we observe that LS
improves robustness against adversarial perturbation, cal-
ibration error, and OOD detection performance (Table 1).
For example, by adding LS, Cutout + ShakeDrop achieves
13.49% classification top-1 error and FGSM top-1 error
69.59% where performances without LS are 15.91% and
88.66% for classification and adversarial robustness respec-
tively. We believe that it is because a model trained with
LS produces low confident predictions in general (Figure 1).
In particular, LS shows impressive improvements in the
expected calibration error, except for Mixup and CutMix
families. We believe the result is due to the fact that Mixup
and CutMix already contain the label mixing stage that

already lowers the prediction confidences; further adding
label smoothing makes the overall confidences too low.

Can well-regularized models be a powerful baseline for the
robustness and uncertainty estimations? In Table 3, we have
observed that our well-regularized models such as Cutout +
ShakeDrop + label smoothing, Mixup + ShakeDrop + label
smoothing, and CutMix + ShakeDrop outperform methods
targeted for improved robustness and uncertainty estima-
tions (ALP and OOD augmentations) in many evaluation
metrics. For example, ALP model shows occlusion top-1
error 92.27% while Cutout and CutMix based models show
26.33% and 34.96% top-1 error respectively. It is notable
that OOD augmentations are not effective for CIFAR-100
tasks, while they have been shown to be effective for toy
datasets like SVHN and CIFAR-10 (Lee et al., 2018).

4. Conclusion
In this paper, we have empirically compared the robustness
and uncertainty estimates of state-of-the-art regularization
methods against prior methods specifically designed for
such aspects. We have observed that methods proposed
to solve the specific problem are only effective on their
targeted task. For example, adversarial training only im-
proves adversarial robustness while it degrades classifica-
tion performance, robustness against common corruptions
and occlusion, and uncertainty estimates. On the other hand,
good combinations of simple and cheap regularization tech-
niques improve overall robustness and uncertainty estima-
tion performances, and even surpass specialized methods
in certain uncertainty and robustness tasks. We believe that
well-regularized models have largely been overlooked in
robustness and uncertainty studies, and that they should be
considered as powerful baselines in future works.
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Table 4. Top-1 errors of considered regularization tehcniques on various test-time perturbations. We report the average Top-1 error among
clean images, FGSM attacked images, occluded images, and naturally corrupted images (subsets of ImageNet-C). Finally, we report mCE
(mean corruption error) normalized by AlexNet as proposed in (Hendrycks & Dietterich, 2019). SD and LS stand for ShakeDrop and
label smoothing, respectively.

Average Clean FGSM Occ. Noise Blur Weather Digital mCE

Baseline 67.43 23.68 91.85 46.01 78.58 86.63 64.99 80.24 77.55
Label Smoothing 62.67 22.31 73.60 44.35 77.08 82.30 61.72 77.33 74.44
ShakeDrop 64.57 22.03 87.19 42.98 76.13 83.42 61.56 78.69 74.87
ShakeDrop + LS 61.45 21.92 72.65 42.85 74.47 82.15 60.47 75.67 73.10
Cutout 64.81 22.93 88.50 29.72 79.94 85.37 65.34 81.87 78.01
Cutout + LS 61.90 22.02 75.24 29.08 79.80 84.51 62.72 79.93 76.54
Mixup 61.46 22.58 75.60 44.20 73.09 81.49 58.83 74.42 71.88
Mixup + LS 58.54 22.41 69.43 42.31 65.36 82.95 53.37 73.94 69.14
CutMix 62.08 21.60 69.04 30.09 80.88 84.87 64.11 83.95 78.29
CutMix + LS 61.02 21.87 67.41 31.51 77.01 84.61 63.13 81.56 76.55
CutMix + SD 61.75 21.60 80.00 31.28 77.06 84.18 61.04 77.07 74.69
CutMix + SD + LS 60.96 21.90 68.65 31.62 76.04 84.53 62.82 81.16 76.14

A. Detailed Benchmark Settings
We describe the settings for the robustness and the uncer-
tainty benchmarks used in Table 1. We tested four bench-
marks: robustness to adversarial attacks, robustness to nat-
ural corruptions, robustness to occlusions, confidence cali-
bration error, and out-of-distribution detection.

To evaluate adversarial robustness, we use FGSM (Good-
fellow et al., 2015) with ε = 8/255. Note that our baseline
regularization methods cannot provide a provable defense to
the adversarial attacks while adversarial training and ALP
could mitigate the effect of the adversarial attacks.

For evaluating robustness against natural corruptions, we
create corrupted CIFAR-100 (CIFAR-100-C) using 75 trans-
forms proposed in ImageNet-C (Hendrycks & Dietterich,
2019). In ImageNet-C, there are 15 transforms categorized
into ‘noise’, ‘blur’, ‘weather’, and ’digital’ with five severi-
ties. We report the average accuracy over all 75 transforms
in Table 1.

In occlusion robustness benchmarks, we generate occluded
samples by filling zeros (black pixels) over a square at the
image center whose side length is half the image width; i.e.,
16 for CIFAR-100 and 112 for ImageNet.

To show how comparison methods affect the confidence of
predictions, we evaluate the mean absolute value calibration
error (Guo et al., 2017). We view a classification system as
a probabilistic confidence estimator whose confidence is a
measurement of the trustworthy estimation. The bin size is
set to 20. We refer (Guo et al., 2017) for further details of
the evaluation.

Finally, we have tested the baseline OOD detection per-
formance of each model. We have used the threshold-

based detector proposed in (Hendrycks & Gimpel, 2017).
Seven datasets used in (Liang et al., 2018) were considered:
cropped Tiny ImageNet, resized Tiny ImageNet, cropped
LSUN (Yu et al., 2015), resized LSUN, iSUN, Gaussian
noise, and Uniform noise. In Table 1, we report the average
detection error over the seven datasets.

All the experiments are done with NAVER Smart Machine
Learening (NSML) GPU platform (Sung et al., 2017; Kim
et al., 2018).

B. ImageNet Experiments
In this section, we report additional experimental results on
ImageNet. We use ResNet-50 (He et al., 2016) as the base-
line model and train the models with same training scheme
as used in (Yun et al., 2019). We only evaluate robust-
ness benchmarks, i.e., adversarial robustness against FGSM,
natural robustness against ImageNet-C, and robustness to
occlusion.

In Table 4, we report the top-1 error on clean images, at-
tacked images, occluded images, naturally corrupted images
(subsets of ImageNet-C), and their average. Also we report
the mCE (mean corrupted error) normalized by AlexNet
(Krizhevsky et al., 2012) which is proposed in (Hendrycks
& Dietterich, 2019).

As we observed in CIFAR-100 experiments, regularized
models provide better overall performances. For example,
CutMix achieves 62.08% average error alone but adding
ShakeDrop and label smoothing improves average error
to 60.96%. Table 4 also shows that label smoothing is
still effective in improving the robustness of the models
in ImageNet experiments. Mixup helps robustness against
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common corruptions; CutMix shows better classification
performance, adversarial robustness, and occlusion robust-
ness.

Interestingly, in our experiments, Mixup + label smooth-
ing achieves the state-of-the-art performance on ImageNet-
C mCE of 69.14% where current best model is stylized-
ImageNet trained model (Geirhos et al., 2018a) with mCE
of 69.3%. Note that stylized-ImageNet requires heavy pre-
computations to generate the stylized images, and requires
additional fine-tuning on ImageNet data.

Methods used in our experiments improve the overall robust-
ness and uncertainty performances at negligible additional
costs. We believe that well-regularized models should be
considered as powerful baselines for the robustness and the
uncertainty estimation benchmarks.


