Stochastic Prototype Embeddings

Tyler R. Scott ' > Karl Ridgeway ' Michael C. Mozer ' >

Abstract

Supervised deep-embedding methods project in-
puts of a domain to a representational space where
same-class instances lie near one another and
different-class instances lie far apart. We propose
a probabilistic method that treats embeddings as
random variables. Based on a state-of-the-art de-
terministic method, Prototypical Networks (Snell
et al., 2017), our approach supposes the existence
of a class prototype around which class instances
are Gaussian distributed. The prototype posterior
is a product distribution over labeled instances,
and query instances are classified by marginal-
izing relative prototype proximity over embed-
ding uncertainty. We describe an efficient sampler
for approximate inference that allows us to train
the model at roughly the same space and time
cost as its deterministic sibling. Incorporating
uncertainty improves performance on few-shot
learning and gracefully handles label noise and
out-of-distribution inputs.

1. Introduction

Supervised deep-embedding methods map instances from
an input space to a latent embedding space in which same-
label pairs are near and different-label pairs are far. The
embedding thus captures semantic relationships without dis-
carding inter-class structure. In contrast, consider a standard
neural network classifier with a softmax output layer trained
with a cross-entropy loss. Although its penultimate layer
might be treated as an embedding, the classifier’s training
objective attempts to orthogonalize all classes and thereby
eliminate any information about inter-class structure.

Embedding methods are popular in the few-shot learning
literature (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Triantafillou et al., 2017; Finn et al., 2017; Edwards

"Department of Computer Science, University of Colorado Boul-
der ?Sensory Inc. *Google Research. Correspondence to: Tyler
R. Scott <tysc7237 @colorado.edu>.

Presented at the ICML 2019 Workshop on Uncertainty and Ro-
bustness in Deep Learning. Copyright 2019 by the author(s).

& Storkey, 2017; Scott et al., 2018; Ridgeway & Mozer,
2018; Mishra et al., 2018) where the goal is to classify query
instances based on one or a small number of labeled exem-
plars of novel classes. These methods operate by embedding
the queries and exemplars using a pre-trained network, and
classifying each query according to its proximity to the ex-
emplars. Embedding methods are also critical in open-set
recognition domains such as face recognition and person
re-identification.

Loss functions used to obtain embeddings can be character-
ized according to the number of instances used to specify
a loss. To describe these losses, we will use the notation
zq, for an embedding of class a.. Pairwise losses attempt to
minimize within-class distances, ||z, — 2., ||, and maximize
between-class distances, ||z, — z3|| (Chopra et al., 2005;
Yi et al., 2014; Hadsell et al., 2006; Oh et al., 2019). Triplet
losses attempt to ensure within-class instances are closer
than between-class instances, ||zo — 2L|| < ||za — 25
(Schroff et al., 2015; Song et al., 2016; Wang et al., 2017;
Karaletsos et al., 2016). Quadruplet losses attempt to ensure
every within-class pair is closer than every between-class
pair, ||zo — 2Ll < |24 — zs|| (Ustinova & Lempitsky,
2016). Finally, cluster-based losses attempt to use all in-
stances of a class (Snell et al., 2017; Song et al., 2017;
Ridgeway & Mozer, 2018; Rippel et al., 2016); for exam-
ple, Prototypical Networks (PN) compute the mean of a
set of instances of a class, Z,, and ensure that additional
instances of that class, z,, satisfy a proximity constraint
such as ||zq — Zo|| < ||2a — 25|

Nearly all methods previously proposed for deep embed-
dings are deterministic: an instance projects to a single point
in the embedding space. Deterministic embeddings fail to
capture uncertainty due either to out-of-distribution inputs
(e.g., data corruption) or label ambiguity (e.g., overlapping
classes). Representing uncertainty is important for many
reasons, including robust classification and decision making,
informing downstream models, interpreting representations,
and detecting out-of-distribution samples. Our proposed
method, the Stochastic Prototype Embedding (SPE), is a
variant of the PN (Snell et al., 2017), described above. As
in the PN, our SPE assumes each class can be characterized
by a prototype in the embedding space and an instance is
classified based on its proximity to a prototype. In the case
of the SPE, the embeddings and prototypes are Gaussian

Stochastic Prototype Embeddings

random variables, each class instance is assumed to be a
Gaussian perturbation of the prototype, and a query instance
is classified by marginalizing out over the embedding uncer-
tainty.

Using a synthetic data set, we demonstrate that the embed-
ding uncertainty is related to both input and label noise.
And on a few-shot learning task, we show that the SPE
outperforms its state-of-the-art deterministic sibling, the
PN.

2. The Model

The SPE assumes that the latent representation, z, is a Gaus-
sian conditioned on the input, x:

p(z|x) = N(2; po, 021) (1)

with mean, ., and variance, o2, computed by a deep neural

network, similar to a Variational Autoencoder (Kingma &
Welling, 2014). (We discuss the possibility of using a full
covariance matrix in Appendix C.) The classification, y, in
turn is conditioned on z, with p(y|z) taking the same form as
in the original PN (Snell et al., 2017), to be described shortly.
Given an input, a class prediction is made by marginalizing
over the embedding uncertainty:

p(ylz) = / p(y]2)p(z|z)dz, @

We train the SPE using the standard few-shot learning
paradigm, consisting of a sequence of episodes, each with m
instances of n classes. We split the m x n instances into kxn
support examples, defining a set S, and (m — k) X n query
examples. The support instances for each class ¢, S, € S,
are used to determine the class prototype, v, and the query
instances are evaluated to predict class label (Equation 2).

2.1. Forming class prototypes

In the SPE, each class y has an associated prototype, v, in
the embedding space, and each instance ¢ of class y, denoted
x;, projects to an embedding, z;, in the neighborhood of v:

vy = 2; + €, where € ~ N'(0,021). (3)

We assume that the prototype is consistent with all support
instances, allowing us to express the likelihood of v, as a
product distribution:

_ HiGSy p(vylwi)

L Hiesy pvylai)dv

Because p(vy|x;) is Gaussian, the resulting product is too:
vylSy ~ N (py, o21) with

-1
2 _ 2 ~—2
O'y— Jm,ﬂ,

i€8,

p(”y‘sy) “4)

anduy:aio E &;Qoumi ,
i€S,

where 62 = o} +o? and o denotes the Hadamard product.

Essentially, the prototype is a confidence-weighted average
of the support instances.

2.2. Prediction and approximate inference

We assume a softmax prediction for a query embedding, z:
pylz, 8) o< N (25 py, 51) 5)

. ~ 2 _ 2 2 . . .
with 6, = o, + o as before, yielding the class posterior
for query x:

N(z; py, 621
(6)

The class distribution is equivalent to that produced by the
deterministic PN as o7 — 0 when o = o, for all class
pairs (y,y’). However, in the general case, the integral has
no closed form solution; thus, we must sample to approxi-
mate p(y|x, S), both for training and evaluation. We employ
two samplers, which we refer to as naive and intersection.

2.2.1. NAIVE SAMPLING

A direct approach to approximating the class posterior is to
express Equation 2 as an expectation, . (.| [P(y]2, S)].
and to replace the expectation with the average over a set of
samples. We utilize the reparameterization trick of Kingma
& Welling (2014) to train the model. Although this is the
simplest approach, it is sample-inefficient during training,
and when the number of samples is reduced, performance is
impacted.

2.2.2. INTERSECTION SAMPLING

In Equation 6, the product of Gaussian densities in the
numerator can be rewritten:

N(%Nzno'iI) N(z;uy,&gl) — -
N (2 oy, 02,0) N (ta; py, (05 + 67)1)

where

2 _ (=2 ~—2y-1
0,,=(0,"+06,7) and

My :Uiyo(0;2ou$+&;20uy).
Substituting Equation 7 into Equation 6,

p(ylz, S) = N (pa; py, (02 + 62)T) X

L] ®
EZNN([J.,;y,O'gyI) ZN('Z’IJ’P?UPI) .

Approximating the expectation with samples from
N (tzy,02,1), we obtain a sampler that focuses on the

Stochastic Prototype Embeddings

Class A ~ Class B

&
Orientation
+
3

20 1o +00 +1lo +20 %20 1o +00 +1o +
Color Color
Class C 20 Class D

&
Orientation
+
3

-lo +1o +20 ~20 -lo

Color Color
Figure 1. Samples from the four classes in our synthetic data set. In
each plot, class means are shown at the center, along with samples
spanning +2 standard deviations in both orientation and color.
A sample’s transparency is set according to its class-conditional
likelihood. Both dimensions can be coded as directional variables.
The class centroids on each dimension are 90° apart with standard
deviation 22.5°.

Figure 2. Synthetic data set: (left) A set of examples, with the
four class centroids located in the corners and examples between
formed via linear interpolation in the generative space. (right)
The 2D stochastic prototype embedding for the examples. The
shape is plotted at the mean of p(z|x), and the outlines of the ovals
represent equi-probability contours at 0.4 standard deviations.

intersection of the input distribution and a given class distri-
bution. During training with a cross entropy loss, we need
only sample for the known (target) class y. Compared to
naive sampling, we found this scheme to be more robust and
significantly more sample efficient, requiring only a single
sample to train effectively.

3. Experimental Results

We assess the SPE when trained on either the naive or inter-
section sampler; in both cases, we evaluate using the naive
sampler with 200 samples. For details regarding network
architectures and hyperparameters, see Appendix A, and for
simulation details, including the choice of initialization for
0?2, see Appendix B.

3.1. Synthetic color-orientation data set

Using a synthetic image data set, we demonstrate that the
SPE can capture the generative structure of a domain and
provide sensible estimates of uncertainty. The data set con-
sists of 64 x 64 pixel images with a well-defined class
structure. The four classes in our domain are distinguished
by orientation, color, or both (Figure 1). Class-conditional
generative parameters—orientation and color—are sampled
from an isotropic Gaussian distribution. Class overlap on
color and orientation dimensions is symmetric. We tuned
the variance such that there would be significant overlap
between classes in order to elicit embeddings with increased
uncertainty in overlapping regions. Full details of the syn-
thetic data set can be found in Appendix A.2.

We trained a two-dimensional, intersection-sampling SPE
on samples from this domain, using two instances per class
to form prototypes. Classification accuracy of held-out sam-
ples is approximately 86%. Accounting for class overlap, a
Bayes optimal classifier has an accuracy of approximately
87%. For visualization, we selected 25 examples by inter-
polating between the class means. The examples and their
embeddings are shown in the left and right panels of Fig-
ure 2. The network has captured the structure of the domain
by disentangling the two factors of variation. To identify
the input array and the embedding space, the input array
must be mirrored along the horizontal axis. The embedding
variance encodes label ambiguity. Instances half way be-
tween two classes on one dimension have maximal variance
along that dimension. Label ambiguity is one type of uncer-
tainty. An equally important source of uncertainty comes
from noisy or out-of-distribution (OOD) inputs. We exam-
ined OOD inputs generated in two different ways. In the
left panel of Figure 3, we show the consequence of adding
pixel hue noise to the four class centroids. Only one of these
centroids is shown along the abscissa, but all four are used
to make the graph, with many samples per noise level. The
grey and black bars in the graph indicate variance on the
vertical and horizontal dimensions of the embedding space,
respectively. As pixel hue noise increases, uncertainty in
the color grows but uncertainty in the orientation does not.
In the right panel of Figure 3, we show the consequence of
shortening the length of the legs of the shape. Shortening
the legs removes cues that can be used both for determin-
ing both color and orientation. As a result, the uncertainty
grows on both dimensions.

3.2. Omniglot

The Omniglot data set contains images of labeled, handwrit-
ten characters from diverse alphabets. Omniglot is one of
the standard data sets for comparing methods in the few-shot
learning literature. The data set contains 1623 unique char-
acters, each with 20 instances. Following Snell et al. (2017),

Stochastic Prototype Embeddings

=

3
8

s
8

Mean Embedding Standard Deviation
s

Mean Embedding Standard Deviation

Figure 3. Synthetic data set: (left) uncertainty on the two
embedding dimensions as the hue becomes more difficult
to discern; (right) uncertainty on the two embedding dimen-
sions as the orientation becomes more difficult to discern.

Table 1. Test classification accuracy (%) on Omniglot with both 2D and 64D embeddings comparing the PN and the SPE with intersection
sampling (1 sample per trial). Performance for PN and SPE is a mean over 1000 random test episodes, showing +1 standard error of the

mean.

2D 1-SHOT, 5-CLASS

5-SHOT, 5-CLASS

1-SHOT, 20-CLASS 5-SHOT, 20-CLASS

PN 75.7+0.4 82.6 £ 0.3 45.0+£0.2 55.9+£0.2
SPE 76.9 + 0.4 82.3+0.3 49.7 £ 0.2 55.3+0.2
64D 1-SHOT, 5-CLASS 5-SHOT, 5-CLASS 1-SHOT, 20-CLASS 5-SHOT, 20-CLASS
PN 98.46 £ 0.09 99.55 £0.03 94.87 £ 0.08 98.63 £0.03
SPE 98.53 £ 0.08 99.52 £ 0.03 94.93 + 0.08 98.56 £0.02

we augment the original classes with all 90° rotations, re-
sulting in 6492 total classes, and we use the same train,
validation, and test splits. Each grayscale image is resized
from 32 x 32 to 28 x 28. We trained and evaluated deter-
ministic Prototypical Networks, naive-sampling SPEs, and
intersection-sampling SPEs. Each is trained episodically,
where a training episode contains 60 randomly sampled
classes and 5 query instances per class, and test episodes
contain 15 query instances per class.

We first compare the effectiveness of using naive and inter-
section samplers during SPE training of Omniglot. We vary
both the sampler and the number of samples drawn per train-
ing query, denoted by s. We evaluate in a 1-shot 20-class
setting, where shot refers to the number of support examples
used to compute a prototype, and class refers to the number
of candidate test classes per episode. Figure 4 shows test

0.52
> /—f
® 0.50

0 0.48

cura

°
»
)

‘ —— Intersection sampler

e
»
I

I
»
N

Test classification a

o
'S
S

—}— Naive sampler

=

3 9 27 81
Number of samples drawn (s)

Figure 4. Test classification accuracy as a function of number of
training samples per query instance for a naive-sampling and
intersection-sampling 2D SPE on a 1-shot, 20-class Omniglot
task. Performance is a mean over 5 replications of running the
model, showing £1 standard error of the mean.

classification accuracy as the number of samples drawn per
training trial (s) increases. As we previously claimed, the
intersection-sampling SPE is much more sample-efficient
and systematically outperforms the naive-sampling SPE.
Furthermore, the intersection-sampling SPE is more robust
and less susceptible to poor initialization or uninformative
samples.

Table 1 presents results for simulations with Omniglot com-
paring the deterministic PN to the intersection-sampling
SPE. For both 2- and 64-dimension embeddings, the SPE
either matches or outperforms the PN, a state-of-the-art al-
gorithm in few-shot learning. In the 64D embedding, both
methods are close to ceiling. In the 2D embedding, the SPE
particularly shines in the 1-shot tests, perhaps because, rela-
tive to the 5-shot tests, performance is further from ceiling.
However, another possibility is that the role of uncertainty is
greater when only one instance is used to form the prototype.
When 5 instances are used, the uncertainty shrinks signifi-
cantly, causing the SPE to behave more like its deterministic
sibling. To emphasize, the improved performance of the
SPE does not incur much of a computational cost in train-
ing. And by providing an estimate of uncertainty associated
with embedded instances, the SPE offers the possibility of
detecting OOD samples and informing downstream systems
that operate on the embedding.

4. Conclusion

We propose a Stochastic Prototype Embedding (SPE) and
demonstrate its effectiveness in representing uncertainty
related to both input and label noise on a synthetic data
set. Furthermore, we show that the SPE consistently out-
performs its deterministic sibling, the Prototypical Network
(PN), at approximately the same space and time cost.

Stochastic Prototype Embeddings

References

Chopra, S., Hadsell, R., and LeCun, Y. Learning a Simi-
larity Metric Discriminatively, with Application to Face
Verification. In IEEE Conference on Computer Vision
and Pattern Recognition, 2005.

Edwards, H. and Storkey, A. Towards a Neural Statistician.
In International Conference on Learning Representations,
2017.

Finn, C., Abbeel, P., and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In In-
ternational Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1126—
1135, 06-11 Aug 2017.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality
Reduction by Learning an Invariant Mapping. In IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, pp. 1735-1742, 2006. doi:
10.1109/CVPR.2006.100.

Karaletsos, T., Belongie, S., and Ritsch, G. Bayesian Rep-
resentation Learning with Oracle Constraints. In Interna-
tional Conference on Learning Representations, 2016.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Koch, G., Zemel, R., and Salakhutdinov, R. Siamese Neural
Networks for One-Shot Image Recognition. In ICML
Deep Learning Workshop, volume 2, 2015.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A
Simple Neural Attentive Meta-Learner. In International
Conference on Learning Representations, 2018.

Oh, S.J., Gallagher, A. C., Murphy, K. P, Schroff, F., Pan, J.,
and Roth, J. Modeling Uncertainty with Hedged Instance
Embeddings. In International Conference on Learning
Representations, 2019.

Ridgeway, K. and Mozer, M. C. Learning Deep Disentan-
gled Embeddings With the F-Statistic Loss. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 31, pp. 185-194. Curran Asso-
ciates, Inc., 2018.

Rippel, O., Paluri, M., Dollar, P., and Bourdev, L. Met-
ric Learning with Adaptive Density Discrimination. In
International Conference on Learning Representations,
2016.

Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: A
Unified Embedding for Face Recognition and Clustering.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

Scott, T., Ridgeway, K., and Mozer, M. C. Adapted Deep
Embeddings: A Synthesis of Methods for k-Shot In-
ductive Transfer Learning. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 76-85. Curran Associates, Inc., 2018.

Snell, J., Swersky, K., and Zemel, R. Prototypical Networks
for Few-shot Learning. In Advances in Neural Informa-
tion Processing Systems 31, pp. 4077-4087, 2017.

Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. Deep
Metric Learning via Lifted Structured Feature Embed-
ding. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2016.

Song, H. O., Jegelka, S., Rathod, V., and Murphy, K. Deep
Metric Learning via Facility Location. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2206-2214, July 2017. doi: 10.1109/CVPR.2017.237.

Triantafillou, E., Zemel, R., and Urtasun, R. Few-Shot
Learning Through an Information Retrieval Lens. In

Advances in Neural Information Processing Systems 31,
pp- 2255-2265, 2017.

Ustinova, E. and Lempitsky, V. Learning Deep Embeddings
with Histogram Loss. In Advances in Neural Information
Processing Systems 30, pp. 4170-4178, 2016.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching Networks for One Shot Learn-
ing. In Advances in Neural Information Processing Sys-
tems 30, pp. 3630-3638, 2016.

Wang, J., Zhou, E., Wen, S., Liu, X., and Lin, Y. Deep Met-
ric Learning with Angular Loss. In IEEE International
Conference on Computer Vision, pp. 2612-2620, 2017.
doi: 10.1109/ICCV.2017.283.

Yi, D, Lei, Z., Liao, S., and Li, S. Z. Deep Metric Learning
for Person Re-identification. In International Conference
on Pattern Recognition, pp. 34-39, 2014. doi: 10.1109/
ICPR.2014.16.

Stochastic Prototype Embeddings

A. Network Architectures and
Hyperparameters

A.1. Omniglot

For all Omniglot experiments, the network consisted of four
convolutional blocks. The first three blocks had a convolu-
tional layer with 64 filters, a 3 x 3 kernel, zero-padding of
length 1, and a stride of 1, followed by a batch normaliza-
tion layer, ReLU activation, and 2 x 2 max-pooling. The
fourth and final block had a convolutional layer with 2d
filters, a 3 x 3 kernel, zero-padding of length 1, and a stride
of 1, followed by 2 x 2 max-pooling, where d represents
the dimensionality of the embedding space. The flattened
output of the network is a vector of length 2d, where the
first d elements were considered the mean of the Gaussian
distribution and the remaining d elements were the diago-
nal covariance entries. The weights were initialized using
He initialization and the biases with the following uniform

it an- 1 1
distribution: U (— T m)

All Omniglot models were trained with an initial learning
rate of 0.001 which was cut in half every 50 epochs. The
models were stopped early using a patience parameter when
performance on the validation set no longer increased.

A.2. Synthetic data

The images in the synthetic data set are 64 x 64 pixels in size.
For orientation, we chose class centers at 90° and 180°, with
a standard deviation of 30°. For color, we manipulated the
hue and kept value and saturation constant. Like orientation,
hue is a circular quantity. If hue ranges from 0 to 360
degrees, we chose color class centers and standard deviation
in the same way as orientation. Additionally, we add noise
to a minority (15%) of the images used to train the model.
For these, we add Gaussian noise to the hue of each pixel
inside the shape. The standard deviation of the hue noise
was chosen uniformly between 18° and 54°. We also added
noise to the leg lengths of the L shapes. The leg length
was chosen uniformly between 10% and 98% of its original
length. See Figure 3 for some examples.

The network followed an architecture similar to the one
we used for Omniglot, except that we added two additional
blocks of convolution, batch normalization, ReLU, and max-
pooling because the images are larger. We used 2 instances
per class to form prototypes and 8 samples per query in-
stance during training. We used a learning rate of 0.0001
and the models were stopped early using a patience pa-
rameter when performance on the validation set no longer
increased.

B. Simulation Details

For all SPE models,
o? = softplus (e)

where € is a trainable parameter. We initialize € using the
following prescription:
e =|Sley/,

where |S| is the number of support examples per episode
during training and d is the dimensionality of the embed-
ding. We chose this prescription for two reasons: (1) as
the number of support examples increases, the variance
of the prototype distribution approaches zero, so scaling
linearly by |S| tends to provide a stronger training signal
early on, and (2) the amount of noise in the projection of
an embedding should scale with the dimensionality of the
embedding space as to maintain unit-volume. All models
used €5 = 0.01.

It should also be noted that there is no constraint for 0'926 >0,
since o2 is a direct output of a deep network. To ensure a
positive value, o2 < softplus(o?).

C. SPE Variants

We assumed only diagonal covariance matrices in this work.
Switching to a full covariance matrix would require matrix
inversion, which is ordinarily infeasible, but because one
purpose of deep embeddings is visualization, there may be
interesting cases involving 2D embeddings where the cost
of inversion is trivial.

