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Abstract
Today’s state-of-the-art machine vision models
are vulnerable to image corruptions like blur-
ring or compression artefacts, limiting their per-
formance in many real-world applications. We
here argue that popular benchmarks to measure
model robustness against common corruptions
(like ImageNet-C) underestimate model robust-
ness in many (but not all) application scenarios.
The key insight is that in many scenarios, mul-
tiple unlabeled examples of the corruptions are
available and can be used for unsupervised online
adaptation. Replacing the activation statistics esti-
mated by batch normalization on the training set
with the statistics of the corrupted images consis-
tently improves the robustness across 25 different
popular computer vision models. Using the cor-
rected statistics, ResNet-50 reaches 62.2% mCE
on ImageNet-C compared to 76.7% without adap-
tation. With the more robust AugMix model, we
improve the state of the art from 56.5% mCE to
51.0% mCE. Even adapting to a single sample im-
proves robustness for the ResNet-50 and AugMix
models, and 32 samples are sufficient to improve
the current state of the art for a ResNet-50 ar-
chitecture. We argue that results with adapted
statistics should be included whenever reporting
scores in corruption benchmarks and other out-of-
distribution generalization settings.

1. Introduction
Deep neural networks (DNNs) are known to perform well
in the independent and identically distributed (i.i.d.) setting
when the test and training data are sampled uniformly from
the same distribution. However, for many applications this
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assumption does not hold. In medical imaging, X-ray im-
ages or histology slides will differ from the training data
if different scanners are being used. In quality assessment,
the images might differ from the training data if lighting
conditions change or if dirt particles accumulate on the cam-
era. Autonomous cars may face rare weather conditions like
sandstorms or big hailstones. While human vision is quite
robust to those deviations (Geirhos et al., 2018), modern
high-performance machine vision models are often sensitive
to such image corruptions.

We argue that current evaluations of model robustness un-
derestimate performance in many (but not all) real-world
scenarios. So far, popular image corruption benchmarks like
ImageNet-C (IN-C; Hendrycks & Dietterich, 2019) focus
only on ad-hoc scenarios in which the tested model has zero
prior knowledge about the corruptions it encounters during
test time, even if it encounters the same corruption multiple
times. In the example of medical images or quality assur-
ance, the image corruptions do not change from sample to
sample but are continuously present over a potentially large
number of samples. Similarly, autonomous cars will face
the same weather condition over a continuous stream of in-
puts during the same sand- or hailstorm. These (unlabeled)
observations can allow recognition models to adapt to the
change in the input distribution.

Such unsupervised adaptation mechanisms are studied in the
field of domain adaptation (DA), which is concerned with
adapting models trained on one domain (the source, here
clean images) to another for which only unlabeled samples
exist (the target, here the corrupted images). Tools and meth-
ods from domain adaptation are thus directly applicable to
increase model robustness against common corruptions, but
so far no results on popular benchmarks have been reported.
The overall goal of this work is to encourage stronger in-
teractions between the currently disjoint fields of domain
adaptation and common corruptions.

We here focus on one popular technique in DA, namely
adapting batch normalization (BN; Ioffe & Szegedy, 2015)
statistics (Li et al., 2017; Schneider et al., 2018; Cariucci
et al., 2017; Li et al., 2016). In computer vision, BN is a
popular technique for speeding up training and is present in
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almost all current state-of-the-art image recognition models.
BN estimates the statistics of activations for the training
dataset and uses them to normalize intermediate activations
in the network.

By design, activation statistics obtained during training time
do not reflect the statistics of the test distribution when test-
ing in out-of-distribution settings like corrupted images. We
investigate and corroborate the hypothesis that high-level
distributional shifts from clean to corrupted images largely
manifest themselves in a difference of first and second order
moments in the internal representations of a deep network,
which can be mitigated by adapting BN statistics, i.e. by
estimating the BN statistics on the corrupted images. We
demonstrate that this simple adaptation alone can greatly
increase recognition performance on corrupted images, lead-
ing some vanilla recognition models like DenseNet-101 to
almost reaching state-of-the-art performance on IN-C with-
out adaptation.

Our core contributions can be summarized as follows:

• We suggest to augment current benchmarks for com-
mon corruptions with two additional performance met-
rics that measure robustness after partial and full unsu-
pervised adaptation to the corrupted images.

• We draw connections to domain adaptation and show
that even adapting to a single corrupted sample im-
proves the baseline performance of a ResNet-50 model
trained on IN (from 76.7% mCE to 71.4%). Robust-
ness increases with more samples for adaptation and
converges to a mCE of 62.24%.

• We show that the robustness of a variety of vanilla
models trained on ImageNet (IN; Russakovsky et al.,
2015; Deng et al., 2009) substantially increases after
adaptation, sometimes approaching the current state-
of-the-art performance on IN-C without adaptation.

• Similarly, we show that the robustness of state-of-the-
art ResNet-50 models on IN-C consistently increases
when adapted statistics are used. We surpass the best
non-adapted model (54.2% mCE) by more than 3%
points.

2. Adapting batch norm statistics
IN trained models typically make use of batch normalization
(BN) layers (Ioffe & Szegedy, 2015) for faster convergence
and improved stability during training, which we here adapt
as a simple method for covariate shift adaptation. Within
these layers, first and second order statistics µc, σ

2
c of the

activation tensors zc are estimated across the spatial dimen-
sions and samples for each feature map c. BN subtracts
the mean µc from the activations and divides them by σ2

c

to normalize the activation statistics. During training, µc

and σ2
c are estimated per batch. During evaluation, µc and

σ2
c are estimated over the whole training dataset, typically

using exponential averaging (Paszke et al., 2017).

Using the BN statistics obtained during training for testing
makes the model decisions deterministic but is problematic
if the input distribution changes (covariate shift, cf. §A.4).
If the activation statistics µc, σ

2
c change on samples from

the test domain, then the activations of feature map c are no
longer normalized to zero mean and unit variance, breaking
a crucial assumption that all downstream layers depend on.

If the covariate shift only causes differences in the first and
second order moments of the feature activations z = f(x), it
can be removed by applying normalization using the correct
statitics. The distribution of (f(x) − Es[f(x)])/Vs[f(x)]
and (f(x)− Et[f(x)])/Vt[f(x)] match under this assump-
tion.

Implementing this operation is straight-forward when using
BN: it suffices to estimate the BN statistics µt, σ

2
t on (unla-

beled) samples from the test data available for adaptation.
To improve unreliable estimates for small n, we leverage the
train time statistics µs, σ

2
s as a prior and finally normalize

with

µ̄ =
Nµs + nµ̂t

N + n
, σ̄2 =

Nσ2
s + nσ̂2

t

N + n
. (1)

The hyperparameter N controls the trade-off between prior
and estimated target statistics and has the intuitive interpre-
tation of a pseudo sample size (p. 117, Bishop, 2006) of the
training set. The case N →∞ ignores the statistics on the
test set and is equivalent to the standard ad-hoc scenario
while N = 0 ignores the training statistics.

3. Experimental Setup
We consider all models in the torchvision library for
our main experiments and give a detailed overview in
§B&G. We consider ImageNet-C (IN-C; Hendrycks & Diet-
terich, 2019), ImageNet-A (IN-A; Hendrycks et al., 2019),
ImageNet-V2 (IN-V2; Recht et al., 2020), and ObjectNet
(ON; Barbu et al., 2019) (see additional information in §B.)

For large batch sizes n greater than 100 samples, our method
empiricially performs well for N = 0 and does not require
tuning of any hyperparameters. For small batch sizes, we
select the optimal N based on mCE computed on the four
holdout corruptions in IN-C provided for this purpose.

4. Results
Adaptation boosts robustness of a vanilla trained
ResNet-50 model. We consider the pretrained ResNet-
50 architecture from the torchvision library and adapt the
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Figure 1: Sample size/performance tradeoff in terms of the mean
corruption error (mCE) on IN-C for ResNet-50 and AugMix (AM).
Black line corresponds to (non-adapted) state-of-the-art perfor-
mance of AssembleNet on IN-C.
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Figure 2: Across 25 torchvision models, the baseline mCE (◦)
improves with adaptation (•), often on the order of 10 points.

running mean and variance on all corruptions and severities
of IN-C for different batch sizes. The results are displayed
in Fig. 1 as the dotted green line for the vanilla ResNet-50
baseline and as the full green line with stars indicating the
batch size over which the statistics are calculated. For the
best choice of N , we see that even adapting to a single sam-
ple can suffice to increase robustness, suggesting that even
the ad-hoc evaluation scenario can benefit from adaptation.
If the training statistics are not used as a prior (N = 0) then
it takes around 8 samples to surpass the performance of the
non-adapted baseline model (76.7% mCE). After around 16
to 32 samples the performance quickly converges to 62.2%
mCE, considerably improving the baseline result. These
results highlight the practical applicability of batch norm
adaptation in basically all application scenarios, indepen-
dent of the number of available test samples.

Adaptation consistently improves corruption robust-
ness across IN trained models. To evaluate the interac-

tion between architecture and BN adaptation, we evaluate all
25 pre-trained models in the torchvision package and
visualize the results in Fig. 2. All models are evaluated with
N=0 and n=2000. We group models into different families
based on their architecture and observe consistent improve-
ments in mCE for all of these families, typically on the order
of 10% points. We observe that in both evaluation modes,
DenseNets (Huang et al., 2017) exhibit higher corruption
robustness despite having a comparable or even smaller
number of trainable parameters as the popular ResNets. A
take-away from this study is thus that model architecture
alone plays an important role for corruption robustness and
the ResNet architecture might not be the optimal choice for
practical applications.

Adaptation yields new state of the art on IN-C for ro-
bust models. We now investigate if BN adaptation also
improves the most robust models on IN-C. The results are
displayed in Table 1. All models are adapted using n =
50 000 (vanilla) or n=4096 (all other models) and N=0.
The performance of all models is considerably higher when-
ever the BN statistics are adapted. AugMix reaches a new
state of the art on IN-C for a ResNet-50 architecture of 51%
mCE. Evaluating the performance of AugMix over the num-
ber of samples for adaptation (Fig. 1, we find that as little as
eight samples are sufficient to improve over AssembleNet
(Lee et al., 2020), the current state-of-the-art ResNet-50
model on IN-C.

Large scale pre-training alleviates the need for adapta-
tion. Mahajan et al. (2018) train computer vision models
based on the ResNeXt architecture (Xie et al., 2017) on a
much larger dataset comprised of 3.5× 109 Instagram im-
ages (IG-3.5B), achieving a 45.7% mCE on IN-C (Orhan,
2019). We re-evaluate these models with our proposed
paradigm and summarize the results in Table 2. While we
see improvements for the small model pre-trained on IN,
these improvements vanish once the model is trained on the
full IG-3.5B dataset. This observation also holds for the
largest model, suggesting that training on very large datasets
might alleviate the need for covariate shift adaptation.

Group Norm and Fixup Initialization outperforms non-
adapted BN models, but is worse than BN with covari-
ate shift adaptation. In our experiments so far, we as-
sumed that popular computer vision models for image clas-
sification on IN are generally trained by using BN and are
hence vulnerable to the observed effects of covariate shift.
Recently, Zhang et al. (2019) proposed Fixup initialization
of models, alleviating the need for BN layers. We train a
model with a ResNet-50 architecture on IN for 100 epochs
to obtain a top-1 error of 24.2% and top-5 error of 7.6%
(compared to 27.6% reported by Zhang et al. (2019) with
shorter training, and the 23.9% obtained by our ResNet-50
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Table 1: Adaptation improves mCE (lower is better) and Top1 accuracy (higher is better) on IN-C for different ResNet-50 models and
surpasses the previous state of the art without adaptation. We consider n = 8 for partial adaptation.

IN-C mCE (↘) Top1 accuracy (↗)
w/o partial full w/o partial full

Model adapt adapt adapt ∆ adapt adapt adapt ∆

Vanilla ResNet-50 76.7 66.7 ‡62.2 (−14.5) 39.2 47.2 ‡50.7 (+11.5)
SIN (Geirhos et al., 2019) 69.3 63.1 59.5 (−9.8) 45.2 50.3 53.1 (+7.9)
ANT (Rusak et al., 2020) 63.4 55.0 53.6 (−9.8) 50.4 57.0 58.0 (+7.6)
ANT+SIN (Rusak et al., 2020) 60.7 54.6 53.6 (−7.0) 52.6 55.0 58.0 (+5.4)
Assemble Net (Lee et al., 2020) 54.2 – 52.1 (−2.1) – – 59.2 –
AugMix (Hendrycks et al., 2020) 65.3 56.9 51.0 (−14.3) 48.3 55.0 59.8 (+11.4)

Table 2: Improvements from adapting the BN parameters vanish
for models trained with weakly supervised pre-training.

IN-C mCE (↘)
ResNeXt101 BN BN+adapt

32x8d, IN 66.6 56.7 (−9.9)
32x8d, IG-3.5B 51.7 51.6 (−0.1)
32x48d, IG-3.5B 45.7 47.3 (+1.6)

Table 3: Fixup and GN trained models perform better than non-
adapted BN models but worse than adapted BN models.

IN-C mCE (↘)
Model Fixup GN BN BN+adapt

ResNet-50 72.0 72.4 76.7 62.2
ResNet-101 68.2 67.6 69.0 59.1
ResNet-152 67.6 65.4 69.3 58.0

baseline trained on batch norm). On IN-C, this model ob-
tains an mCE of 72.0% compared to the 76.7% mCE of
the vanilla ResNet-50 model and the 62.2% mCE of our
adapted ResNet-50 model (cf. Table 3). Additionally, we
train a ResNet-101 and a ResNet-152 with Fixup initial-
ization with similar results. GroupNorm (GN; Wu & He,
2018) has been proposed as a batch-size independent nor-
malization technique. We train a ResNet-50, a ResNet-101
and a ResNet-152 architecture for 100 epochs and evaluate
them on IN-C and find results very similar to Fixup. We put
additional results in §D for space reasons.

5. Discussion & Conclusion
We showed that reducing covariate shift induced by com-
mon image corruptions improves the robustness of computer
vision models trained with BN layers, typically by 10–15%
points (mCE) on IN-C. Current state-of-the-art models on
IN-C can benefit from adaptation, sometimes drastically like
AugMix (−14% points mCE). This observation underlines
that current benchmark results on IN-C underestimate the
corruption robustness that can be reached in many appli-
cation scenarios where additional (unlabeled) samples are
available for adaptation.

Robustness against common corruptions improves even if
models are adapted only to a single sample, suggesting that
BN adaptation should always be used whenever we expect
machine vision algorithms to encounter out-of-domain sam-
ples. Most further improvements can be reaped by adapting
to 32 to 64 samples, after which additional improvements
are minor.

Our empirical results suggest that the performance degra-
dation on corrupted images can mostly be explained by the
difference in feature-wise first and second order moments.
While this might sound trivial, the performance could also
degrade because models mostly extract features suscepti-
ble to common corruptions (Geirhos et al., 2020), which
could not be fixed without substantially adapting the model
weights. The fact that model robustness increases after cor-
recting the BN statistics suggests that the features upon
which the models rely on are still present in the corrupted
images. The opposite is true in other out-of-domain datasets
like IN-A or ObjectNet where our simple adaptation scheme
does not substantially improve performance, suggesting that
here the main problem is in the features that models have
learned to use for prediction.

Current corruption benchmarks emphasize ad hoc scenar-
ios and thus focus and bias future research efforts on these
constraints. Unfortunately, the ad hoc scenario does not ac-
curately reflect the information available in many machine
vision applications like classifiers in medical computer vi-
sion or visual quality inspection algorithms, which typically
encounter a similar corruption continuously and could ben-
efit from adaptation. This work is meant to spark more
research in this direction by suggesting two suitable evalua-
tion metrics—which we strongly suggest to include in all
future evaluations on IN-C—as well as by highlighting the
potential that even a fairly simple adaptation mechanism
can have for increasing model robustness. We envision fu-
ture work to also adopt and evaluate more powerful domain
adaptation methods on IN-C and to develop new adaptation
methods specifically designed to increase robustness against
common corruptions.
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A. Methods
A.1. Distances and divergences for quantifying domain

shift

Besides analyzing the performance drop when evaluating a model
using source statistics on a target dataset, we consider the mismatch
in model statistics directly. We first take an ImageNet trained
model and adapt it to each of the 95 conditions in IN-C. To obtain
a more exact estimate of the true statistics, we split the model into
multiple stages with only few BN layers per stage and apply the
following simple algorithm1:

• Start with image inputs z0
n ← xn from the validation set to

adapt to, for each n ∈ [50000].

• Split the model into multiple stages, h(x) = (fm ◦ · · · ◦
f1)(x), where each module fi can potentially contain one or
multiple BN layers. We denote the number of BN layers in
the i-th module as bi.

• For each stage i ∈ [m], repeat bi times: zin ← fi(z
i−1
n ) for

each n, and update the BN statistics in module fi(zi−1
n ).

• Return h with adapted statistics.

Using this scheme, we get source statistics µs and Σs for each
layer and µt and Σt for each layer and corruption. In total, we get
96 different collections of statistics across network layers (for IN
and the 95 conditions in IN-C). For simplicity, we will not further
index the statistics. Note that all covariance matrices considered
here are diagonal, which is a further simplification. We expect that
our domain shift estimates could be improved by considering the
full covariance matrices.

In the following, we will introduce three possible distances and
divergences which can be applied between source and target statis-
tics to quantify the effect of common corruptions induced covariate
shift. We consider the Wasserstein distance, a normalized version
of the Wasserstein distance, and the Jeffrey divergence.

1Note that for simplicity, we do not reset the statistics of the
remaining (bi − i) BN layers. This could potentially be adapted
in future work.

http://www.gnu.org/s/parallel
https://mathworld.wolfram.com/StandardDeviationDistribution.html
https://mathworld.wolfram.com/StandardDeviationDistribution.html
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A.1.1. THE WASSERSTEIN DISTANCE

Given a baseline ResNet-50 model with source statistics µs,Σs on
IN, the Wasserstein distance (cf. Villani, 2008) between the train
and test distribution with statistics µt,Σt is given as

W 2
2 (ps, pt)

2 = ‖µs − µt‖22 (2)

+ Tr
(

Σs + Σt − 2
(
Σ

1/2
t ΣsΣ

1/2
t

)1/2)
. (3)

A.1.2. THE SOURCE-NORMALIZED WASSERSTEIN
DISTANCE

When estimated for multiple layers across the network, the Wasser-
stein distance between source and target depends on the overall
magnitude of the statistics. Practically, this means the metric is
dominated by features with large magnitude (e.g. in the first layer
of a neural network, which receives larger inputs).

To mitigate this issue, we normalize both statistics with the source
statistics and define the normalized Wasserstein distance as

W̃ 2
2 = W 2

2
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ΣtΣ

−1
s , I,Σ−1/2
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−1/2
s µs

)
(4)
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s

)
(5)
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TΣ−1

s (µt − µs). (6)

In the uni-variate case, the normalized Wasserstein distance W̃ 2
2 is

equal to the Wasserstein distance W 2
2 between source and target

statistics divided by σ2
s :
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A.1.3. THE JEFFREY DIVERGENCE

The Jeffrey divergence J(ps, pt) between source distribution
ps and target distribution pt is the symmetrized version of the
Kullback-Leibler divergence DKL:

J(ps, pt) =
1

2
(DKL(ps‖pt) +DKL(pt‖ps)) (9)

The Kullback-Leibler divergence between the D-dimensional mul-
tivariate normal source and target distributions is defined as

DKL(Nt‖Ns) =
1

2

(
Tr
(
Σ−1
s Σt

)
(10)

+ (µs − µt)
>Σ−1

s (µs − µt) (11)

−D + ln

(
det Σs

det Σt

))
. (12)

The Jeffrey divergence between the D-dimensional multivariate
normal source and target distributions then follows as

J(Nt,Ns) =
1

4

(
Tr
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Σ−1
s Σt

)
+ Tr
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Σ−1
t Σs

)
(13)

+ (µs − µt)
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t
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A.2. Practical Considerations for Implementing the
method

Our method is conceptually very easy to implement. We gener-
ally recommend to first explore the easier variant of the algorithm
where N = 0, i.e., no source statistics are used. In this case, im-
plementing the method boils down to enabling the training mode
for all BN layers across the network. We will discuss this option
along with two variants important for application to practical prob-
lems: Using exponential moving averaging (EMA) to collect target
statistics across multiple batches, and using the source statistics as
a prior.

Example implementation in PyTorch and caveats We
encourage authors of robust models to always evaluate their mod-
els, and in particular baseline algorithms on both the train and test
set statistics. Implementation in both PyTorch, Tensorflow and
other machine learning libraries is straightforward and adds only
minimal overhead. For PyTorch, adaptation is possible by simply
adding

def use_test_statistics(module):
if isisinstance(module, nn._BatchNorm):

module.train()
model.eval()
model.apply(use_test_statistics)

before starting a model evaluation.

For the adaptation to a full dataset, we provide a reference im-
plementation with the source code release of this paper. Also, in
contrast to the convention of not shuffling examples during test
time, make sure to enable dataset shuffling also during test time
in order to compute the correct statistics marginalized over class
assignment.

Exponential moving averaging In practice, it might be ben-
eficial to keep track of samples already encountered and use a
running mean and variance on the test set to normalize new sam-
ples. We can confirm that this technique closely matches the
full-dataset adaptation case even when evaluating with batch size
1 and is well suited for settings with less powerful hardware, or in
general settings where access to the full batch of samples is not
possible. Variants of this technique include the adaptation of the
decay factor to discard statistics of samples encountered in the past
(e.g. when the data domain slowly drifts over time).

A.3. Measuring robustness

The ImageNet-C benchmark (Hendrycks & Dietterich, 2019) con-
sists of 15 test corruptions (and four hold-out corruptions) which
are applied with five different severity levels to the 50 000 test im-
ages of the ILSVRC2012 subset of ImageNet. During evaluation,
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model responses are assumed to be conditioned only on single
samples, and are not allowed to adapt to e.g. a batch of samples
from the same corruption. We call this the ad-hoc or non-adaptive
scenario. The main performance metric of IN-C is the mean cor-
ruption error (mCE), which is a normalization of the top-1 errors
of the model with the top-1 errors of AlexNet across the C = 15
test corruptions and S = 5 severities:

mCE(model) =
1

C

C∑
c=1

∑S
s=1 errmodel

c,s∑S
s=1 errAlexNet

c,s

. (15)

Note that mCE reflects only one possible averaging scheme over
the IN-C corruption types. We will additionally report the overall
top-1 accuracies and report results for all individual corruptions in
the supplementary material and the project repository.

In many application scenarios, this ad-hoc evaluation is too re-
strictive. Instead, often many unlabeled samples with similar
corruptions are available, which can allow models to adapt to the
shifted data distribution. To reflect such scenarios, we propose to
also benchmark the robustness of adapted models. To this end, we
split the 50 000 validation samples with the same corruption c and
severity s into batches Xc,s with n samples each and allow the
prediction model f(.) to condition its responses on the complete
batch of images, i.e.

yc,s = f(Xc,s) (16)

where yc,sn has n elements corresponding to the predicted labels.
We then compute mCE and top-1 accuracy in the usual way. For
n = 1, this evaluation scheme reduces to the ad-hoc scenario.
We distinguish two adaptation scenarios. In the full adaptation
scenario, we set n = 50 000, meaning the model may adapt to the
full set of unlabeled samples with the same corruption type before
evaluation. In the partial adaptation scenario, we set n = 8 to test
how efficiently models can adapt to a relatively small number of
unlabeled samples.

A.4. Notes on (internal) covariate shift

Covariate shift can be formalized as follows:

Definition 1 (Covariate Shift, cf. Sugiyama & Kawanabe, 2012;
Schölkopf et al., 2012). There exists covariate shift between a
source distribution with density ps : X × Y → R+ and a
target distribution with density pt : X × Y → R+, written
as ps(x, y) = ps(x)ps(y|x) and pt(x, y) = pt(x)pt(y|x), if
ps(y|x) = pt(y|x) and ps(x) 6= pt(x) where y ∈ Y denotes the
class label.

Note that our notion of (internal) covariate shift is different from
the notion used by Ioffe & Szegedy (2015) and Santurkar et al.
(2018): In i.i.d. training settings, Ioffe & Szegedy (2015) hypothe-
sized that covariate shift introduced by changing lower layers in
the network is reduced by BN, explaining the empirical success of
the method. We do not provide evidence for this line of research
in this work: Instead, we focus on the covariate shift introduced
(by design) in datasets such as IN-C, and provide evidence for
the hypothesis that high-level domain shifts in the input partly
manifests in shifts and scaling of internal activations.

B. Experimental Setup
B.1. Notes on models

Note that we only re-evaluate existing model checkpoints, and
hence do not perform any hyperparameter tuning or adaptations to
model training. Depending on the batch size and the architecture,
model evaluations are done on one to eight Nvidia RTX 2080 GPUs
(i.e., using 12 to 96 GB of memory) or up to four Nvidia V100
GPUs (128 GB of memory). We evaluate pre-trained variants of
DenseNet (Huang et al., 2017), GoogLeNet (Szegedy et al., 2015),
Inception and GoogLeNet (Szegedy et al., 2016), MNASnet (Tan
et al., 2019), Mobilenet (Sandler et al., 2018), ResNet (He et al.,
2016), ResNeXt (Xie et al., 2017), ShuffleNet (Ma et al., 2018),
VGG (Simonyan & Zisserman, 2015) and Wide Residual Network
(WRN, Zagoruyko & Komodakis, 2016) from the torchvision
library (Marcel & Rodriguez, 2010). All models are trained on
the ILSVRC2012 subset of IN comprised of 1.2 million images in
the training and a total of 1000 classes (Russakovsky et al., 2015;
Deng et al., 2009). We also consider a ResNeXt-101 variant pre-
trained on a 3.5 billion image dataset and then fine-tuned on the IN
training set (Mahajan et al., 2018). We additionally evaluate the
four leading methods from the ImageNet-C leaderboard, namely
Stylized ImageNet training (SIN; Geirhos et al., 2019), adversarial
noise training [ANT; Rusak et al., 2020] as well as a combination of
ANT and SIN (Rusak et al., 2020), optimized data augmentation
using AutoAugment (AugMix; Hendrycks et al., 2020; Cubuk
et al., 2019) and Assemble Net (Lee et al., 2020). For partial
adaptation, we choose N ∈ {20, · · · , 210} and select the optimal
value on the holdout corruption mCE.

B.2. Notes on datasets

In the main paper, we have used several datasets and provide more
relevant information here:

ImageNet-C (IN-C) IN-C is comprised of corrupted versions
of the 50 000 images in the IN validation set. The dataset offers
five severities per corruption type, for a total of 15 “test” and 4
“holdout” corruptions. For the evaluation on IN-C, we use the
JPEG compressed images from github.com/hendrycks/robustness
as is advised by the authors to ensure reproducibility. We note
that Ford et al. (2019) report a decrease in performance when
the compressed JPEG files are used as opposed to applying the
corruptions directly in memory without compression artifacts.

ImageNet-A (IN-A) IN-A consists of unmodified real-world
images which yield chance level classification performance in IN
trained ResNet-50 models.

ObjectNet (ON) ON is a test set containing 50 000 images
like IN organized in 313 object classes with 109 unambiguously
overlapping IN classes. We find that there are 9 classes with mul-
tiple possible mappings from ON to IN (see the list in Table 4);
we discard these classes in our evaluation. Models trained on IN
experience a large performance drop on the order of 55% points
when tested on ON. ON is an interesting test case for unsuper-
vised domain adaptation since IN and ON are likely sampled from
different distributions.

ImageNet-V2 (IN-V2) IN-V2 aims to mimic the test distri-
bution of IN, with slight differences in image selection strategies.
There are three test sets in IN-V2 that differ in selection frequen-
cies of the MTurk workers and hence vary slightly in their label

https://github.com/hendrycks/robustness
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distribution. The selection frequency is given by the fraction of
MTurk workers who selected an image for its target class. For
the “MatchedFrequency” dataset, images were sampled according
to the estimated selection frequency of sampling of the original
IN validation dataset. For the “Threshold0.7” variant of IN-V2,
images were sampled with a selection frequency of at least 0.7.
The “TopImages” was sampled from images with the highest selec-
tion frequency. Although all three test sets were sampled from the
same Flickr candidate pool and were labeled correctly and selected
by more than 70% of MTurk workers, the model accuracies on
these datasets vary by 14%. The authors observe a systematic
accuracy drop when comparing model performance on the original
IN validation set and IN-V2 and attribute it to the distribution gap
between their datasets and the original IN-V2. They quantify the
distribution gap by how much the change from the original distri-
bution to the new distribution affects the considered model. The
possibility to bridge this distribution gap makes all three datasets
of IN-V2 interesting candidates to test the practical robustness of
our method to violations of the assumption that no label shift is
present on the test dataset. The test set intentionally shows objects
from new viewpoints on new backgrounds.

B.3. Preprocessing

For IN, we resize all images to 256 × 256px and take the cen-
ter 224 × 224px crop. For IN-C, images are already cropped.
We also center and re-scale the color values with µRGB =
[0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225].

B.4. Overview of models in torchvision

In Table 5, we provide a list of the models we evaluate in the main
paper, along with numbers of trainable parameters and batchnorm
parameters. Note that the fraction of BN parameters is at most at
1% compared to all trainable parameters in all considered models.

B.5. Baseline corruption errors

In Table 6, we report the scores used for converting top-1 error into
the mean corruption error (mCE) metric proposed by Hendrycks
& Dietterich (2019).

B.6. Hyperparameter Tuning

Our method is generally parameter-free if only target statistics
should be considered for normalization. This approach is generally
preferred for larger batch sizes n and should also be adapted in
practise when a sufficient amount of samples is available. For
tuning N , we consider the pre-defined holdout corruptions in IN-
C, including speckle noise, saturation, Gaussian blur and spatter
using a line search across different values for N .

B.7. Software Stack

We use various open source software packages for our experiments,
most notably Docker (Merkel, 2014), scipy and numpy (Virtanen
et al., 2020), GNU parallel (Tange, 2011), Tensorflow (Abadi et al.,
2016), PyTorch (Paszke et al., 2017) and torchvision (Marcel &
Rodriguez, 2010).
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Figure 3: Adaptation (•) improves baseline (◦) mCE across all 25
model architectures in the torchvision library, often on the
order of 10 points. Best viewed in color.

C. Related Work
Robustness towards common corruptions The IN-C
benchmark (Hendrycks & Dietterich, 2019) has been extended
to MNIST (Mu & Gilmer, 2019), several object detection datasets
(Michaelis et al., 2019) and image segmentation (Kamann &
Rother, 2019) reflecting the interest of the robustness commu-
nity. Most proposals for improving robustness involve special
training protocols, requiring time and additional resources. This
includes data augmentations like Gaussian noise (Ford et al., 2019),
optimized mixtures of data augmentations in conjunction with a
consistency loss (Hendrycks et al., 2020), training on stylized im-
ages (Geirhos et al., 2019; Michaelis et al., 2019; Mikołajczyk
& Grochowski, 2018) or against adversarial noise distributions
(Rusak et al., 2020). Other approaches tweak the architecture, e.g.
through adding shift-equivariance with an anti-aliasing module,
(Zhang, 2019) or assemble different training techniques (Lee et al.,
2020).

Unsupervised Domain adaptation Unsupervised domain
adaptation (DA) is a form of transductive inference where addi-
tional information about the test dataset is used to adapt a model to
the test distribution. In this context, adapting BN parameters has
been considered in many previous studies. The idea of adapting
activation statistics was originally proposed by (Sun et al., 2017).
Li et al. (2016); Cariucci et al. (2017) evaluate the performance
of adapting BN parameters in unsupervised domain adaptation
settings. Schneider et al. (2018) show that the topline performance
obtained by adapting BN parameters with supervised learning
on the target domain directly is actually sufficient for very good
performance on the widely considered small digit datasets. This
corroborates results from Rebuffi et al. (2017) who discuss batch
adaptation for multi-task learning on larger scale datasets. As an
application example, Bug et al. (2017) show that adaptive normal-
ization is useful for removing domain shifts on histopathological
data. Sun et al. (2019) propose a method for self-supervised do-
main adaptation on single examples. French et al. (2017) success-
fully use self-ensembling for domain adaptation.

D. Additional results
Results on other datasets: IN-A, IN-V2, ObjectNet. In
all ablation studies in this subsection, we have usedN=0 and varied
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ON class IN classes

wheel wheel; paddlewheel, paddle wheel
helmet football helmet; crash helmet
chair barber chair; folding chair; rocking chair, rocker
still_camera Polaroid camera, Polaroid Land camera; reflex camera
alarm_clock analog clock; digital clock
tie bow tie, bow-tie, bowtie; Windsor tie
pen ballpoint, ballpoint pen, ballpen, Biro; quill, quill pen; fountain pen
bicycle mountain bike, all-terrain bike, off-roader; bicycle-built-for-two, tandem bicycle, tandem
skirt hoopskirt, crinoline; miniskirt, mini; overskirt

Table 4: Mapping between 9 ambiguous ON classes and the possible correspondences in IN. Different IN classes are separated with a
semicolon.

Model Parameter Count BN Parameters Fraction (%)

densenet121 7.98× 106 8.36× 104 0.010
densenet161 2.87× 107 2.20× 105 0.008
densenet169 1.41× 107 1.58× 105 0.011
densenet201 2.00× 107 2.29× 105 0.011
googlenet 1.30× 107 1.51× 104 0.001
inception-v3 2.72× 107 3.62× 104 0.001
mnasnet0-5 2.22× 106 2.06× 104 0.009
mnasnet0-75 3.17× 106 2.98× 104 0.009
mnasnet1-0 4.38× 106 3.79× 104 0.009
mnasnet1-3 6.28× 106 4.88× 104 0.008
mobilenet-v2 3.50× 106 3.41× 104 0.010
resnet101 4.45× 107 1.05× 105 0.002
resnet152 6.02× 107 1.51× 105 0.003
resnet18 1.17× 107 9.60× 103 0.001
resnet34 2.18× 107 1.70× 104 0.001
resnet50 2.56× 107 5.31× 104 0.002
resnext101-32x8d 8.88× 107 2.03× 105 0.002
shufflenet-v2-x0-5 1.37× 106 7.95× 103 0.006
shufflenet-v2-x1-0 2.28× 106 1.62× 104 0.007
shufflenet-v2-x1-5 3.50× 106 2.34× 104 0.007
shufflenet-v2-x2-0 7.39× 106 3.37× 104 0.005
vgg11-bn 1.33× 108 5.50× 103 4.142× 10−5

vgg13-bn 1.33× 108 5.89× 103 4.425× 10−5

vgg16-bn 1.38× 108 8.45× 103 6.106× 10−5

vgg19-bn 1.44× 108 1.10× 104 7.662× 10−5

wide-resnet101-2 1.27× 108 1.38× 105 0.001
wide-resnet50-2 6.89× 107 6.82× 104 0.001

Table 5: Overview of different models with parameter counts. We show the total number of BN parameters, which is a sum of affine
parameters.

n. The technique does not work for the case of “natural adversarial
examples” of IN-A (Hendrycks et al., 2019) and the error rate
stays above 99%, suggesting that the covariate shift introduced in
IN-A by design is more severe compared to the covariate shift of
IN-C and can not be corrected by merely calculating the correct
BN statistics.

We evaluate how the batch size for estimating the statistics at test
time affects the performance on IN, IN-V2 and ON in Fig. 4. As
expected, for IN the adaptation to test time statistics converges
to the performance of the train time statistics in the limit of large
batch sizes, see Fig. 4 left. For IN-V2, we find similar results,

see Fig. 4 middle. This observation shows that (i) there is no
systematic covariate shift between the IN train set and the IN-V2
validation set that could be corrected by using the correct statistics
and (ii) is further evidence for the i.i.d. setting pursued by the
authors of IN-V2. In case of ON (Fig. 4 right), we see slight
improvements when using a batch size bigger than 128.

Severity of covariate shift correlates with performance
degradation. The relationship between the performance degra-
dation on IN-C and the covariate shift suggests an unsupervised
way of estimating the classification performance of a model on
a new corruption. Taking the normalized Wasserstein distance
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Category Corruption top1 error

Noise
Gaussian Noise 0.886428
Shot Noise 0.894468
Impulse Noise 0.922640

Blur

Defocus Blur 0.819880
Glass Blur 0.826268
Motion Blur 0.785948
Zoom Blur 0.798360

Weather

Snow 0.866816
Frost 0.826572
Fog 0.819324
Brightness 0.564592
Contrast 0.853204

Digital

Elastic Transform 0.646056
Pixelate 0.717840
JPEG Compression 0.606500

Hold-out Noise Speckle Noise 0.845388
Hold-out Digital Saturate 0.658248
Hold-out Blur Gaussian Blur 0.787108
Hold-out Weather Spatter 0.717512

Table 6: AlexNet top1 errors on IN-C

(cf. §F.1) between the statistics of the source and target domains2

computed on all samples with the same corruption and severity and
averaged across all network layers, we find a correlation with the
top-1 error (Fig. 5 i–iii) of both adapted and fully adapted model
on IN-C corruptions. Within single corruption categories (noise,
blur, weather, and digital), the relationship between top-1 error and
Wasserstein distance is particularly striking: using linear regres-
sion, the top-1 accuracy of hold-out corruptions can be estimated
with around 1–2% absolute mean deviation (cf. §E.5) within a cor-
ruption, and with around 5–15% absolute mean deviation when the
estimate is computed on the holdout corruption of each category
(see Fig. 5, typically, a systematic offset remains). In Fig. 5(iv–v),
we display the Wasserstein distance across individual layers and
observe that the covariate shift is particularly present in early and
late downsampling layers of the ResNet-50.

E. Additional Results
E.1. Summary statistics and quantification of covariate

shift between different IN-C conditions

Given the 95 distances/divergences between the baseline (IN) statis-
tics and 95 IN-C conditions, we first perform a layer-wise analysis
of the statistics and depict the results in Figure 6. The unnor-
malized Wasserstein distance is sensitive to the magnitude of the
source statistics and hence differs qualitatively from the results on
the normalized Wasserstein distance and Jeffrey Divergence. We
appreciate that the most notable difference between source and
target domains is visible in the ResNet-50 downsampling layers.
All three metrics suggest that the shift is mainly present in the
first and final layers of the network, supporting the hypothesis that
within the common corruption dataset, we have both superficial
covariate shift which can be corrected by simple means (such as
brightness or contrast variations) in the first layers, and also more
“high-level” domain shifts which can only be corrected in the later
layers of the network.

2For computing the Wasserstein metric we make the sim-
plifying assumption that the empirical mean and variance fully
parametrize the respective distributions.

In Figure 7, we more closely analyze this relationship for different
common corruptions. We can generally appreciate the increased
measures as the corruption severity increases.

E.2. Relationship between parameter count and IN-C
improvements

In addition to Fig. 3 in the main paper, we show the relationship
between parameter count and IN-C mCE. In general, we see that
the parameter counts correlates with corruption robustness since
larger models have smaller mCE values.

E.3. Per-corruption results on IN-C

We provide more detailed results on the individual corruptions of
IN-C for the most important models considered in our study in
Fig. 8 and Fig. 9. The results are shown for models where the
BN parameters are adapted on the full test sets. The adaptation
consistently improves the error rates on all corruptions for both
vanilla and AugMix.

E.4. Qualitative Analysis of Similarities between
Common Corruptions

In this analysis, we compute a t-SNE embedding of the Wasserstein
distances between the adapted models and the non-adapted model
from Fig. 5. The results are displayed in Fig. 10. We observe
that the different corruption categories indicated by the different
colors are grouped together except for the ’digital’ category (pink).
This visualization shows that corruption categories mostly induce
similar shifts in the BN parameters. This might be an explanation
why training a model on Gaussian noise generalizes so well to
other noise types as has been observed by Rusak et al. (2020): By
training on Gaussian noise, the BN statistics are adapted to the
Gaussian noise corruption and from Fig. 10, we observe that these
statistics are similar to the BN statistics of other noises.

E.5. Error prediction based on the Wasserstein
distance

In Fig. 5, we observe that the relationship between the Wasserstein
distance and the top-1 error on IN-C is strikingly linear in the
considered range of the Wasserstein distance. Similar corruptions
and corruption types (indicated by color) exhibit similar slope,
allowing to approximate the expected top-1 error rate without any
information about the test domain itself. Using the split of the
19 corruptions into 15 test and 4 holdout corruptions (Hendrycks
& Dietterich, 2019), we compute a linear regression model on
the five data points we get for each of the holdout corruptions
(corresponding to the five severity levels), and use this model to
predict the expected top-1 error rates for the remaining corruptions
within the corruption family. This scheme works particularly for
the “well defined” corruption types such as noise and digital (4.1%
points absolute mean deviation from the real error. The full results
are depicted in Table 7.

E.6. Training details on the models trained with Fixup
initialization and GroupNorm

In Section 5 of the main paper, we consider IN models trained
with GroupNorm and Fixup initialization. For these models, we
consider the original reference implementations provided by the
authors. We train ResNet-50, ResNet-101 and ResNet-152 models
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Figure 6: Wasserstein distance, normalized Wasserstein distance and Jeffrey divergence estimated among source and target statistics
between different network layers. We report the respective metric w.r.t. to the difference between baseline (IN) and target (IN-C) statistics
and show the value averaged across all corruptions. We note that for a ResNet-50 model, downsampling layers contribute most to the
overall error.
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Figure 7: Normalized Wasserstein Distance and Jeffrey Divergence across corruptions and layers in a ResNet-50.
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Figure 8: Results on the individual corruptions of IN-C for the vanilla trained ResNet-50 with and without adaptation. Adaptation reduces
the error on all corruptions.
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Figure 9: Results on the individual corruptions of IN-C for the AugMix model with and without adaptation. Adaptation reduces the error
on all corruptions.

test error holdout (train) error model
true pred |∆| true pred |∆| coef intercept

Fig. 5 (i)
blur 64.89 54.53 11.04 58.13 58.13 3.24 37.59 -0.70
digital 54.37 51.96 6.97 38.08 38.08 0.60 37.20 6.39
noise 73.29 69.68 5.84 64.51 64.51 0.65 24.66 1.68
weather 53.87 42.92 11.21 50.84 50.84 5.48 25.80 6.33

Fig. 5 (ii)
blur 55.68 53.28 5.65 57.38 57.38 4.01 42.74 -9.51
digital 41.53 39.80 4.14 31.05 31.05 0.34 23.44 11.09
noise 58.43 55.04 4.14 51.24 51.24 1.01 18.13 5.06
weather 43.84 36.16 7.80 41.63 41.63 4.32 17.80 10.91

Fig. 5 (iii)
blur 57.10 69.84 13.43 74.01 74.01 3.96 43.50 5.93
digital 46.16 38.06 12.97 36.22 36.22 10.52 4.94 32.01
noise 93.60 85.84 13.08 81.10 81.10 3.52 22.56 23.65
weather 43.74 36.90 8.98 44.05 44.05 6.20 23.29 3.87

Table 7: Estimating top-1 error of unseen corruptions within the different corruption classes. We note that especially for well defined
corruptions (like noise or digital corruptions), the estimation scheme works well. We follow the categorization originally proposed by
Hendrycks & Dietterich (2019).
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Figure 10: t-SNE embeddings of the Wasserstein distances be-
tween BN statistics adapted on the different corruptions. This plot
shows evidence on the similarities between different corruption
types.

with stochastic gradient descent with momentum (learning rate 0.1,
momentum 0.9), with batch size 256 and weight decay 1× 10−4

for 100 epochs.

E.7. Effect of Pseudo Batchsize

We show the full results for considering different choices of N for
ResNet-50, Augmix, ANT, ANT+SIN and SIN models and display
the result in Fig. 12. We observe a characteristic shape which we
believe can be attributed to the way statistics are estimated. We
provide evidence for this view by proposing an analytical model
further below.

F. A model for selecting the number of pseudo
samples

Choosing the number of pseudo-samples N offers an intuitive
trade-off between estimating accurate target statistics (low N ) and
relying on the source statistics (large N ). We propose a simple
model to investigate optimal choices forN , disregarding all special
structure of DNNs, and focusing on the statistical error introduced
by estimating µ̂t and σ̂2

t from a limited number of samples n.
To this end, we estimate upper (U) and lower (L) bounds of the
Wasserstein distance W as a function of N and the covariate shift
(µt − µs and σ2

t /σ
2
s ) which provides good empirical fits between

the estimated W and empirical performance for ResNet-50 for
different N (Fig. 13; bottom row). Choosing N such that L or U
are minimised (Fig. 13; example in top row) qualitatively matches
the values we find, see Appendix D for all details.

Univariate model. We start with defining a univariate model.
We denote the source statistics as µs, σ2

s , the true target statistics
as µt, σ2

t and the estimated target statistics as µ̂t, σ̂2
t . For normal-

ization, we take a convex combination of the source statistics and
estimated target statistics:

µ̄ =
Nµs + nµ̂t
N + n

, σ̄2 =
Nσ2

s + nσ̂2
t

N + n
. (17)

We now analyze the trade-off between using an estimate closer
to the source or closer to the estimated target statistics. In the
former case, the model will suffer under the covariate shift present

between target and source distribution. In the latter case, small
batch sizes n will yield unreliable estimates for the true target
statistics, which might hurt the performance even more than the
source-target mismatch. Hence, we aim to gain understanding in
the trade-off between both options, and potential optimal choices
of N for a given sample size n.

As a metric of domain shift with good properties for our following
derivation, we leverage the Wasserstein distance. In E.4, we al-
ready established an empirical link between domain shift measured
in terms of the top-1 performance vs. the Wasserstein distance
between model statistics and observed a linear relationship for case
of common corruptions.

Proposition 1 (Bounds on the expected value of the Wasserstein
distance between target and combined estimated target and source
statistics). We denote the source statistics as µs, σ2

s , the true target
statistics as µt, σ2

t and the biased estimates of the target statistics
as µ̂t, σ̂2

t . For normalization, we take a convex combination of
the source statistics and estimated target statistics as discussed in
Eq. 17. At a confidence level 1− α, the expectation value of the
squared Wasserstein distance W 2

2 (µt, σt, µ̄, σ̄) between ideal and
estimated target statistics w.r.t. to the distribution of sample mean
µ̂t and sample variance σ̂2

t is bounded from above and below with
L ≤ E[W 2

2 ] ≤ U , where

L =

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+
N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t ,

U = L+ σ5
t

(n− 1)

2(N + n)2
a−3/2,

with a =
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t .

(18)

The quantity χ2
1−α,n−1 denotes the left tail value of a chi

square distribution with n − 1 degrees of freedom, defined as
P
(
X ≤ χ2

1−α/2,n−1

)
= α/2 for X ∼ χ2

n−1.

Proof. see Appendix F.2.

Proof Sketch We are interested in the expected value of the
Wasserstein distance defined in (F.1) between the target statistics
µt, σ

2
t and the mixed statistics µ̄, σ̄2 introduced above in equation

(17), taken with respect to the distribution of the sample moments
µ̂t, σ̂2

t . The expectation value itself cannot be evaluated in closed
form because the Wasserstein distance contains a term proportional
to σ̄ being the square root of the convex combination of target and
source variance. In Lemma 3, the square root term is bounded from
above and below using Jensen’s inequality and Holder’s defect
formula which is reviewed in Lemma 2. After having bounded the
problematic square root term, the proof of Proposition 1 reduces
to inserting the expectation values of sample mean and sample
variance reviewed in Lemma 1.

F.1. Prerequisites

The Wasserstein distance Given a baseline ResNet-50
model with source statistics µs,Σs on IN, the Wasserstein dis-
tance [cf. Villani, 2008] between the train and test distribution
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Figure 13: The bound suggests small optimal N for most param-
eters (i) and qualitatively explains our empirical observation (ii).

with statistics µt,Σt is given as

W2(ps, pt)
2 =tr

(
Σs + Σt − 2

(
Σ

1/2
t ΣsΣ

1/2
t

)1/2)
+ ‖µs − µt‖22.

(19)

We define the normalized Wasserstein distance between source
and target statistics as

W̃ 2
2 =W 2

2

(
ΣtΣ

−1
s , I,Σ−1/2

s µt,Σ
−1/2
s µs

)
=tr
(
I + ΣtΣ

−1
s − 2Σ

1/2
t Σ−1/2

s

)
+ (µt − µs)

TΣ−1
s (µt − µs).

(20)

Lemma 1 (Mean and variance of sample moments, following
(Weisstein, 2020)). Given samples xj from a normal distribution
with mean µt and variance σ2

t , the sample moments µ̂t, σ̂2
t are

random variables depending on the sample size n.

µ̂t =
1

n

n∑
j=1

xj , σ̂2
t =

1

n

n∑
j=1

(xj − µ̂t)2 (21)

For brevity, we use the shorthand E[·] for all expectation values
with respect to the distribution of p(µ̂t, σ̂2

t |n). In particular, our
computation uses mean and variance of µ̂t and σ̂2

t which are well
known for a normal target distribution:

µ̂t ∼ N
(
µt,

1

n
σ2
t

)
, E[µ̂t] = µt, V[µ̂t] =

1

n
σ2
t

σ̂2
t

σ2
t /n
∼ χ2

n−1, E[σ̂2
t ] =

n− 1

n
σ2
t ,

V[σ̂2
t ] =

σ4
t

n2
V
[
σ̂2
t

σ2
t /n

]
=
σ4
t

n2
2(n− 1).

(22)

The derivation of the variance V[σ̂2
t ] in the last line uses the fact

that the variance of a chi square distributed variable with (n− 1)
degrees of freedom is equal to 2(n− 1).
Lemma 2 (Holder’s defect formula for concave functions in proba-
bilistic notation, following Becker (2012) ). If the concave function
f : [a, b]→ R is twice continuously differentiable and there are
finite bounds m and M such that

−M ≤ f ′′(x) ≤ −m ≤ 0 ∀x ∈ [a, b], (23)

then the defect between Jensen’s inequality estimate f (E[X]) for
a random variableX taking values x ∈ [a, b] and the true expecta-
tion value E[f(X)] is bounded from above by a term proportional
to the variance of X:

f (E[X])− E[f(X)] ≤ 1

2
MV[X]. (24)

Lemma 3 (Upper and lower bounds on the expectation value of σ̄).
The expectation value of the square root of the random variable
σ̄2 defined as

σ̄2 =
N

N + n
σ2
s +

n

N + n
σ̂2
t , (25)

is bounded from above and below at a confidence level 1− α by√
E [σ̄2]− 1

2
MV[σ̄2] ≤ E

[√
σ̄2
]
≤
√

E [σ̄2]√
E [σ̄2] =

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t ,

1

2
MV[σ̄2] =

(n− 1)

4(N + n)2
σ4
t a
−3/2

with a =
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t .

(26)

The quantity χ2
1−α/2,n−1 denotes the left tail value of a chi

square distribution with n − 1 degrees of freedom, defined as
P
(
X ≤ χ2

1−α/2,n−1

)
= α

2
for X ∼ χ2

n−1.

Proof. The square root function is concave, therefore Jensen’s
inequality implies the upper bound

E
[√

σ̄2
]
≤
√

E[σ̄2]. (27)

The square root of the expectation value of σ̄2 is computed using
the expectation value of the sample variance as given in Lemma 1.

√
E[σ̄2] =

√
N

N + n
σ2
s +

n

N + n

n− 1

n
σ2
t

=

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t .

(28)

To state a lower bound, we use Holder’s defect formula in proba-
bilistic notation stated in Lemma 2. Holder’s formula for concave
functions requires that the random variable σ̄2 can take values in
the compact interval [a, b] and that the second derivative of the
square root function f(σ̄2) =

√
σ̄2, exists and is strictly smaller

than zero in [a, b]. Regarding the interval of σ̄2, we provide proba-
bilistic upper and lower bounds. The ratio of sample variance and
true variance divided by n follows a chi square distribution with
n− 1 degrees of freedom. At confidence level 1− α, this ratio is
then between χ2

1−α/2,n−1 and χ2
α/2,n−1 defined as follows:

χ2
1−α/2,n−1 ≤

σ̂2
t

σ2
t /n
≤ χ2

α/2,n−1,

P r(X ≤ χ2
1−α/2,n−1) = Pr(X ≥ χ2

α/2,n−1) =
α

2
.

(29)

Then at the same confidence level, the sample variance itself lies
between the two quantiles multiplied by σ2

t /n,

χ2
1−α/2,n−1

σ2
t

n
≤ σ̂2

t ≤ χ2
α/2,n−1

σ2
t

n
, (30)
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and the random variable σ̄2 lies in the interval [a, b] with

a =
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t , (31)

b =
N

N + n
σ2
s +

1

N + n
χ2
α/2,n−1σ

2
t . (32)

The variances and chi square values are all positive and there-
fore both a and b are positive as well, implying that the second
derivative of the square root is strictly negative in the interval [a, b].

f(σ̄2) =
√
σ̄2, f ′(σ̄2) =

1

2
(σ̄2)−1/2, (33)

f ′′(σ̄2) = −1

4
(σ̄2)−3/2 < 0 ∈ [a, b]. (34)

Consequently the second derivative is in the interval [M,m] at the
given confidence level:

−M ≤ f ′′(σ̄2) ≤ −m ≤ 0 for σ̄2 ∈ [a, b] (35)

with M =
1

4
a−3/2 and m =

1

4
b−3/2. (36)

The defect formula 2 states that the defect is bounded by√
E[σ̄2]− E[

√
σ̄2] ≤ 1

2
MV[σ̄2]. (37)

The constant M was computed above in (35), and the variance
of σ̄2 is calculated in the next lines, using the first and second
moment of the sample variance as stated in 1.

V[σ̄2] = E[(σ̄2 − E[σ̄2])2]

= E

[(
n

N + n
σ̂2
t −

n

N + n

n− 1

n
σ2
t

)2
]

=
n2

(N + n)2
E
[(
σ̂2
t − E[σ̂2

t

)2]
=

n2

(N + n)2
V
[
σ̂2
t

]
=

n2

(N + n)2
2(n− 1)

n2
σ4
t =

2(n− 1)

(N + n)2
σ4
t .

(38)
Inserting V[σ̄2] computed in (38) and M defined in (35) with a as
defined in (31) into the defect formula (37) yields the lower bound:√

E[σ̄2]− 1

2
MV[σ̄2]

=
√

E[σ̄2]− 1

2
· 1

4
a−3/2 2(n− 1)

(N + n)2
σ4
t

=
√

E[σ̄2]− (n− 1)

4(N + n)2
σ4
t a
−3/2 ≤ E[

√
σ̄2]

with a =
N

N + n
σ2
s +

1

N + n
χ2
1−α/2,n−1σ

2
t .

(39)

Assuming that source and target variance are of the same order
of magnitude σ, the defect will be of order of magnitude σ: The
factor V[X] scales with σ4 and M with σ−3.

F.2. Proof of Proposition 1

For two univariate normal distributions with moments µt, σ2
t and

µ̄, σ̄2, the Wasserstein distance as defined in (F.1) reduces to

W 2
2 = σ2

t + σ̄2 − 2σ̄σt + (µ̄− µ)2. (40)

The expected value of the Wasserstein distance across many
batches is given as

E[W 2
2 ] = σ2

t + E[σ̄2]− 2E[σ̄]σt + E[(µt − µ̄)2]

= σ2
t +

N

N + n
σ2
s +

n

N + n

n− 1

n
σ2
t

− 2σtE

[√
N

N + n
σ2
s +

n

N + n
σ̂2
t

]

+ E

[(
µt −

N

N + n
µs −

n

N + n
µ̂t

)2
]

(41)

which can already serve as the basis for our numerical simulations.
To arrive at a closed form analytical solution, we invoke Lemma 3
to bound the expectation value E [σ̄] in equation (41).

−2σt
√

E [σ̄2] ≤ −2σtE
[√

σ̄2
]

≤ −2σt
√

E [σ̄2]− 2σt

(
−1

2
MV[σ̄2]

) (42)

Apart from the square root term bounded in equation (42) above,
the expectation value of the Wasserstein distance can be computed
exactly. Hence the bounds on E [σ̄] multiplied by a factor of
(−2σ2

t ) coming from equation (41) determine lower and upper
bounds L and U on the expected value of W 2

2 :

L ≤ E
[
W 2

2

]
≤ U = L+ σtMV[σ̄2] (43)

In the next lines, the lower bound is calculated:

L = σ2
t +

N

N + n
σ2
s +

n− 1

N + n
σ2
t

− 2σt

√
E
[

N

N + n
σ2
s +

n− 1

N + n
σ2
t

]
+

(
µt −

N

N + n
µs

)2

+
n2

(N + n)2
E[µ̂2

t ]

− 2

(
µt −

N

N + n
µs

)
n

N + n
E[µ̂t]

= σ2
t +

N

N + n
σ2
s +

n− 1

N + n
σ2
t

− 2σt

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

+

(
µt −

N

N + n
µs

)2

+
n2

(N + n)2

(
1

n
σ2
t + µ2

t

)
− 2

(
µt −

N

N + n
µs

)
n

N + n
µt

=

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+

(
µt −

N

N + n
µs −

n

N + n
µt

)2

+
n

(N + n)2
σ2
t

=

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+
N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t

(44)
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After having derived the lower bound, the upper bound is the sum
of the lower bound and the defect term as derived in Lemma 3.

E[W 2] ≥ U = L+ σtMV[σ̄2]

= L+ σt
1

4
a−3/2 2(n− 1)

(N + n)2
σ4
t

= L+ a−3/2 (n− 1)

2(N + n)2
σ5
t .

with a =
N

N + n
σ2
s +

n

N + n
χ2
1−α/2,n−1

σ2
t

n

(45)

F.3. Extension to multivariate distributions.

We now derive a multivariate variant that can be fit to data from a
DNN. Due to the estimation of running statistics in the network,
we have access to a diagonal approximation of the true covariance
matrix.

We denote the diagonal covariance matrices with matrix elements
σ2
i as

(Λt)ii = (σ2
t )i, (Λ̂t)ii = (σ̂2

t )i, (Λs)ii = (σ2
s)i (46)

and extend our definition of the statistics used for normalization to
µ̄ and Σ̄:

µ̄ =
Nµs + nµ̂t
N + n

, Σ̄ =
NΣs + nΣ̂t

N + n
. (47)

The Wasserstein distance between µ̄, Σ̄ and µt,Σt is then defined
as

W 2
2 = tr

(
Σt + Σ̄− 2Σ

1/2
t Σ̄1/2

)
+ (µt − µ̄)T (µt − µ̄)

=

D∑
i=1

(σ2
t )i + (σ̄2)i − 2(σ̄)i(σt)i + ((µt)i − (µ̄t)i)

2

=

D∑
i=1

(W 2
2 )i

(48)
Every component (W 2

2 )i in the sum above is bounded by the
univariate bound discussed above. The multivariate Wasserstein
distance which sums over the diagonal covariance matrix entries is
then bounded by the sums over the individual bounds Li and Ui
given in (18).

Li ≤ (W 2
2 )i ≤ Ui ⇒

D∑
i=1

Li ≤W 2
2 ≤

D∑
i=1

Ui. (49)

F.4. Limits of Proposition 1

Limit n→∞ In the limit of infinite batch size n→∞, upper
and lower bounds on the expected Wasserstein distance between
µ̄, σ̄2 and µt, σ2

t both go to zero.

lim
n→∞

L = lim
n→∞

(
σt −

√
N

N + n
σ2
s +

n− 1

N + n
σ2
t

)2

+ lim
n→∞

N2

(N + n)2
(µt − µs)2 +

n

(N + n)2
σ2
t

=(σt − σt)2 = 0

lim
n→∞

U = lim
n→∞

L+ lim
n→∞

σ5
t

(n− 1)

2(N + n)2
a−3/2 = 0.

(50)

The intuition behind this limit is that if a large number of samples
from the target domain is given, µ̂ and σ̂2 approximate the true
target statistics very well. As µ̂ and σ̂2 dominate µ̄ and σ̄2 for
large n, the expected Wasserstein distance has to vanish.

Limit N → ∞ In the opposite limit N → ∞, the expected
value of the Wasserstein distance reduces to the Wasserstein dis-
tance between source and target statistics.

lim
N→∞

µ̄ = µs, lim
N→∞

σ̄2 = σ2
s ,

⇒ lim
N→∞

E[W 2
2 ] = σ2

t + σ2
s − 2σtσs + (µt − µs)2

= W 2
2

(
σ2
s , σ

2
t , µs, µt

)
.

(51)

Special case µt = µs and σ2
t = σ2

s When source and target
domain coincide, and the statistics σ2

s = σ2
t and µs = µt are

known, then the source target mismatch is not an error source.

Using the definition of µ̄ and σ̄2, the bounds on the expected
Wasserstein distance follow from setting σ2

t to σ2
s and µt to µs in

Proposition 1.

µ̄ =
Nµt + nµ̂t
N + n

, σ̄2 =
Nσ2

t + nσ̂2
t

N + n
, L ≤ E[W 2

2 ] ≤ U

L = σ2
t

(
2N2 + 4Nn−N + 2n2

(N + n)2
− 2

√
1− 1

N + n

)
,

U = L+ σ2
t

n− 1

2(N + n)2

(
N + χ2

1−α/2,n−1

N + n

)−3/2

.

(52)

In a third scenario, it is known that source and target statistics are
the same but the values of the statistics are unknown. In our model,
this is the case where the number of pseudo samples N is set to
zero and source and target statistics are equal. Setting N = 0 in
equation (52) yields

L = 2σ2
t

(
1−

√
1− 1

n

)
,

U = L+ σ2
t
n− 1

2n2

(
χ2
1−α/2,n−1

n

)−3/2

.

(53)

G. Full List of Models Evaluated on IN
The following lists contains all models we evaluated on various
datasets with references and links to the corresponding source
code.

G.1. Torchvision models trained on IN

Weights were taken from https://github.com/pytorch/
vision/tree/master/torchvision/models

1. alexnet (Krizhevsky et al., 2012)

2. densenet121 (Huang et al., 2017)

3. densenet161 (Huang et al., 2017)

4. densenet169 (Huang et al., 2017)

https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
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(0.00, 0.03) (0.00, 0.05) (0.00, 0.08) (0.00, 0.10) (0.00, 0.13) (0.00, 0.15) (0.00, 0.18) (0.00, 0.20) (0.00, 0.23) (0.00, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.01, 0.03) (0.01, 0.05) (0.01, 0.08) (0.01, 0.10) (0.01, 0.13) (0.01, 0.15) (0.01, 0.18) (0.01, 0.20) (0.01, 0.23) (0.01, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.02, 0.03) (0.02, 0.05) (0.02, 0.08) (0.02, 0.10) (0.02, 0.13) (0.02, 0.15) (0.02, 0.18) (0.02, 0.20) (0.02, 0.23) (0.02, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.03, 0.03) (0.03, 0.05) (0.03, 0.08) (0.03, 0.10) (0.03, 0.13) (0.03, 0.15) (0.03, 0.18) (0.03, 0.20) (0.03, 0.23) (0.03, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.04, 0.03) (0.04, 0.05) (0.04, 0.08) (0.04, 0.10) (0.04, 0.13) (0.04, 0.15) (0.04, 0.18) (0.04, 0.20) (0.04, 0.23) (0.04, 0.25)

(0.05, 0.03) (0.05, 0.05) (0.05, 0.08) (0.05, 0.10) (0.05, 0.13) (0.05, 0.15) (0.05, 0.18) (0.05, 0.20) (0.05, 0.23) (0.05, 0.25)

Figure 14: Overview of different parametrizations of the model. We denote each plot with (µt − µs, σt/σs) and report the lower bound√
L on the Wasserstein distance. Parametrizations in columns four to seven produce qualitatively similar results we observed in our

experiments, assuming a linear relationship between the Wasserstein distance and the error rate.
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5. densenet201 (Huang et al., 2017)

6. densenet201 (Huang et al., 2017)

7. googlenet (Szegedy et al., 2015)

8. inception_v3 (Szegedy et al., 2016)

9. mnasnet0_5 (Tan et al., 2019)

10. mnasnet1_0 (Tan et al., 2019)

11. mobilenet_v2 (Sandler et al., 2018)

12. resnet18 (He et al., 2016)

13. resnet34 (He et al., 2016)

14. resnet50 (He et al., 2016)

15. resnet101 (He et al., 2016)

16. resnet152 (He et al., 2016)

17. resnext50_32x4d (Xie et al., 2017)

18. resnext101_32x8d (Xie et al., 2017)

19. shufflenet_v2_x0_5 (Ma et al., 2018)

20. shufflenet_v2_x1_0 (Ma et al., 2018)

21. vgg11_bn (Simonyan & Zisserman, 2015)

22. vgg13_bn (Simonyan & Zisserman, 2015)

23. vgg16_bn (Simonyan & Zisserman, 2015)

24. vgg19_bn (Simonyan & Zisserman, 2015)

25. wide_resnet101_2 (Zagoruyko & Komodakis, 2016)

26. wide_resnet50_2 (Zagoruyko & Komodakis, 2016)

G.2. Robust ResNet50 models
1. resnet50 AugMix (Hendrycks et al., 2020) https://

github.com/google-research/augmix

2. resnet50 SIN+IN (Geirhos et al., 2019) https://
github.com/rgeirhos/texture-vs-shape

3. resnet50 ANT (Rusak et al., 2020) https://github.
com/bethgelab/game-of-noise

4. resnet50 ANT+SIN (Rusak et al., 2020) https://
github.com/bethgelab/game-of-noise

G.3. Robust ResNext models (Xie et al., 2017)

Weights were taken from: https://github.com/
facebookresearch/WSL-Images/blob/master/
hubconf.py Note that the baseline resnext50_32x4d
model trained on ImageNet is available as part of the
torchvision library.

1. resnext50_32x4d WSL

2. resnext101_32x4d WSL

G.4. ResNet50 with Group Normalization (Wu & He,
2018)

Model weights and training code was taken from https://
github.com/ppwwyyxx/GroupNorm-reproduce

1. resnet50 GroupNorm

2. resnet101 GroupNorm

3. resnet152 GroupNorm

G.5. ResNet50 with Fixup initialization (Zhang et al.,
2019)

Model weights and training code was taken from
https://github.com/hongyi-zhang/Fixup/tree/
master/imagenet. For training, we keep all hyperparameters
at their default values and note that in particular the batchsize of
256 is a sensitive parameter.

1. resnet50 FixUp

2. resnet101 FixUp

3. resnet152 FixUp

https://github.com/google-research/augmix
https://github.com/google-research/augmix
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/bethgelab/game-of-noise
https://github.com/bethgelab/game-of-noise
https://github.com/bethgelab/game-of-noise
https://github.com/bethgelab/game-of-noise
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/facebookresearch/WSL-Images/blob/master/hubconf.py
https://github.com/ppwwyyxx/GroupNorm-reproduce
https://github.com/ppwwyyxx/GroupNorm-reproduce
https://github.com/hongyi-zhang/Fixup/tree/master/imagenet
https://github.com/hongyi-zhang/Fixup/tree/master/imagenet

