
Few-shot Out-of-Distribution Detection

Kuan-Chieh Wang 1 2 Paul Vicol 1 2 Eleni Triantafillou 1 2 Richard Zemel 1 2

Abstract
Out-of-distribution (OOD) detection is an impor-
tant problem in real-world settings, and has in-
spired a wide range of methods, from simple ones
based on the predicted probability of a classifier
to more complicated ones based on likelihood ra-
tios under deep generative models. We consider a
variant of the OOD detection task appropriate to
settings such as few-shot learning, in which clas-
sification involves a restricted set of novel classes.
We establish baselines on the few-shot OOD de-
tection tasks by adapting state-of-the-art OOD
methods from the standard classification setting
to the few-shot setting. Interestingly, strong base-
lines designed for the large data setting perform
well in the few-shot setting after simple adapta-
tion. Then we present a method for FS-OOD
detection that specifically utilizes the structure
of the few-shot problem, and show that it out-
performs the previous methods Furthermore, we
demonstrate that improvements in few-shot OOD
detection can benefit downstream tasks, such as
active learning and semi-supervised learning.

1. Introduction
A system for identifying out-of-distribution (OOD) data-
points is useful in various ways. From the perspective of AI
safety, OOD detection is essential for preventing a recogni-
tion system from making mistakes on inputs not belonging
to the task it was trained on (Amodei et al., 2016). In appli-
cations such as detecting malicious attackers of a computer
system by recognizing unusual actions (Lane & Brodley,
1997), and discovering new species of bacteria (Ren et al.,
2019), a good OOD data detector can discover these rare
and potentially meaningful events.

In some applications, the task consists of learning about a
small set of novel classes, each specified with only a few
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labeled examples. A speaker recognition system built to tran-
scribe conversations from novel users could be given only a
few registration utterances from the target speakers (Chung
et al., 2020). When an unregistered speaker abruptly joins
the conversation, a good system should flag them as unregis-
tered, and not mistake their utterances as coming from one
of the registered speakers. Another example is customized
facial gesture recognition for previously unseen users (Wang
et al., 2019). Such applications that enable customization
to new scenarios can be naturally formulated as few-shot
(FS) learning problems, the paradigm of learning where a
model is asked to learn about new concepts from only a few
examples (Lake et al., 2011). Motivated by these applica-
tions, the focus on the present study is this central task of
OOD detection in the few-shot setting, which we will call
few-shot out-of-distribution (FS-OOD) detection.

Recently, there has been a growing interest in the few-shot
classification literature on the topic of uncertainty quantifi-
cation (Ravi & Beatson, 2019; Finn et al., 2018; Yoon et al.,
2018). Some of these studies (e.g., (Ravi & Beatson, 2019))
considered FS-OOD detection as an application demonstrat-
ing the utility of Bayesian methods. However, the lack of
FS-OOD detection baselines makes interpreting their results,
or FS-OOD detection results in general, difficult.

Contributions. In this paper, we contribute to the study of
FS-OOD detection as follows:

• We establish competitive adapted OOD baselines by
leveraging the progress in standard OOD detection, and
our insights into differences between FS- and standard
OOD detection.

• We propose a novel method, the Out-of-Episode Clas-
sifier (OEC), for FS-OOD detection that outperforms
these adapted baselines in many relevant settings.

• We show the effect of FS-OOD detection on down-
stream classification, as a further demonstration of the
utility of studying FS-OOD detection.

2. Background
This section lays down notation and terminology used in
this study. We briefly describe the task of few-shot learning,
and standard OOD detection. See Appendix A for a table of
notation.
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2.1. Few-Shot Classification

In standard classification, models are trained and tested on
the same set of classes. In few-shot classification (FSC),
a model is trained on a set of training classes Ctrain, and
tested on a set of unseen test classes Ctest. In FSC, the
aim is to learn about these new classes given only a few
labeled examples. Each round of evaluation is referred
to as an episode. In an episode, given a support set,
S = {Sc = {(xi,c, yi,c)}NS

i=1|c ∈ Cepisode} the model must
classify each of the unlabeled queries Q = {xi}

NQ

i=1 into
one of the classes in Cepisode. Sc denotes the subset of the
support set containing data from class c. x denotes an input
vector/image, and y a class label in an episode. Cepisode is
the set of classes for this episode, a random subset of all test
classes.

Following standard terminology, the number of classes
NC = |Cepisode| is referred to as the way of the episode and
the number of support examples per class NS as the shot of
the episode.

Recently, simple methods that fit a linear classifier on a
(pre-)trained backbone/encoder have been shown to be as
powerful as other more involved methods (Chen et al., 2019;
Dhillon et al., 2019). We use the term ‘backbone’ to refer to
the neural network used for the classification of the training
classes, excluding the top-most output layer. We denote a
baseline classifier as:

p(y|x) = softmax(fb(fφ(x)))) (1)

where fφ : RD → RZ denotes the encoder , and fb : RZ →
R|Ctrain| the linear layer that outputs logits for the standard
classification problem on the training classes. To use a
pretrained encoder for FSC evaluation, a linear classifier,
fψ(·;S), is fitted given the support set of each episode,
whereψ refers to the newly fitted parameters for this episode.
The FS classifier is:

p(y|x;S) = softmax(fψ(fφ(x);S)) (2)

where fψ : RZ → R|Cepisode|. This general structure of
having fixed parameters φ and episodic parameters ψ can
describe the test-time algorithm of many FSC methods, in-
cluding Prototypical Networks (Snell et al., 2017) and Base-
line++ (Chen et al., 2019).

2.2. Out-of-distribution Detection

Out-of-distribution detection is a binary detection problem.
The confidence estimator is required to produce a score,
s(x) ∈ R. We desire s(xin) > s(xout), i.e, the scores
for in-distribution examples xin to be higher than those for
out-of-distribution examples xout. When the confidence
estimator has learnable parameters, it is denoted as sθ(·).

OOD Metrics. The Area Under the Receiver-Operating
Curve (AUROC) is a standard metric used for evaluating
a binary detection problem as it circumvents the need to
set a threshold for the score. A scoring function that can
completely separate s(xin) from s(xout) would achieve an
AUROC score of 100%. In the case of having 50% OOD
inputs in an evaluation batch, the base-rate (i.e., random
guesses) is 50%. Other standard metrics for the OOD prob-
lems include area under the precision-recall curve, and false
positive rate (FPR) at a given true positive rate.

3. Related Work
Few-shot Learning. To make the FSC task more applica-
ble to real-world problems, it has been extended in ways
such as being evaluated on test classes more distinct from
the training classes (Triantafillou et al., 2019; Chen et al.,
2019), learning in the presence of an unlabelled set (Ren
et al., 2018; Sun et al., 2019), and being asked to solve
ambiguous tasks (Finn et al., 2018). The focus of our work,
FS-OOD detection, can be considered as another extension
where the system needs to act in the presence of irrelevant
inputs.

OOD Detection. The FS-OOD detection problem can be
considered as a variant of the standard OOD detection prob-
lem, which has been studied extensively. Standard OOD
detection methods can roughly be categorized into one of
three families. The first family of approaches is based on
fitting a density model to the inputs, p(x) (Nalisnick et al.,
2018; 2019; Ren et al., 2019; Serrà et al., 2019). The second
family of approaches is based on the predictive probability
of a classifier, p(y|x). Many Bayesian approaches have been
proposed and tested (see (Snoek et al., 2019) and references
therein). The last family involves fitting a density model to
representations of an encoder. (Lee et al., 2018) proposed a
simple yet effective approach of fitting Gaussians at various
layers of a trained deep classifier, which we will refer to
as the deep Mahalanobis distance (DM). In Section 6.1 we
discuss the effectiveness of these baselines for the FS-OOD
problem.

4. Few-shot OOD Detection & Adapted
Baselines

4.1. The Task: Few-shot OOD Detection

FS-OOD vs standard OOD Detection. In the standard
OOD detection problem, the in-distribution examples xin

are the set of all examples belonging to the “training classes”
Ctrain. Every other input is considered as OOD, xout. The
FS-OOD detection problem differs in two ways: 1) the
in-distribution examples are ones belonging to the support
set (i.e., a subset of the “test classes” Ctest), and 2) due
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Figure 1: Visual illustration of FS-OOD inputs. Assume
‘Episode:C’ is the current episode. Examples not belonging
to classes ‘trout’ or ‘tulip’ are considered OOE, such as
examples in episodes B and D. OOS inputs are from other
data sources.

to the first difference, the OOD set is every example not
belonging to Cepisode. Consequently, what is considered
in-distribution in one episode could be considered as OOD
for another episode.

Below we describe the two distinct sources of OOD inputs
(See Figure 1). For short, we refer to FS-OOD detection
with OOE and OOS inputs as OOE and OOS detection
respectively.

Out-of-Episode (OOE). OOE examples come from the
same dataset, but from classes not in the current episode.
In other words, if the current episode consists of classes in
Cepisode, the OOE examples xout ∈ R are from classes in
Ctest \ Cepisode.

Out-of-Dataset (OOS). OOS examples come from a
completely different dataset. For example, if the in-
distribution set consists of CIFAR images, then the OOS
examples can come from SVHN, ImageNet, etc. This is
the type of OOD inputs typically considered in the standard
OOD studies. Our results in Appendix H show that OOS
and OOE detection present different challenges. Much of
the progress made in standard OOD detection transfers to
the OOS detection task. On the other hand, the OOE task
presents challenges specific to FS and requires knowledge
about the support set. Hence, it will be the focus of our
experiments.

FS-OOD detection evaluation is done through some number
of episodes. In each episode, the confidence estimator sθ(·)
is evaluated on the set of in-distribution and OOD examples
using standard metrics like AUROC and FPR. A complete
description of the procedure can be found in Appendix F.

4.2. Adapted FS-OOD Detection Baselines

As discussed in Section 3, a variety of approaches have been
studied in the standard OOD setting. Here we discuss two
FS-adaptations of commonly used OOD baselines.

1. SPP: Softmax predictive Probability (Hendrycks &
Gimpel, 2016)

2. DM: Deep Mahalanobis distance (Lee et al., 2018)

The few-shot adaptations are prefixed with "FS-". Please
refer to Appendix C for description of the adaptation.

5. Out-of-Episode Classifier Network
We are interested in solving the FS-OOD detection task by
learning a neural network, referred to as the Out-of-Episode
Classifier (OEC) network. Given a support set S and a query
x, the network outputs whether x is in one of the classes
in the support set, sθ : (x, S) → R, where θ denotes the
learnable parameters in OEC. OEC is trained episodically.

Learning Objective. Training is done over a sequence of
training episodes. In essence, we form episodes with OOE
inputs as outlined in Algorithm 1 in the Appendix with the
training set instead of the test set. The set of in-distribution
and out-of-distribution examples in an episode are denoted
by Q = {xin

i }
NQ

i=1 and R = {xout
i }

NQ

i=1, respectively, where
NQ is the number of examples. Given an episode consisting
of S,Q,R, the OEC is optimized with the binary cross-
entropy objective.

Network Design. To avoid the input dimension from
growing with the number of classes in S, the first design
choice we make is to condition on the support of one class
Sc instead of S , i.e. scθ : (xin, Sc) → R. Note that scθ(·)
outputs a score for each class. To obtain a single score w.r.t.
the full support set for a query, the class-conditional scores
need to be aggregated. This is done by taking the maximum
confidence over all the classes:

sθ(x) = max
c∈C

scθ(x, Sc) (3)

Motivated by a baseline like DM, OEC capitalizes on a
pretrained encoder, and takes as input embeddings from all
layers fφ(·, l)∀l. For each layer, the OEC network takes in
the concatenation il = [µl,c; fφ(x, l)] where µl,c is the aver-
aged class embedding and fφ(x, l) is the query embedding
at layer l. [·; ·] denotes concatenation.

We also include a residual path (with a learnable scale, and
bias) whose input is ‖µl,c − fφ(x, l)]‖2, and the output
is added to the output of the OEC network. Hence, this
residual path mimics the behavior of FS-DM, and is pre-
trained for a few steps.
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DataSet SPP DM FS-
SPP

FS-
DM(-1)

FS-
DM(iso)

FS-
DM OEC

AUROC ↑
CIFAR-FS 50.7±.1 48.9±.2 53.5±.1 66.3±.1 68.0±.1 67.8±.1 72.2±.2

miniImageNet 49.7±.0 50.3±.1 53.3±.0 67.6±.1 64.3±.1 65.8±.1 71.0±.1
FPR90 ↓

CIFAR-FS 90.3±.1 90.5±.1 87.9±.1 79.5±.2 77.7±.2 75.8±.2 67.6±.3
miniImageNet 90.8±.0 90.0±.1 87.4±.1 75.0±.1 80.2±.1 79.1±.1 70.8±.1

Table 1: OOE detection results (AUROC, FPR90) at 5-way 5-shot. ‘FS-DM(-1), (iso)’ denote FS-DM variants. ‘(-1)’
uses only the last layer features, and ‘(iso)’ uses isotropic covariance.
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Figure 2: OEC vs FS-DM at various FS configurations.

6. Experiments
In this section, we evaluate OEC and our FS-adapted base-
lines on the OOE detection task. In Appendix J we show
OEC’s potential of being used with various FSC classifiers.
In Appendix I we show that improvements in FS-OOD detec-
tion leads to improved accuracy in the FS-semi-supervised,
and FS-active learning settings.

The architecture of encoder fφ is the ResNet10 presented
in (Chen et al., 2019). All results are evaluated with 15
of each of in and out of distribution test queries over 1000
test episodes if not otherwise specified. Descriptions of the
in-distribution and OOS datasets are in Appendix E. OEC
is early stopped by validating on 300 validation episodes
on the validation classes. Error bars are 95% confidence
interval. Code for reproducing these results can be found at
github.com/wangkua1/fs-ood.

6.1. OOE Detection

Table 1 shows a comparison of OEC with various baselines
on the FS-OOD task with OOE inputs for 5-way 5-shot
episodes. Baselines from the standard OOD literature with-
out adaptation do not work for this task, as indicated by
the 50% AUC and 90% FPR90. Our adaptations FS-SPP,
and FS-DM already improved over baselines. OEC out-
performed the adapted baselines on both the CIFAR-FS
and miniImageNet datasets. We were particularly careful

about comparing OEC to non-episodic baselines as they
were shown to be competitive in FSC (Dhillon et al., 2019).
Hence we considered multiple variants of FS-DM, and OEC
outperformed all. See Appendix D for a detailed analysis of
all FS-DM hyperparameters.

Figure 2 includes a comparison of OEC and the strongest
baseline FS-DM on the OOE detection task across a wide
range of ways and shots. In general, as seen in the left
subplot, smaller shots make the task more difficult, and so do
larger ways. Across the board, OEC improves significantly
over the baseline.

7. Conclusion
In this work, we studied the problem of few-shot out-of-
distribution detection. Our proposed OEC significantly out-
performed our adapted baselines across all considered ways
and shots on both CIFAR-FS and miniImageNet on the FS-
OOD detection task (Section 6.1). Additional results in
Appendix I showed that improving FS-OOD detection can
increase accuracy in few-shot semi-supervised, and active
learning settings when OOD inputs are presented in the
unlabeled set.

github.com/wangkua1/fs-ood
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A. Notations

Symbol Meaning
Ctest, Ctrain classes in the test, train set
Cepisode classes in an episode
Q,S,R query, support, distractors/out-of-distribution sets
Sc subset of support that belongs to class c
NE number of episode

NC , NS number of way/classes, number of shots per episode
NQ number of queries per episode
x generic image input

xin,xout in-distribution query, and out-of-distribution examples
fφ encoder/backbone network
fb last layer linear classifier for standard classification
fψ last layer linear classifier for FSC classification
s(·) confidence score

Table 2: Description of the notation used throughout this paper.

B. Alternative Objective for OEC
Instead of training the aggregated score, an alternative loss uses the following binary cross-entropy objective on the score
before aggregation:

LOEC(θ; {S,Q,R}) =−
∑

(c,xin)∈Q

log σ(scθ(x
in, Sc))

−
∑

xout∈R,c′∼unif(Cepisode)

log(1− σ(scθ(x
out, Sc′)))

For the OOE queries xout, we assigned them a label drawn from the uniform distribution of the in-distribution classes.

This alternative works reasonably well. The main reason the other version is presented in the main paper is to faciliate easier
comparison with baselines and ablations.

www.vectorinstitute.ai/#partners
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C. Adapted Baselines
1. (FS-)SPP The SPP and FS-SPP scores are the largest values of the softmax from Equation 1, and Equation 2
respectively.

s(xin) =
SPP maxc∈Ctrain softmax(fb(fφ(x)))[c]

FS-SPP maxc∈Cepisode softmax(fψ(fφ(x);S))[c]

f(·)[c] denotes indexing into the cth output of f(·). Notice that the maxc are over different sets of classes, and the linear
classifiers are different.

2. (FS-)DM The DM method extracts features from each block of an encoder fφ (e.g. ResNet18). The features are
average pooled over the image dimensions. The resulting representation given a layer index l is denoted as fφ(x, l). A
separate Gaussian distribution is fitted to every ResNet block for each class using all the examples in the training set. The
covariance is shared across classes. This results in additional parameteres µl,c and Σl. The confidence is computed as:

s(x) = max
c∈Ctrain

∑
l

logN (fφ(x, l);µl,c,Σl) (4)

See Appendix D for a more detailed comparison to the original implementation, and thorough ablation studies to justify our
implementation. For FS-DM, the additional Gaussian parameters are fitted on the support set instead of the training set.
Note that DM does not depend on the final linear classifier, making it agnostic to the last FS layer fψ in Equation 2.

The two settings (standard vs FS) have drastically different cardinality. For example, the training set of miniImageNet has
64 classes, and 600 examples per class. A 5-way 5-shot episode has 5 classes of 5 examples each. The dimensionality of
fφ(x, l) is often much larger than 5. For ResNets, the last layer representation is 512-d in a single channel. Fitting a full
precision/covariance with N=25 and d=512 is problematic as the covariance is singular. Surprisingly, in practice, using the
pseudo-inverse, such precision matrices can be computed. We found the Shrunk Covariance estimator works well in practice
1.

D. DM ablation
2. DM Given embedding fφ, the DM method extracts features from each block, and average pool over the image
dimensions. The resulting representation given a layer index l is denoted as fφ(x, l). Given class supervision, one Gaussian
distribution is fitted to each layer/block for each class. The covariance is shared across classes. This results in additional
parameteres µl,c and Σl. In the original paper (Lee et al., 2018), the score is computed as

sl,ε = max
c

logN (fφ(x + εg, l);µl,c,Σl) (5)

where g is the FGSM method and ε is the strength of the perturbation. The hyperparameters are validated for each of the
OOD input types considered given 1000 target OOD inputs. For each type of OOD input, the final score is the one that had
the best validation performance, i.e. s = maxl,ε sl,ε.

However, having to choose hyperparameters separataly given true OOD inputs is less desirable (Hendrycks et al., 2019). As
shown in Figure 3, there does not exist one setting of l, ε that works best in general. However, for the OOE input problem,
summing over all layers is better, hence this is the variant we use for the rest of our study.

E. Datasets
CIFAR-FS. CIFAR-FS uses the CIFAR100 dataset (Krizhevsky, 2009). It contains 32× 32 color images. In total, it has
100 classes of 600 images each. CIFAR-FS refers to using 64 classes for training, 16 for validation, and 20 for test.

1https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.
html

https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html
https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html
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Figure 3: Effect of DM hyperparameters. There does not exist one setting of l, ε that works best (indicated by ’x’) across
different OOD inputs.

miniImageNet. The miniImageNet dataset is another commonly used few-shot benchmark (Snell et al., 2017; Vinyals
et al., 2016). It consists of 84× 84 colored images. It also has 100 classes, and 600 examples each. Similarly, we used 64
classes for training, 16 for validation, and 20 for test.

Out-of-Dataset. The OOS datasets were adopted from previous studies including those by (Hendrycks et al., 2019; Liang
et al., 2017). Since we experimented with in-distribution datasets of different image dimensions, the OOS inputs were scaled
accordingly. All inputs are first scaled to the valid pixel range, then fed through the same data normalization scheme as the
in-distribution inputs.

Synthetic OOS. We used uniform, Gaussian, and Rademacher noise.

Natural OOS.

• LSUN is a large-scale scene understanding dataset (Yu et al., 2015).

• Texture is a dataset with different real world patterns (Cimpoi et al., 2014).

• Places is another large scale scene understanding dataset (Zhou et al., 2017).

• SVHN refers to the Google Street View House Numbers dataset (Netzer et al., 2011).

• TinyImagenet consists of 64 × 64 color images from 200 ImageNet classes, with 600 examples of each class
(Hendrycks et al., 2019).
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F. FS-OOD evaluation details

Algorithm 1:
Episodic Evaluation for OOD Detection.

Require: config = {NE , NC , NS , NQ}
Require: sθ a confidence score
Require: Din In-distribution Dataset
Require: Dout OOD Source

1: M← {}
2: for NE do
3: S,Q← GETEPISODE(Din, config)
4: R← GETOOD(S,Dout, config)
5: Sin ← {}, Sout ← {}
6: for xin in Q do
7: Sin.insert(sθ(xin;φ, S))
8: end for
9: for xout in R do

10: Sout.insert(sθ(xout;φ, S))
11: end for
12: M.insert(Metric(Sin, Sout))
13: end for
14: return Avg(M)

GETEPISODE() denotes the procedure of forming an episode based on the number of ways, shots, and queries. Based on
the current episode and a given OOD source, we sample the OOD set R for the given episode. Then, confidence scores
are computed for each of the in-distribution and OOD examples. These scores are summarized using standard metrics like
AUROC, denoted by Metric(·, ·). Then the metric values are aggregated over NE episodes.

G. Training details and Hyperparameters
G.1. FSC classifier/encoder

For all encoders, the network architecture is ResNet10 from (Chen et al., 2019). Input is preprocessed with data augmentation
of random cropping and horizontal flips, and normalized using dataset statistics. All hyperparameters described below are
validated to obtain the best FSC accuracy on 100 episodes consisting of the validation classes on varying learning rates.

Baseline++. The best run used SGD with Nestrov .9 momuntum, batch size 128, learning rate of 0.1. Learning rate is
decreased by a factor of .2 at epochs 60, 120, 160.

ProtoNet. ProtoNet is trained episodically with 75 queries per episode (ways/shots is the same the test episode of a given
experiment). The best run used Adam and a learning rate of 1e-3. The model is early-stopped using validation FSC accuracy,
which is usually around 40000 episodes.

MAML. MAML is trained episodically with 75 queries per episode (ways/shots is the same the test episode of a given
experiment). The best run used Adam and a learning rate of 1e-4. The model is early-stopped using validation FSC accuracy,
which is usually between 50000 to 100000 episodes.

G.2. OEC

OEC is trained using Adam at a learning rate of 0.001. It is validated on AUROC, which resulted in a larger variance than
FSC accuracy. Instead of 100 validation episodes, OEC is validated using 300 episodes to reduce variance of the best
checkpoint.
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Figure 4: (FS-)OOD methods on both OOE and OOS inputs
(in-distribution: CIFAR-FS) ‘OOE’ numbers correspond to Table 1.

H. OOE vs OOS inputs
Here we discuss the different challenges presented by OOE and OOS inputs (see Figure 4). The methods we consider now
include other non-FS baselines such as Ensemble (Lakshminarayanan et al., 2017), log-likelihood of Glow (LL) (Nalisnick
et al., 2018), likelihood-ratio of Glow (LR) (Serrà et al., 2019). The types of OOD inputs considered are: OOE, synthetic
OOS (“Syn. OOS”), and natural OOS (“Nat. OOS”) (details in Appendix E). Again, non-FS baselines are inherently
ineffective for the OOE task. The non-FS baselines, specifically LR and DM, perform well on the OOS inputs. There are
two potential explanations: 1) compared to the OOS inputs, the support set is much closer to the training classes with high
probability, and 2) the models are somewhat invariant to the shift from the training classes to test classes. The fact that DM
does better than FS-DM on Nat. OOS is due to having a lot more examples to fit the extra MoG parameters. In general,
OOD inputs can be of any type, hence OEC and the FS adapted methods are more broadly applicable.

I. FS-SSL and Active Learning
In this work, we are particularly interested in the realistic scenario where aside from the small support set for each new task,
we are also given an unlabeled set U = {u}Nu

i . Much like the support set, these examples can be used to learn a classifier
for the current classification task. However, an example of U differs from a support example in that: 1) it is unlabeled, and
2) it might be a distractor, i.e. might not belong to any of the classes of interest in the current episode. In our case, the OOE
inputs are distractors.

Intuitively, there are two additional challenges in this setup: 1) filtering out the distractors, and 2) figuring out how to
leverage the in-distribution (non-distractor) unlabeled examples (i.e., guessing a correct pseudo-label in the SSL case, and
ranking which examples are more useful in the active case) for improving the classifier. We aim to improve upon the former:
we show that the presence of distractors can lead to significantly worse performance if they are not accurately identified and
discarded. Our focus is on methods that can effectively filter these out.

Few-shot Semi-Supervised Learning (FS-SSL). In FS-SSL, the model can use the unlabeled set U = {u}Nu
i for

improving its classification accuracy. (Ren et al., 2018) extended ProtoNets by predicting a soft label for each example in U ,
adding it to the support set, and computing ‘refined’ semi-supervised prototypes, µ̃c, as:

µ̃c =

∑
xi∈Sc

fφ(xi) +
∑

ui∈U p̃i,cfφ(ui)

|Sc|+
∑

ui∈U p̃i,c
(6)

where p̃i,c is the predicted probability that ui belongs to class c based on the labeled support set. Intuitively, unfiltered
distractors in U can significantly affect the refined prototype, and hence degrade the performance of the classifier.

Few-shot Active Learning. Active learning (Settles, 2009) is a well-studied problem where the goal is to use as few
labeled data as possible by requesting labels for only that subset of the overall available data that is deemed to be more



Few-shot Out-of-Distribution Detection

Initial
Support

Examples

OOD Examples
(Distractors)

Augmented
Support

Examples

In-Distribution Examples

Unlabeled Examples
Incorrectly selected 

Budget wasted

Correctly selected 
Added to support setdog

snake

bird

dog

Initial
Support

Examples

OOD Examples
(Distractors)

Augmented
Support

Examples

In-Distribution Examples

Unlabeled Examples
Incorrectly selected 

Assigned random labels

Correctly selected 
Assigned GT labels

bird

dog

snake

bird

dog

Figure 5: Few-shot active learning setup. A test episode consists of an initial support set and a set of unlabeled data.
The unlabeled data contains both in-distribution and OOD data; here, the OOD data contains both out-of-episode (OOE)
examples and out-of-dataset (OOS) examples. The model is given a budget that it can spend to obtain labels for a subset
of unlabeled examples. In-distribution examples selected by the model are added to the augmented support set with their
ground-truth labels. OOD examples selected by the model are not added to the support set; they simply waste the model’s
budget.

useful for learning.

Here, we consider an episodic variant of this formulation, where each episode contains a support set and a query set as usual,
but with the possibility of augmenting the support set by requesting labels for some examples from an unlabeled set U . A
common constraint in active learning is the budget. The model can only request a certain number of labels for examples in
U . Upon requesting the label of an in-distribution example, that example is added to the support set with its ground-truth
label. If a distractor label is requested, the oracle would give back the label “distractor”. To simplify our analysis, these
examples are discarded completely. This is a sensible thing to do, since it is not obvious how to extract useful information
with this label. The penalty of requesting a label for a distractor decreases the budget by one. A model that is capable of
OOD detection would request the labels of the relevant examples only, and would thus successfully increase the support
set. In the worst case, the labeling budget is used up entirely on distractors, resulting to no additions to the support set
(see Figure 5). In this study, the budgest is set to number of in-distribution unlabeled examples. In the best case, all of the
in-distribution unlabeled examples will be included, and none of the distractors will be included.

SSL Active
I:O L

(ref)
no

OOD
FS-
SPP

FS-
DM OEC

FS-
SPP

FS-
DM OEC

1:5 -2.5 -2.2 -1.8 0.0 0.1 0.4 0.6
5:5 67.5 -0.2 -0.2 -0.2 0.7 4.8 3.8 4.1

5:50 -2.1 -1.9 -1.2 -0.5 -0.1 1.1 1.6
1:5 -2.8 -2.0 -1.5 -0.4 0.1 0.3 0.3
5:5 63.5 -1.0 -0.4 -0.8 -0.3 3.9 3.0 3.1

5:50 -3.6 -2.7 -1.9 -1.1 0.0 0.8 0.9

Table 3: Effect of FS-OOD on FS-SSL/active learning. ‘I:O’ is the number of the in-distribution unlabeled to the number of
distractors in the unlabeled pool. Column ‘L’ is FSC accuracy using only the labeled set. Numbers in other columns are relative changes
to ‘L’ column.

Results. The benefit of having a FS-OOD detector is more apparent when the ratio of distractors to in-distribution
examples in the unlabeled pool increases from 1 to 5. In the small unlabeled set (1:5) case, good FS-OOD detection prevents
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degradation of accuracy in the FS-SSL task. In the large unlabeled set (5:50) case, better FS-OOD detection leads to larger
improvement in FSC accuracy in the FS-active learning task. Interestingly, in the (5:5) case, one of our adapted baseline,
FS-SPP, is able to improve the accuracy in the FS-active task more than the strong FS-OOD methods. An interesting future
direction will be to understand not only which examples should be filtered out, but also which ones should be included with
higher priority.

J. Combining OEC with various FSC learners

AUROC↑ FPR90↓
FS-SPP FS-DM OEC FS-SPP FS-DM OEC

CIFAR-FS
Baseline++ 48.8 69.0 72.3 92.9 75.2 67.6

ProtoNet 61.2 61.7 70.5 83.2 83.3 69.2
MAML 61.9 69.1 69.9 83.5 70.3 67.2

miniImageNet
Baseline++ 49.5 64.2 69.1 91.6 80.2 73.1

ProtoNet 58.6 59.6 65.7 85.1 83.6 77.4
MAML 57.3 64.6 67.5 86.9 77.6 73.7

Table 4: OOE detection when OEC is combined with different FS classifiers.

Baseline++ learns the backbone using standard classification training, so this is the same method presented in Section 6.1.
Both ProtoNet and MAML are learned episodically as described in Appendix G. The resulting backbone of each of the three
methods is different.

Table 4 shows that for all backbones, OEC significantly outperformed other FS-OOD methods. This demonstrate the
flexibility of OEC.


