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Abstract
Miscalibration – a mismatch between a model’s
confidence and its correctness – of Deep Neural
Networks (DNNs) makes their predictions hard
to rely on. Ideally, we want networks to be accu-
rate and calibrated. In this work, we study focal
loss as an alternative to the conventional cross-
entropy loss and show that, focal loss allows us
to learn models that are comparitively well cal-
ibrated while preserving accuracy. We provide
a thorough analysis of the factors causing mis-
calibration, and use the insights we glean from
this to justify the superior performance of focal
loss. Finally, we perform extensive experiments
on a variety of datasets, and with a wide vari-
ety of network architectures, and show that focal
loss indeed achieves excellent calibration without
compromising on accuracy in almost all cases.

1. Introduction
Deep neural networks have dominated computer vision and
machine learning in recent years, and this has led to their
widespread deployment in real-world systems (Cao et al.,
2018; Chen et al., 2018; Kamilaris & Prenafeta-Boldú, 2018;
Ker et al., 2018; Wang et al., 2018). However, many current
multi-class classification networks in particular are poorly
calibrated, in the sense that the probability values that they
predict for class labels often overestimate the likelihoods
of those class labels being correct in reality. This makes it
difficult for downstream components to trust the predictions
of such models. The underlying cause is hypothesised to be
that these networks’ high capacity leaves them vulnerable
to overfitting on the negative log-likelihood (NLL) loss they
conventionally use during training (Guo et al., 2017).

Numerous suggestions for addressing this problem have
been proposed. Much work has been inspired by ap-
proaches that were not originally formulated in a deep
learning context, such as Platt scaling (Platt, 1999), his-
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togram binning (Zadrozny & Elkan, 2001), isotonic regres-
sion (Zadrozny & Elkan, 2002), and Bayesian binning and
averaging (Naeini et al., 2015; Naeini & Cooper, 2016). As
deep learning has become more dominant, however, vari-
ous works have begun to directly target the calibration of
deep networks. For example, Guo et al. (Guo et al., 2017)
have popularised a modern variant of Platt scaling known as
temperature scaling, which works by dividing a network’s
logits by a scalar T > 0 (learnt on a validation subset) prior
to performing softmax. Temperature scaling has the desir-
able property that it can improve the calibration of a network
without in any way affecting its accuracy.

However, whilst its simplicity and effectiveness have made
it a popular calibration method, it does have downsides.
For example, whilst it scales the logits to reduce the net-
work’s confidence in incorrect predictions, this also slightly
reduces the network’s confidence in predictions that were
correct. By contrast, (Kumar et al., 2018) initially eschew
temperature scaling in favour of minimising a differentiable
proxy for calibration error at training time, called Maximum
Mean Calibration Error (MMCE), although they do later
also use temperature scaling as a post-processing step to
obtain better results than cross-entropy followed by temper-
ature scaling (Guo et al., 2017). Separately, (Müller et al.,
2019) propose training models on cross-entropy loss with la-
bel smoothing instead of one-hot labels and show that label
smoothing has a very favourable effect on model calibration.

In this paper, we empirically study a technique for improv-
ing network calibration that works by replacing the cross-
entropy loss conventionally used when training classifica-
tion networks with the focal loss proposed by (Lin et al.,
2017). We observe that unlike cross-entropy, which min-
imises the KL divergence between the predicted (softmax)
distribution and the target distribution (one-hot encoding
in classification tasks) over classes, focal loss minimises a
regularised KL divergence between these two distributions,
which ensures minimisation of the KL divergence whilst
increasing the entropy of the predicted distribution, thereby
preventing the model from becoming overconfident.

Overall, we make the following contributions. Firstly, in §3,
we perform an empirical study of the link that (Guo et al.,
2017) observed between miscalibration and NLL overfitting
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and also show that this overfitting is significantly lower in
case of focal loss as compared to cross-entropy. Secondly,
in §4, we show, via multiple classification experiments, that
DNNs trained with focal loss are more calibrated than those
trained with cross-entropy loss (both with and without label
smoothing), MMCE or Brier loss (Brier, 1950).

2. Problem Formulation
Let D = 〈(xi, yi)〉Ni=1 denote a dataset consisting of N
samples from a joint distribution D(X ,Y), where for each
sample i, xi ∈ X is the input and yi ∈ Y = {1, 2, ...,K}
is the ground-truth class label. Let p̂i,y = fθ(y|xi) be the
probability that a neural network f with model parameters
θ predicts for a class y on a given input xi. The class that
f predicts for xi is computed as ŷi = argmaxy∈Y p̂i,y,
and the predicted confidence as p̂i = maxy∈Y p̂i,y. The
network is said to be perfectly calibrated when, for each
sample (x, y) ∈ D, the confidence p̂ is equal to the model
accuracy P(ŷ = y|p̂), i.e. the probability that the predicted
class is correct. For instance, of all the samples to which a
perfectly calibrated neural network assigns a confidence of
0.8, 80% should be correctly predicted.

A popular metric used to measure model calibration is the ex-
pected calibration error (ECE) (Naeini et al., 2015), defined
as the expected absolute difference between the model’s con-
fidence and its accuracy, i.e. Ep̂

[
|P(ŷ = y|p̂)− p̂|

]
. Since

we only have finite samples, the ECE is approximated in
practice by dividing the interval [0, 1] into M equispaced
bins, where the ith bin is the interval

(
i−1
M , i

M

]
. Let Bi

denote the set of samples with confidences belonging to
the ith bin. The accuracy Ai of this bin is computed as
Ai = 1

|Bi|
∑
j∈Bi

1 (ŷj = yj), where 1 is the indicator
function, and ŷj and yj are the predicted and ground-truth
labels for the jth sample. Similarly, the confidence Ci
of the ith bin is computed as Ci = 1

|Bi|
∑
j∈Bi

p̂j , i.e.
Ci is the average confidence of all samples in the bin.
The ECE can be approximated as a weighted average of
the absolute difference between the accuracy and confi-
dence of each bin: ECE =

∑M
i=1

|Bi|
N |Ai − Ci|. A simi-

lar metric, the maximum calibration error (MCE) (Naeini
et al., 2015), is defined as the maximum absolute differ-
ence between the confidence and accuracy of each bin:
MCE = maxi∈{1,...,M} |Ai − Ci|.

AdaECE: One disadvantage of ECE is the uniform bin
width. For a trained model, most of the samples lie within
the highest confidence bins, and hence these bins domi-
nate the value of the ECE. We thus also consider another
metric, AdaECE (Adaptive ECE), for which bin sizes are
calculated so as to evenly distribute samples between bins:
AdaECE =

∑M
i=1

|Bi|
N |Ai − Ci| s.t. ∀i, j · |Bi| = |Bj |.

Classwise-ECE: The ECE only considers the probability of

the predicted class without considering the other scores in
the softmax distribution. A stronger definition of calibration
would require the probabilities of all the classes in the soft-
max distribution to be calibrated (Vaicenavicius et al., 2019;
Kumar et al., 2019). This can be achieved with a simple
classwise extension of the ECE metric: ClasswiseECE =
1
K

∑M
i=1

∑K
j=1

|Bi,j |
N |Ai,j − Ci,j |, where K is the num-

ber of classes, Bij denotes the set of samples from jth
class in the ith bin, Aij = 1

|Bij |
∑
k∈Bij

1 (j = yk) and
Ci,j =

1
|Bij |

∑
k∈Bij

p̂kj .

3. Miscalibration and Focal Loss
A key empirical observation on miscalibration made by
(Guo et al., 2017) was that poor calibration of such net-
works appears to be linked to overfitting on the negative
log-likelihood (NLL) during training. We further inspect
this observation here. For our analysis, we train a ResNet-50
on CIFAR-10 (getting state-of-the-art test set accuracy, all
the training settings can be found here: (PyTorch-CIFAR)).
We minimise cross-entropy (a.k.a. NLL) Lc = − log p̂i,yi ,
where p̂i,yi is the probability assigned to the correct class yi
for the ith sample. Note that the NLL is minimised when
for each training sample i, p̂i,yi = 1, whereas the classifi-
cation error is minimised when p̂i,yi > p̂i,y for all y 6= yi.
Thus, even when the classification error is 0, the NLL can
be positive, and the optimiser can still try to reduce it to 0
by further increasing the value of p̂i,yi for each sample.

Peak at the wrong place: We plot the average train and
test NLL and entropy of the softmax distribution at each
training epoch in Figures 1(a) and 1(b). In Figure 1(c), we
plot the train and test classification error and the test set
ECE. Figures 1(a) and 1(b) show that although the average
train NLL broadly decreases throughout training, after the
150th epoch (where the learning rate drops by a factor of
10), there is a marked rise in the average test NLL, indi-
cating that the network starts to overfit on average NLL.
This increase in average test NLL is caused only by the
incorrectly classified samples. Note that after epoch 150,
the test set ECE also rises, indicating that the network is
becoming miscalibrated. Moreover, the softmax entropies
for both correctly and incorrectly classified test samples de-
crease throughout training (in other words, the distributions
get peakier). This indicates that for the misclassified test
samples, the network gradually becomes more and more
confident on its incorrect predictions.

Weight magnification: The increase in confidence of the
network’s predictions can happen if the network increases
the norm of its weights W to increase the magnitudes of the
logits. In fact, cross-entropy loss is minimised when for each
training sample i, p̂i,yi = 1, which is possible only when
||W || → ∞. Cross-entropy loss thus inherently induces
this tendency of weight magnification in neural network
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Figure 1. How metrics related to model calibration change whilst training a ResNet-50 network on CIFAR-10.
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Figure 2. How metrics related to model calibration change whilst training several ResNet-50 networks on CIFAR-10, using either
cross-entropy loss, or focal loss with γ set to 1, 2 or 3.

optimisation. The promising performance of weight decay
(regulating the norm of weights) on the calibration of neural
networks can perhaps be explained using this observation.

Why might focal loss improve calibration? In this work,
we study an alternative loss function, popularly known as
focal loss (Lin et al., 2017), that weights loss components
generated from individual samples in a mini-batch by how
well the model classifies them. For classification tasks where
the target distribution is a one-hot encoding, it is defined
as Lf = −(1− p̂i,yi)γ log p̂i,yi , where γ is a user-defined
hyperparameter. We know that cross-entropy forms an upper
bound on the KL-divergence between the target distribution
q and the predicted distribution p̂, i.e. Lc ≥ KL(q||p̂), so
minimising cross-entropy results in minimising KL(q||p̂).
Interestingly, a general form of focal loss can be shown
to be an upper bound on the regularised KL-divergence,
where the regulariser is the negative entropy H[p̂] of the
predicted distribution p̂, and the regularisation parameter is
γ: Lf ≥ KL(q||p̂)− γH[p̂] (proof in Appendix A).

This shows that replacing cross-entropy with focal loss has
the effect of adding a maximum-entropy regulariser (Pereyra
et al., 2017). Encouraging the predicted distribution to have
higher entropy can help avoid the overconfident predictions
produced by modern neural networks (see the ‘Peak at the
wrong place’ above), and thereby improve calibration.

Empirical observations on focal loss: To compare focal
loss with cross-entropy, we use the same training settings
as mentioned above, and train four ResNet-50 networks on
CIFAR-10, one using cross-entropy loss, and three using
focal loss with γ = 1, 2 and 3. Figure 2(a) shows that
while the test NLL for the cross-entropy model significantly
increases towards the end of training (before saturating),
the test NLLs for the focal loss models remain low. This is
further corroborated in Figures 2(b) and 2(c). Figure 2(b)

shows that the test NLLs on correctly classified samples for
the focal loss models remain consistently higher than that for
the cross-entropy model throughout training, implying that
the focal loss models are relatively less confident than the
cross-entropy model for these samples. This is important,
as we have already discussed that it is overconfidence that
normally makes deep neural networks miscalibrated. In fact,
Figure 2(c) shows that in contrast to the cross-entropy model,
the NLL for misclassified test samples is significantly lower
for focal loss models after epoch 150 (where we observe
NLL overfitting). Additionally, in Figure 2(d), we notice
that the entropy of the softmax distribution for misclassified
test samples is consistently (if marginally) higher for focal
loss than for cross-entropy.

We had hypothesised earlier that the overconfidence of cross-
entropy models is caused by an increase in the weight norms
of the network over the course of training. In Figure 2 (e),
we plot the weight norms of the last linear layer for all four
models against training epochs. Although focal loss models
have higher initial weight norms, there is a complete reversal
of the order of weight norms after epoch 150, i.e., the point
from where the networks start getting miscalibrated. This
observation is encouragingly in favour of focal loss. In the
next section, we empirically evaluate the performance of
focal loss on multiple datasets and network architectures.

4. Experiments
We conduct image and document classification experiments
to test the performance of focal loss. For the former, we
use CIFAR-10/100 (Krizhevsky, 2009) and Tiny-ImageNet
(Deng et al., 2009), and train ResNet-50, ResNet-110 (He
et al., 2016), Wide-ResNet-26-10 (Zagoruyko & Komodakis,
2016) and DenseNet-121 (Huang et al., 2017) models, and
for the latter, we use Stanford Sentiment Treebank (SST)
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 Focal Loss (γ = 3)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet 50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 5.13 1.97(1.1)
ResNet 110 19.05 4.43(2.3) 7.88 4.65(1.2) 19.14 3.86(2.3) 11.02 5.89(1.1) 8.64 3.95(1.2)

Wide ResNet 26-10 15.33 2.88(2.2) 4.31 2.7(1.1) 13.17 4.37(1.9) 4.84 4.84(1) 2.13 2.13(1.0)
DenseNet 121 20.98 4.27(2.3) 5.17 2.29(1.1) 19.13 3.06(2.1) 12.89 7.52(1.2) 4.15 1.25(1.1)

CIFAR-10

ResNet 50 4.35 1.35(2.5) 1.82 1.08(1.1) 4.56 1.19(2.6) 2.96 1.67(0.9) 1.48 1.42(1.1)
ResNet 110 4.41 1.09(2.8) 2.56 1.25(1.2) 5.08 1.42(2.8) 2.09 2.09(1) 1.55 1.02(1.1)

Wide ResNet 26-10 3.23 0.92(2.2) 1.25 1.25(1) 3.29 0.86(2.2) 4.26 1.84(0.8) 1.69 0.97(0.9)
DenseNet 121 4.52 1.31(2.4) 1.53 1.53(1) 5.1 1.61(2.5) 1.88 1.82(0.9) 1.32 1.26(0.9)

Tiny-ImageNet ResNet 50 15.32 5.48(1.4) 4.44 4.13(0.9) 13.01 5.55(1.3) 15.23 6.51(0.7) 1.87 1.87(1)

SST Binary Tree LSTM 7.37 2.62(1.8) 9.01 2.79(2.5) 5.03 4.02(1.5) 4.84 4.11(1.2) 16.05 1.78(0.5)

Table 1. ECE (%) computed for different approaches both pre and post temperature scaling (cross-validating T on ECE). Optimal
temperature for each method is indicated in brackets.

(Socher et al., 2013) dataset and train Tree-LSTM (Tai et al.,
2015) models. Further details on the datasets and training
can be found in Appendix B.

Baselines Along with cross-entropy loss, we use the fol-
lowing baselines: a) MMCE (Maximum Mean Calibration
Error) (Kumar et al., 2018), a continuous and differentiable
proxy for calibration error that is normally used as a regu-
lariser alongside cross-entropy, b) Brier loss (Brier, 1950),
the squared error between the predicted softmax vector
and the one-hot ground truth encoding (Brier loss is an
important baseline as it can be decomposed into calibration
and refinement (DeGroot & Fienberg, 1983; Snoek et al.,
2019)), c) Label smoothing (Müller et al., 2019) (LS): given
a one-hot ground-truth distribution q and a smoothing factor
α (hyperparameter), the smoothed vector s is obtained as
si = (1 − α)qi + α(1 − qi)/(K − 1), where si and qi
denote the ith elements of s and q respectively, andK is the
number of classes. Instead of q, s is treated as the ground
truth. We train models using α = 0.05 and α = 0.1, but
find α = 0.05 to perform better, and (d) Focal Loss (fixed
γ): We trained models using focal loss setting γ to 1,2 and
3 and found γ = 3 to perform the best.

Performance Gains: We report the optimal temperatures
and their corresponding ECE% (computed using 15 bins) in
Table 1. We also report test set classification error, AdaECE,
and Classwise-ECE in Appendix C. Firstly, for all dataset-
network pairs, we obtain very competitive test set classifica-
tion accuracies (shown in Table C.3 in the appendix). Sec-
ondly, it is clear from Tables 1, C.1 and C.2 that focal loss
with γ = 3 generally outperforms all the other baselines. It
broadly produces the lowest ECE, AdaECE and Classwise-
ECE scores both before and after temperature scaling. Fi-
nally, note that for focal loss, the optimal temperatures are
generally (with some exceptions) very close to 1, mostly ly-
ing between 0.9 and 1.1. This property is shown by the Brier
score and the label smoothing models as well. By contrast,
the optimal temperatures for the baselines (cross-entropy
with hard targets and MMCE) are significantly higher, with
values lying between 2.0 to 2.8. An optimal temperature

close to 1 indicates that the model is innately calibrated and
cannot be made significantly more calibrated by tempera-
ture scaling. Furthermore, an optimal temperature that is
much greater than 1 can make the network underconfident
in general, as its outputs are temperature-scaled irrespective
of their correctness.

5. Conclusion
In this paper, we study an alternative loss function, focal
loss (Lin et al., 2017) and observe that training using focal
loss can yield multi-class classification networks that are
more naturally calibrated than those trained using the more
conventional cross-entropy loss. We also show in §3 that fo-
cal loss implicitly maximises entropy while minimising the
KL divergence between the predicted and the target distri-
butions. Futhermore, we empirically observe that the NLL
overfitting phenomenon is significantly reduced in case of
focal loss as compared to cross-entropy and hence, it can
be expected to produce more calibrated models. Finally,
we conduct extensive experiments on a variety of datasets
and network architectures, and observe that this expectation
is also borne out in practice. Our results show that in al-
most all cases, networks trained with focal loss are more
calibrated than those trained with cross-entropy loss, label
smoothing, Brier score and MMCE, whilst having similar
levels of accuracy, making their predictions much easier for
downstream components to trust.

6. Acknowledgement
This work was started whilst J Mukhoti was at FiveAI, and
completed after he moved to the University of Oxford. V
Kulharia is wholly funded by a Toyota Research Institute
grant. A Sanyal acknowledges support from The Alan Tur-
ing Institute under the Turing Doctoral Studentship grant
TU/C/000023. This work was also supported by ERC grant
ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte
EP/M013774/1, EPSRC/MURI grant EP/N019474/1, and
the Royal Academy of Engineering.



On using Focal Loss for Neural Network Calibration

References
Brier, G. W. Verification of forecasts expressed in terms of

probability. Monthly weather review, 1950.

Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou, Y.,
Bo, X., and Xie, Z. Deep Learning and Its Applications
in Biomedicine. Genomics, Proteomics & Bioinformatics,
16(1):17–32, 2018.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., and
Blaschke, T. The rise of deep learning in drug discovery.
Drug Discovery Today, 23(36):1241–1250, 2018.

DeGroot, M. H. and Fienberg, S. E. The comparison and
evaluation of forecasters. Journal of the Royal Statistical
Society: Series D (The Statistician), 1983.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
Calibration of Modern Neural Networks. In ICML, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, 2017.

Kamilaris, A. and Prenafeta-Boldú, F. X. Deep learning
in agriculture: A survey. Computers and Electronics in
Agriculture, 147:70–90, 2018.

Ker, J., Wang, L., Rao, J., and Lim, T. Deep Learning
Applications in Medical Image Analysis. IEEE Access,
6:9375–9389, 2018.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Kumar, A., Sarawagi, S., and Jain, U. Trainable Calibra-
tion Measures For Neural Networks From Kernel Mean
Embeddings. In ICML, 2018.

Kumar, A., Liang, P. S., and Ma, T. Verified uncertainty cal-
ibration. In Advances in Neural Information Processing
Systems, pp. 3787–3798, 2019.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal Loss for Dense Object Detection. In ICCV, 2017.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In Advances in Neural Information
Processing Systems, pp. 4696–4705, 2019.

Naeini, M. P. and Cooper, G. F. Binary Classifier Calibration
using an Ensemble of Near Isotonic Regression Models.
In ICDM, 2016.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. Obtaining
Well Calibrated Probabilities Using Bayesian Binning. In
AAAI, 2015.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP),
2014.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., and
Hinton, G. Regularizing neural networks by penal-
izing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

Platt, J. Probabilistic Outputs for Support Vector Machines
and Comparisons to Regularized Likelihood Methods. Ad-
vances in Large Margin Classifiers, 10(3):61–74, 1999.

PyTorch-CIFAR. Train CIFAR10 with PyTorch,
2019. Available online at https://github.com/
kuangliu/pytorch-cifar (as of 22nd May 2019).

Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B.,
Nowozin, S., Sculley, D., Dillon, J., Ren, J., and Nado,
Z. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances
in Neural Information Processing Systems, pp. 13969–
13980, 2019.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models
for semantic compositionality over a sentiment treebank.
In Empirical Methods in Natural Language Processing
(EMNLP), 2013.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. In Association for Computational
Linguistics (ACL), 2015.

TreeLSTM. TreeLSTM. https://github.com/
ttpro1995/TreeLSTMSentiment/, 2015. Ac-
cessed: 2019-05-22.

Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F.,
Roll, J., and Schön, T. B. Evaluating model calibration in
classification. In AISTATS, 2019.

Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D. Deep
learning for smart manufacturing: Methods and applica-
tions. JMSY, 48:144–156, 2018.

Zadrozny, B. and Elkan, C. Obtaining calibrated proba-
bility estimates from decision trees and naive Bayesian
classifiers. In ICML, 2001.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/ttpro1995/TreeLSTMSentiment/
https://github.com/ttpro1995/TreeLSTMSentiment/


On using Focal Loss for Neural Network Calibration

Zadrozny, B. and Elkan, C. Transforming Classifier
Scoes into Accurate Multiclass Probability Estimates. In
SIGKDD, 2002.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In Proceedings of the British Machine Vision Conference
(BMVC), 2016.



On using Focal Loss for Neural Network Calibration

Appendix

A. Relation between Focal Loss and Entropy Regularised KL Divergence
Here we show why focal loss favours accurate but relatively less confident solutions. We show that it inherently provides a
trade-off between minimizing the KL-divergence and maximizing the entropy, depending on the strength of γ. We use Lf
and Lc to denote the focal loss with parameter γ and cross entropy between p̂ and q, respectively. K denotes the number of
classes and qy denotes the ground-truth probability assigned to the y-th class (similarly for p̂y). We consider the following
simple extension of focal loss:

Lf = −
K∑
y=1

(1− p̂y)γqy log p̂y

≥ −
K∑
y=1

(1− γp̂y)qy log p̂y By Bernoulli’s inequality ∀γ ≥ 1. Note, p̂y ∈ [0, 1]

= −
K∑
y=1

qy log p̂y − γ

∣∣∣∣∣
K∑
y=1

qyp̂y log p̂y

∣∣∣∣∣ ∀y, log p̂y ≤ 0

≥ −
K∑
y=1

qy log p̂y − γmax
j
qj

K∑
y=1

|p̂y log p̂y| By Hölder’s inequality ||fg||1 ≤ ||f ||∞|||g||1

≥ −
K∑
y=1

qy log p̂y + γ

K∑
y=1

p̂y log p̂y ∀j, qj ∈ [0, 1]

= Lc − γH[p̂].

We know that Lc = KL(q||p̂) +H[q], thus, combining this equality with the above inequality leads to:

Lf ≥ KL(q||p̂) + H[q]︸︷︷︸
constant

−γH[p̂].

In the case of one-hot encoding (Delta distribution for q), focal loss would maximize −p̂y log p̂y (let y be the ground-
truth class index), the component of the entropy of p̂ corresponding to the ground-truth index. Thus, would prefer

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

p

CE
FL-1
FL-2
FL-3

Figure A.1. Optimal p̂ for various
values of q.

learning p̂ such that p̂y is assigned a higher value (because of the KL term) but not too
high (because of the entropy term) which eventually would avoid preferring overconfident
models (as opposed to the cross-entropy loss). Experimentally, we found the solution
of the cross entropy and focal loss equations, i.e. the value of the predicted probability
p̂ which minimizes the loss, for various values of q in a binary classification problem
(i.e. K = 2) and plotted it in Figure A.1. As expected, focal loss favours a more entropic
solution p̂ that is closer to 0.5. In other words, as Figure A.1 shows, solutions to focal
loss (Eqn 1) will always have higher entropy than that of cross entropy depending on
the value of γ.

p̂ = argminx − (1− x)γq log x− xγ(1− q) log (1− x) 0 ≤ x ≤ 1 (1)
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B. Dataset Description and Implementation Details
We use the following image and document classification datasets in our experiments:

1. CIFAR-10 (Krizhevsky, 2009): This dataset has 60,000 colour images of size 32× 32, divided equally into 10 classes.
We use a train/validation/test split of 45,000/5,000/10,000 images.

2. CIFAR-100 (Krizhevsky, 2009): This dataset has 60,000 colour images of size 32×32, divided equally into 100 classes.
(Note that the images in this dataset are not the same images as in CIFAR-10.) We again use a train/validation/test split
of 45,000/5,000/10,000 images.

3. Tiny-ImageNet (Deng et al., 2009): Tiny-ImageNet is a subset of ImageNet with 64 x 64 dimensional images, 200
classes and 500 images per class in the training set and 50 images per class in the validation set. The image dimensions
of Tiny-ImageNet are twice that of CIFAR-10/100 images.

4. Stanford Sentiment Treebank (SST) (Socher et al., 2013): This dataset contains movie reviews in the form of
sentence parse trees, where each node is annotated by sentiment. We use the dataset version with binary labels, for
which 6,920/872/1,821 documents are used as the training/validation/test split. In the training set, each node of a parse
tree is annotated as positive, neutral or negative. At test time, the evaluation is done based on the model classification at
the root node, i.e. considering the whole sentence, which contains only positive or negative sentiment.

For training networks on CIFAR-10 and CIFAR-100, we use SGD with a momentum of 0.9 as our optimiser, and train the
networks for 350 epochs, with a learning rate of 0.1 for the first 150 epochs, 0.01 for the next 100 epochs, and 0.001 for the
last 100 epochs. We use a training batch size of 128. Furthermore, we augment the training images by applying random
crops and random horizontal flips. For Tiny-ImageNet, we train for 100 epochs with a learning rate of 0.1 for the first 40
epochs, 0.01 for the next 20 epochs and 0.001 for the last 40 epochs. We use a training batch size of 64. It should be noted
that for Tiny-ImageNet, we saved 50 samples per class (i.e., a total of 10000 samples) from the training set as our own
validation set to fine-tune the temperature parameter (hence, we trained on 90000 images) and we use the Tiny-ImageNet
validation set as our test set.

For the SST Binary dataset, we train the Tree-LSTM (Tai et al., 2015) using the AdaGrad optimiser with a learning rate of
0.05 and a weight decay of 10−4, as suggested by the authors. We used the constituency model, which considers binary
parse trees of the data and trains a binary Tree-LSTM on them. The Glove word embeddings (Pennington et al., 2014) were
also tuned for best results. The code framework we used is inspired by (TreeLSTM). We trained these models for 25 epochs
and used the models with the best validation accuracy.

For all our models, we use the PyTorch framework, setting any hyperparameters not explicitly mentioned to the default
values used in the standard models. For MMCE, we used λ = 2 for all our experiments as we found it to perform better over
all the values we tried. A calibrated model which does not generalise well to an unseen test set is not very useful. Hence, for
all the experiments, we set the training parameters in a way such that we get best test set accuracies on all datasets for each
model.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 Focal Loss (γ = 3)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 17.52 3.42(2.1) 6.52 3.64(1.1) 15.32 2.38(1.8) 7.81 4.01(1.1) 5.08 2.02(1.1)
ResNet-110 19.05 5.86(2.3) 7.73 4.53(1.2) 19.14 4.85(2.3) 11.12 8.59(1.1) 8.64 4.14(1.2)

Wide-ResNet-26-10 15.33 2.89(2.2) 4.22 2.81(1.1) 13.16 4.25(1.9) 5.1 5.1(1) 2.08 2.08(1.0)
DenseNet-121 20.98 5.09(2.3) 5.04 2.56(1.1) 19.13 3.07(2.1) 12.83 8.92(1.2) 4.15 1.23(1.1)

CIFAR-10

ResNet-50 4.33 2.14(2.5) 1.74 1.23(1.1) 4.55 2.16(2.6) 3.89 2.92(0.9) 1.95 1.83(1.1)
ResNet-110 4.4 1.99(2.8) 2.6 1.7(1.2) 5.06 2.52(2.8) 4.44 4.44(1) 1.62 1.44(1.1)

Wide-ResNet-26-10 3.23 1.69(2.2) 1.7 1.7(1) 3.29 1.6(2.2) 4.27 2.44(0.8) 1.84 1.54(0.9)
DenseNet-121 4.51 2.13(2.4) 2.03 2.03(1) 5.1 2.29(2.5) 4.42 3.33(0.9) 1.22 1.48(0.9)

Tiny-ImageNet ResNet-50 15.23 5.41(1.4) 4.37 4.07(0.9) 13.0 5.56(1.3) 15.28 6.29(0.7) 1.88 1.88(1)

SST Binary Tree-LSTM 7.27 3.39(1.8) 8.12 2.84(2.5) 5.01 4.32(1.5) 5.14 4.23(1.2) 16.01 2.16(0.5)

Table C.1. Adaptive ECE (%) computed for different approaches both pre and post temperature scaling (cross-validating T on ECE).
Optimal temperature for each method is indicated in brackets.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 Focal Loss (γ = 3)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

CIFAR-100

ResNet-50 0.38 0.22(2.1) 0.22 0.20(1.1) 0.34 0.21(1.8) 0.23 0.21(1.1) 0.20 0.20(1.1)
ResNet-110 0.41 0.21(2.3) 0.24 0.23(1.2) 0.42 0.22(2.3) 0.26 0.22(1.1) 0.24 0.22(1.2)

Wide-ResNet-26-10 0.34 0.20(2.2) 0.19 0.19(1.1) 0.31 0.20(1.9) 0.21 0.21(1) 0.21 0.18(1.0)
DenseNet-121 0.45 0.23(2.3) 0.20 0.21(1.1) 0.42 0.24(2.1) 0.29 0.24(1.2) 0.20 0.20(1.1)

CIFAR-10

ResNet-50 0.91 0.45(2.5) 0.46 0.42(1.1) 0.94 0.52(2.6) 0.71 0.51(0.9) 0.43 0.48(1.1)
ResNet-110 0.91 0.50(2.8) 0.59 0.50(1.2) 1.04 0.55(2.8) 0.66 0.66(1) 0.44 0.41(1.1)

Wide-ResNet-26-10 0.68 0.37(2.2) 0.44 0.44(1) 0.70 0.35(2.2) 0.80 0.45(0.8) 0.44 0.36(0.9)
DenseNet-121 0.92 0.47(2.4) 0.46 0.46(1) 1.04 0.57(2.5) 0.60 0.50(0.9) 0.43 0.41(0.9)

Tiny-ImageNet ResNet-50 0.22 0.16(1.4) 0.16 0.16(0.9) 0.21 0.16(1.3) 0.21 0.17(0.7) 0.16 0.16(1)

SST Binary Tree-LSTM 5.81 3.76(1.8) 6.38 2.48(2.5) 3.82 2.70(1.5) 3.99 3.20(1.2) 6.35 2.81(0.5)

Table C.2. Classwise-ECE (%) computed for different approaches both pre and post temperature scaling (cross-validating T on ECE).
Optimal temperature for each method is indicated in brackets.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 Focal Loss (γ = 3)

CIFAR-100

ResNet-50 23.3 23.39 23.2 23.43 22.75
ResNet-110 22.73 25.1 23.07 23.43 22.92

Wide-ResNet-26-10 20.7 20.59 20.73 21.19 19.69
DenseNet-121 24.52 23.75 24.0 24.05 23.25

CIFAR-10

ResNet-50 4.95 5.0 4.99 5.29 5.25
ResNet-110 4.89 5.48 5.4 5.52 5.08

Wide-ResNet-26-10 3.86 4.08 3.91 4.2 4.13
DenseNet-121 5.0 5.11 5.41 5.09 5.33

Tiny-ImageNet ResNet-50 49.81 53.2 51.31 47.12 49.69

SST Binary Tree-LSTM 12.85 12.85 11.86 13.23 12.19

Table C.3. Error (%) computed for different approaches.

C. Additional Results
In Tables C.1, C.2 and C.3 we report Adaptive ECE (%), Classwise-ECE (%) and test set classification error computed for
different approaches both pre and post temperature scaling. The optimal temperatures are indicated in brackets in Tables C.1
and C.2.


