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Abstract
The Information Bottleneck principle offers both
a mechanism to explain how deep neural networks
train and generalize, as well as a regularized ob-
jective with which to train models, with multiple
competing objectives proposed in the literature.
Moreover, the information-theoretic quantities
used in these objectives are difficult to compute
for large deep neural networks, often relying on
density estimation using generative models. This,
in turn, limits their use as a training objective. In
this work, we review these quantities, compare
and unify previously proposed objectives and re-
late them to surrogate objectives more friendly
to optimization without relying on cumbersome
tools such as density estimation. We find that
these surrogate objectives allow us to apply the in-
formation bottleneck to modern neural network ar-
chitectures with stochastic latent representations.
We demonstrate our insights on MNIST and CI-
FAR10 with modern neural network architectures.

1. Introduction
The Information Bottleneck (IB) principle, introduced by
Tishby et al. (2000), proposes that training and generaliza-
tion in deep neural networks (DNNs) can be explained by
information-theoretic principles (Tishby & Zaslavsky, 2015;
Shwartz-Ziv & Tishby, 2017; Achille & Soatto, 2018a).
This is appealing as the success of DNNs remains largely
unexplained by tools from computational learning theory
(Zhang et al., 2016; Bengio et al., 2009). However, training
with IB objectives presents a computational challenge as the
mutual information terms involved are intractable for the
complex distributions induced by neural networks.

In this paper, we analyze information quantities and relate
them to surrogate objectives for the IB principle which are
more friendly to optimization, showing that complex or
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Figure 1. Training trajectories for the surrogate objective
minθ Hθ[Y | Z] + γE ‖Z‖2 from (9) with a ResNet18 model on
CIFAR10. The trajectories are colored by their respective γ;
their transparency changes by epoch. Compression (Preserved
Information ↓) trades-off with performance (Residual Information
↓). See section 4 for more details.

intractable IB objectives can be replaced with simple, easy-
to-compute surrogates that produce similar performance and
similar behaviour of information quantities over training.
We expand on the findings of Alemi et al. (2016) in their
variational IB approximation and conclude that this upper
bound is equal to the commonly-used cross-entropy loss 1

under Dropout regularization. We further examine patholo-
gies of differential entropies that hinder optimization and
show how adding Gaussian noise can force differential en-
tropies to become non-negative, which produces a surrogate
regularizer. Altogether this leads to simple and tractable
surrogate IB objectives such as the following:

min
θ
E x,y∼p̂(x,y),ε∼N
η∼dropout mask

[
− log p(Ŷ = y | z = fθ(x; η) + ε) + γ ‖ fθ(x; η) + ε‖22

]
.

(1)
We finally validate our insights qualitatively and quantita-
tively on MNIST and CIFAR10, and shows that with ob-
jectives similar to equation (1) we obtain information plane
plots (as in figure 1) similar to those predicted by Tishby &
Zaslavsky (2015).

1This connection was assumed without proof by Achille &
Soatto (2018a;b).
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2. IB Objectives and Their Limitations
2.1. Stochastic Neural Networks

We assume the following probabilistic model given a neural
network with parameters θ, where X,Y are the data inputs
and labels, Z = fθ(X) + ε denotes the neural network’s
stochastic latent representation with distribution pθ(z|x), and
Ŷ is the prediction obtained from Z, and ε denotes zero-
entropy noise (which will be introduced in section 3.2).

Y ← X → Z → Ŷ (2)

We will use H[·] for the entropy of a random variable, I[·; ·]
for the mutual information, and let h(·) = − ln(·). We will
further be interested in two cross-entropy loss terms for the
neural network predictions: Hθ[Y | Z] to denote the cross-
entropy between the prediction Ŷ and the target Y (given the
latent Z), and letting Hθ[Y | X] denote the expected cross-
entropy loss after marginalizing over the stochastic latent
representation. This is similar to notation by Xu et al. (2020).
Incorporating noise into the latent representation is known
to improve generalization and robustness, and to provide
uncertainty estimates (Srivastava et al., 2014; Gal & Ghahra-
mani, 2016).

Hθ[Y | Z] := H(p(y | z) || pθ(Ŷ = y | z))

= Ep̂(x,y)Epθ(z|x) h
(
pθ(Ŷ = y | z)

)
≥ Ep̂(x,y) h

(
Epθ(z|x) pθ(Ŷ = y | z)

)
=: Hθ[Y | X]

2.2. Overview of IB Objectives

In their canonical work, Tishby et al. (2000) present the
following Information Bottleneck objective

min I[X; Z] − βI[Y; Z] (3)

and further provide an optimal algorithm for the tabular
case, when X, Y and Z are all categorical. The IB principle
suggests that learning consists of two competing objectives:
maximizing the mutual information between the latent rep-
resentation and the label to promote accuracy, while at the
same time minimizing the mutual information between the
latent representation and the input to promote generaliza-
tion.

Following this principle, many variations of IB objectives
have been proposed (Alemi et al., 2016; Strouse & Schwab,
2017; Fisher, 2019; Gondek & Hofmann, 2003; Achille &
Soatto, 2018a), which, in supervised learning, have been
demonstrated to benefit robustness to adversarial attacks
(Alemi et al., 2016; Fisher, 2019) and generalization and
regularization against overfitting to random labels (Fisher,
2019). However, whether the benefits of training with IB
objectives are due to the IB principle, or some other unre-
lated mechanism, remains unclear (Saxe et al., 2019; Amjad

& Geiger, 2019; Tschannen et al., 2019)—although recent
work has also tied the principle to successful results in both
unsupervised and self-supervised learning (Oord et al., 2018;
Belghazi et al., 2018; Zhang et al., 2018, among others).

The Deterministic Information Bottleneck (DIB)
presents a variation on the standard IB objective. Via
the observation that I[X; Z] = H[Z] − H[Z | X], and that
H[Z | X] = 0 when Z is a deterministic function of X (when
Z is categorical), Strouse & Schwab (2017) introduce the
deterministic information bottleneck objective (DIB)

min H[Z] − βI[Y; Z] (4)

The DIB objective induces subtly different behaviour in the
latent representation, but its practical implementation faces
similar hurdles to IB.

In contrast, the Deep Variational Information Bottleneck
(DVIB) directly addresses the challenge of estimating the
mutual information. Alemi et al. (2016) rewrite the terms
in the bottleneck as maximization problem “max I[Y; Z] −
βI[X; Z]”, and compute a variational lower bound on this ob-
jective, using a unit Gaussian as prior r(z) on the distribution
of latent representations.

minEpθ(z|xn)[− log qθ(Ŷ = y|z)] − βKL(pθ(z|xn)||r(z)). (5)

In principle, the distributions qθ and pθ could be given by
arbitrary parameterizations and function approximators. In
practice, the implementation of DVIB presented by Alemi
et al. (2016) constructs pθ as a multivariate Gaussian with
parameterized mean and parameterized diagonal covariance
using a neural network followed by a linear decoder feeding
into a softmax to yield qθ. The requirement for the latent
distribution pθ to have a closed-form Kullback-Leibler diver-
gence with respect to the prior r(z) in this variational lower
bound limits the applicability of the DVIB objective. A
number of other variations also exist in the literature (Fisher,
2019, among others).

2.3. Entropy Estimation for Continuous Variables

One of the principal challenges in training with IB objec-
tives is the computation of the mutual information quantities
required. Because neural network representations are con-
tinuous (modulo floating point precision), computing the
mutual information is equivalent to estimating differential
entropies (via e.g. I[X; Z] = H[Z] − H[Z | X]). Differential
entropies have a number of undesirable properties, and chief
among them is that they are unbounded from below. This
means that in principle a neural network could minimize
H[Z] by scaling the latent representation Z to be arbitrar-
ily close to zero, thus obtaining monotonically ‘improving’
and unbounded objective values despite not meaningfully
changing the representation.
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Figure 2. Decreasing the entropy of a noise-free latent does not af-
fect the training error (conceptual toy experiment). Floating-point
issues will start affecting it negatively eventually. When adding
zero-entropy noise, the training error increases as the entropy ap-
proaches zero.

While progress has been made in developing mutual infor-
mation estimators for DNNs (Poole et al., 2019; Belghazi
et al., 2018; Noshad et al., 2019; McAllester & Stratos,
2018; Kraskov et al., 2004), current methods still face many
limitations when concerned with high-dimensional random
variables (McAllester & Stratos, 2018) and rely on complex
estimators or generative models. This presents a challenge
to training with IB objectives, and motivates the next section,
in which we present our proposed surrogate objective.

3. Surrogate Objectives
Although the mutual information terms in the IB objective
can be expensive to compute, we observe that we can re-
express the IB and DIB objectives using four entropy terms,
each of which can be bounded in a relatively straightforward
manner.
Observation 1. For IB, we obtain

arg min I[X; Z] − βI[Y; Z] = arg min H[Y | Z] + β′ I[X; Z | Y]︸      ︷︷      ︸
=H[Z|Y]−H[Z|X]

,

and, for DIB,

arg min H[Z] − βI[Y; Z] = arg min H[Y | Z] + β′H[Z | Y]
= arg min H[Y | Z] + β′′H[Z]

with β′ := 1
β−1 ∈ [0,∞) and β′′ := 1

β
∈ [0, 1). The derivation

can be found in section C.3.

In this section, we will show how to bound these two terms
in order to obtain a surrogate objective.

3.1. Bounding H[Y |Z]

The first step in our surrogate objective is to bound H[Y | Z].
We obtain this bound in a similar manner as the DVIB
objective is obtained, by observing that the cross-entropy
between Ŷ and Y yields an upper bound on H[Y |Z].

Observation 2. The Decoder Cross-Entropy provides an
upper bound on the Decoder Uncertainty:

H[Y | Z] ≤ H[Y | Z] + DKL(p(y | z) || pθ(ŷ | z)) = Hθ[Y | Z], .

See section D.2 for a derivation.

3.2. Bounding the Regularization Term

It is not generally possible to compute H[Z | Y] exactly for
continuous latent representations Z, but we can derive an up-
per bound. First, we note that in order to obtain a meaningful
regularization term, it is necessary to add noise to the la-
tent representation. Specifically, we add zero-entropy noise
which we define as ε ∼ N(0, 1

2πe Ik), such that H[ε] = 0.
This also solves the problems described in section 2.3 and
is visualized in figure 2.

Observation 3. After adding zero-entropy noise, the in-
equality I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z] also holds in the
continuous case, and we can minimize I[X; Z | Y] in the IB
objective by minimizing H[Z | Y] or H[Z], similarly to the
DIB objective. We present a formal proof in section F.1.

Having shown that the inequality from observation 1 holds
for continuous latent representations, we can then consider
estimators of H[Z|Y] and H[Z]. To do so, we take advantage
of the fact that the maximum-entropy distribution for a given
covariance matrix Σ is a Gaussian with the same covariance.

Observation 4. The Reverse Decoder Uncertainty can be
approximately bounded using the empirical variance V̂ar[Zi |

y]:

H[Z | Y] ≤ Ep̂(y)

∑
i

1
2 ln(2πe Var[Zi | y]) (6)

≈ Ep̂(y)

∑
i

1
2 ln(2πe V̂ar[Zi | y]), (7)

where Zi are the individual components of Z. H[Z] can be
bound similarly. More generally, we can create an even
looser upper bound by bounding the mean squared norm of
the latent:

E ‖Z‖2 ≤ C′ ⇒ H[Z | Y] ≤ H[Z] ≤ C, (8)

with C′ := ke2C/k

2πe for Z ∈ Rk. See section F.2 for a formal
proof.

We can thus replace the regularization term with E ‖Z‖2

directly. Constraining the mean squared norm can also be
seen as constraining the average power of a communication
channel (MacKay, 2003).

Observation 5. When we add zero-entropy noise to the la-
tent Z and, for example, estimate the Decoder Cross-Entropy
Hθ[Y | Z] = H(p(y | z) || pθ(Ŷ = y | z)), using the regular
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Figure 3. Adversarial robustness of models trained with surrogate
objectives. Models are trained on CIFAR-10 using the surrogate
objectives described, then evaluated on their robustness to FGSM
attacks of varying ε values. We see that models trained with surro-
gate IB objectives (shown in coloured lines) largely see improved
robustness over models trained only to minimize the cross-entropy
training objective (shown in black).

cross-entropy while using a single stochastic sample during
training, we obtain as surrogate objective for E ‖Z‖2:

min Hθ[Y | Z] + γE ‖Z‖2; (9)

for log Var[Z | Y]:

min Hθ[Y | Z] + γEp̂(y)

∑
i

1
2

ln(2πe V̂ar[Zi | y]); (10)

and for log Var[Z]:

min Hθ[Y | Z] + γ
∑

i

1
2

ln(2πe V̂ar[Zi]). (11)

4. Experiments
IB objectives have been shown to lead to improved adver-
sarial robustness, and to induce training trajectories that
demonstrate trade-offs between fitting and compressing the
data. However, previous work has considered toy synthetic
datasets or the MNIST digit classification dataset, neither
of which guarantees that these results are applicable to the
more complex tasks to which deep neural networks are often
applied. In this section, we empirically demonstrate that our
proposed surrogate objectives produce qualitatively similar
behaviour on the CIFAR-10 dataset to that seen by other
IB objectives on simpler datasets. For details about our
experiment setup, DNN architectures, hyperparameters and
more insights, see section G.

Robustness to adversarial attacks Alemi et al. (2016) ob-
serve that their DVIB objective leads to improved adversar-
ial robustness over standard training objectives. We perform
a similar evaluation to see whether our surrogate objectives
also see improved robustness. We train a fully-connected
residual network on CIFAR-10, incorporating stochasticity

into the latent representation via Dropout and DropConnect
(Srivastava et al., 2014; Wan et al., 2013). After training,
we evaluate the models on adversarially perturbed images
using the Fast Gradient Sign Method (Szegedy et al., 2013)
for varying levels of the perturbation magnitude parame-
ter ε, comparing to the same model trained with a regular
cross-entropy loss (black dashed-line).

We consider each of the three surrogate objectives proposed
in Equations 9, 10, and 11 for a range of regularization
coefficients γ. We also consider training with γ = 0. For all
surrogate objectives, we find that the optimal regularization
coefficient γ yields significantly more robust models while
obtaining similar test accuracy on the unperturbed data.

Surrogate objectives & information plane plots To com-
pare the different surrogate regularizers on CIFAR10, we
use a deterministic ResNet18 model as an encoder with a
logistic regression layer as a decoder. We use a deterministic
ResNet18 model because we can estimate I[X; Z] = H[Z]
as H[Z | X] = 0 (with injected zero-entropy noise) using the
entropy estimator presented from Kraskov et al. (2004). We
measure I[X; Y | Z] = H[Y | Z], as H[Y | X] = 0 for CIFAR-
10, on the training set by using its upper bound H[Y | Z]
as approximiation (Xu et al., 2020; McAllester & Stratos,
2018). We train with the surrogate objectives from 3.2 for
various γ, chosen in logspace from different ranges to com-
pensate for their relationship to β as noted in section 3.2: for
log Var[Z], γ ∈ [10−5, 1]; for log Var[Z | Y], γ ∈ [10−5, 10];
and for E ‖Z‖2, by trial and error, γ ∈ [10−6, 10].

Figure 1 shows an information plane plot for regularizing
with E ‖Z‖2 for different γ over different epochs for the
training set. Similar to Shwartz-Ziv & Tishby (2017), we
observe that there is an initial expansion phase followed by
compression. The jumps in performance (reduction of the
Residual Information) are due to drops in the learning rate.
Figure G.1 shows the difference between the regularizers
more clearly, and figure G.3 shows the training trajectories
for all three regularizers.

5. Conclusion
We have demonstrated that by decomposing the mutual
information terms in IB objectives into their component
entropy terms, one obtains tractable, scalable surrogate ob-
jectives. We show that these objectives can capture many of
the desirable properties of IB methods while also scaling to
problems of interest in deep learning; these surrogate objec-
tives yield similar information plane plots and adversarial
robustness properties as IB objectives based on direct mu-
tual information estimation (or a variational bound thereof).
Promising future directions include improving the regulariz-
ers presented in this paper, and exploring the connection to
Bayesian neural networks.
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A. Information quantities & information diagrams
Here we introduce notation and terminology in greater detail than in the main paper. We review well-known information
quantities and provide more details on using information diagrams (Yeung, 1991).

A.1. Information quantities

We denote entropy H[·], joint entropy H[·, ·], conditional entropy H[· | ·], mutual information I[·; ·] and Shannon’s information
content h (·) following Cover & Thomas (2012); MacKay (2003); Shannon (1948) :

h (x) = − ln x

H[X] = Ep(x) h
(
p(x)

)
H[X,Y] = Ep(x,y) h

(
p(x, y)

)
H[X | Y] = H[X,Y] − H[Y]

= Ep(y) H[X | y] = Ep(x,y) h
(
p(x | y)

)
I[X; Y] = H[X] + H[Y] − H[X,Y]

= Ep(x,y) h
(

p(x) p(y)
p(x,y)

)
I[X; Y | Z] = H[X | Z] + H[Y | Z] − H[X,Y | Z],

where X,Y,Z are random variables and x, y, z are outcomes these random variables can take.

We use differential entropies interchangeably with entropies. We can do so because equalities between them hold as can be
verified by symbolic expansions. For example,

H[X,Y] = H[X | Y] + H[Y]
⇔Ep(x,y) h

(
p(x, y)

)
= Ep(x,y)

[
h
(
p(x | y)

)
+ h

(
p(y)

)]
= Ep(x,y)

[
h
(
p(x | y)

)]
+Ep(y) h

(
p(y)

)
,

which is valid in both the discrete and continuous case (if the integrals all exist). The question of how to transfer inequalities
in the discrete case to the continuous case is dealt with in section 2.3.

We will further require the Kullback-Leibler divergence DKL(· || ·) and cross-entropy H(· || ·):

H(p(x) || q(x)) = Ep(x) h
(
q(x)

)
DKL(p(x) || q(x)) = Ep(x) h

(
q(x)
p(x)

)
H(p(y | x) || q(y | x)) = Ep(x)Ep(y|x) h

(
q(y | x)

)
= Ep(x,y) h

(
q(y | x)

)
DKL(p(y | x) || q(y | x)) = Ep(x,y) h

(
q(y|x)
p(y|x)

)
A.2. Information diagrams

Information diagrams (I-diagrams), like the one depicted in figure H.1 (or figure H.1 for a bigger version), visualize the
relationship between information quantities: Yeung (1991) shows that we can define a signed measure µ* such that these
well-known quantities map to abstract sets and are consistent with set operations.

H[A] = µ*(A)

H[A1, . . . , An] = µ*(∪iAi)

H[A1, . . . , An | B1, . . . , Bn] = µ*(∪iAi − ∪iBi)

I[A1; . . . ; An] = µ*(∩iAi)

I[A1; . . . ; An | B1, . . . , Bn] = µ*(∩iAi − ∪iBi)

Note that interaction information (McGill, 1954) follows as canonical generalization of the mutual information to multiple
variables from that work, whereas total correlation does not.
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In other words, equalities can be read off directly from I-diagrams: an information quantity is the sum of its parts in the
corresponding I-diagram. This is similar to Venn diagrams. The sets used in I-diagrams are just abstract symbolic objects,
however.

An important distinction between I-diagrams and Venn diagrams is that while we can always read off inequalities in Venn
diagrams, this is not true for I-diagrams in general because mutual information terms in more than two variables can be
negative. In Venn diagrams, a set is always larger or equal any subset.

However, if we show that all information quantities are non-negative, we can read off inequalities again. We do this for
figure H.1 at the end of section 2.1 for categorical Z and expand this to continuous Z in section 2.3. Thus, we can treat the
Mickey Mouse I-diagram like a Venn diagram to read off equalities and inequalities.

Nevertheless, caution is warranted sometimes. As the signed measure can be negative, µ*(X ∩ Y) = 0 does not imply
X ∩ Y = ∅: deducing that a mutual information term is 0 does not imply that one can simply remove the corresponding area
in the I-diagram. There could be Z with µ*((X ∩ Y) ∩ Z) < 0, such that µ*(X ∩ Y) = µ*(X ∩ Y ∩ Z) + µ*(X ∩ Y − Z) = 0 but
X ∩ Y , ∅. This also means that we cannot drop the term from expressions when performing symbolic manipulations. This
is of particular importance because a mutual information of zero means two random variables are independent, which might
invite one drawing them as disjoint areas.

The only time where one can safely remove an area from the diagram is for atomic quantities, which are quantities which
reference all the available random variables (Yeung, 1991). For example, when we only have three variables X,Y,Z,
I[X; Y; Z] and I[X; Y | Z] are atomic quantities. We can safely remove atomic quantities from I-diagrams when they are 0 as
there are no random variables left to apply that could lead to the problem explored above.

Continuing the example, 0 = I[X; Y; Z] = µ*(X ∩ Y ∩ Z) would imply X ∩ Y ∩ Z = ∅, and we could remove it from the
diagram without loss of generality. Moreover, atomic I[X; Y | Z] = µ*(X ∩ Y − Z) = 0 then and could be removed from the
diagram as well.

We only use I-diagrams for the three variable case, but they supply us with tools to easily come up with equalities and
inequalities for information quantities. In the general case with multiple variables, they can be difficult to draw, but for
Markov chains they can be of great use.

B. Mickey Mouse I-diagram
B.1. Intuition for the Mickey Mouse information quantities

We base the names of information quantities on existing conventions and come up with sensible extensions. For example,
the name PreservedRelevantIn f ormation for I[Y; Z] was introduced by Tishby & Zaslavsky (2015). It can be seen as
the intersection of I[X; Z] and I[X; Y] in the I-diagram, and hence we denote I[X; Z] Preserved Information and I[X; Y]
Relevant Information, which are sensible names as we detail below.

We identify the following six atomic quantities:

Label Uncertainty H[Y | X] quantifies the uncertainty in our labels. If we have multiple labels for the same data sample, it
will be > 0. It is 0 otherwise.

Encoding Uncertainty H[Z | X] quantifies the uncertainty in our latent encoding given a sample. When using a Bayesian
model with random variable ω for the weights, one can further split this term into H[Z | X] = I[Z;ω | X] + H[Z | X, ω],
so uncertainty stemming from weight uncertainty and independent noise (Houlsby et al., 2011; Kirsch et al., 2019).

Preserved Relevant Information I[Y; Z] quantifies information in the latent that is relevant for our task of predicting the
labels (Tishby & Zaslavsky, 2015). Intuitively, we want to maximize it for good predictive performance.

Residual Information I[X; Y | Z] quantifies information for the labels that is not captured by the latent (Tishby & Zaslavsky,
2015) but would be useful to be captured.

Redundant Information I[X; Z | Y] quantifies information in the latent that is not needed for predicting the labels2.

2Fisher (2019) uses the term “Residual Information” for this, which conflicts with Tishby & Zaslavsky (2015).
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We also identify the following composite information quantities:

Relevant Information I[X; Y] = I[X; Y | Z] + I[Y; Z] quantifies the information in the data that is relevant for the labels
and which our model needs to capture to be able to predict the labels.

Preserved Information I[X; Z] = I[X; Z | Y] + I[Y; Z] quantifies information from the data that is preserved in the latent.

Decoder Uncertainty H[Y | Z] = I[X; Y | Z] + H[Y | X] quantifies the uncertainty about the labels after learning about the
latent Z. If H[Y | Z] reaches 0, it means that no additional information is needed to infer the correct label Y from the
latent Z: the optimal decoder can be a deterministic mapping. Intuitively, we want to minimize this quantity for good
predictive performance.

Reverse Decoder Uncertainty H[Z | Y] = I[X; Z | Y] + H[Z | X] quantifies the uncertainty about the latent Z given the
label Y. We can imagine training a new model to predict Z given Y and minimizing H[Z | Y] to 0 would allow for a
deterministic decoder from the latent to given the label.

Nuisance3 H[X | Y] = H[X | Y,Z] + I[X; Z] quantifies the information in the data that is not relevant for the task (Achille
& Soatto, 2018a).

B.2. Definitions & equivalences

The following equalities can be read off from figure H.1. For completeness and to provide a handy reference, we list them
explicitly here. They can also be verified using symbolic manipulations and the properties of information quantities.

Equalities for composite quantities:

I[X; Y] = I[X; Y | Z] + I[Y; Z] (12)
I[X; Z] = I[X; Z | Y] + I[Y; Z] (13)

H[Y | Z] = I[X; Y | Z] + H[Y | X] (14)
H[Z | Y] = I[X; Z | Y] + H[Z | X] (15)
H[X | Y] = H[X | Y,Z] + I[X; Z] (16)

We can combine the atomic quantities into the overall Label Entropy and Encoding Entropy:

H[Y] = H[Y | X] + I[Y; Z] + I[X; Y | Z] (17)
H[Z] = H[Z | X] + I[Y; Z] + I[X; Z | Y]. (18)

We can express the Relevant Information I[X; Y], Residual Information I[X; Y | Z], Redundant Information I[X; Z | Y] and
Preserved Information I[X; Z] without X on the left-hand side:

I[X; Y] = H[Y] − H[Y | X], (19)
I[X; Z] = H[Z] − H[Z | X], (20)

I[X; Y | Z] = H[Y | Z] − H[Y | X], (21)
I[X; Z | Y] = H[Z | Y] − H[Z | X]. (22)

This simplifies estimating these expressions as X is usually much higher-dimensional and irregular than the labels or latent
encodings. We also can rewrite the Preserved Relevant Information I[Y; Z] as:

I[Y; Z] = H[Y] − H[Y | Z] (23)
I[Y; Z] = H[Z] − H[Z | Y] (24)

3Not depicted in figure H.1.
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C. Information bottleneck & related works
C.1. Goals & motivation

The IB principle from Tishby et al. (2000) can be recast as a generalization of finding minimal sufficient statistics for the
labels given the data (Shamir et al., 2010; Tishby & Zaslavsky, 2015; Fisher, 2019): it strives for minimality and sufficiency
of the latent Z. Minimality is about minimizing amount of information necessary of X for the task, so minimizing the
Preserved Information I[X; Z]; while sufficiency is about preserving the information to solve the task, so maximizing the
Preserved Relevant Information I[Y; Z].

From figure H.1, we can read off the definitions of Relevant Information and Preserved Information:

I[X; Y] = I[Y; Z] + I[X; Y | Z] (25)
I[X; Z] = I[Y; Z] + I[X; Z | Y], (26)

and see that maximizing the Preserved Relevant Information I[Y; Z] is equivalent to minimizing the Residual Information
I[X; Y | Z], while minimizing the Preserved Information I[X; Z] at the same time means minimizing the Redundant
Information I[X; Z | Y], too, as I[X; Y] is constant for the given dataset4. Moreover, we also see that the Preserved
Relevant Information I[Y; Z] is upper-bounded by Relevant Information I[X; Y], so to capture all relevant information in
our latent, we want I[X; Y] = I[Y; Z].

Using the diagram, we can also see that minimizing the Residual Information is the same as minimizing the Decoder
Uncertainty H[Y | Z]:

I[X; Y | Z] = H[Y | Z] − H[Y | X].

Ideally, we also want to minimize the Encoding Uncertainty H[Z | X] to find the most deterministic latent encoding Z.
Minimizing the Encoding Uncertainty and the Redundant Information I[X; Z | Y] together is the same as minimizing the
Reverse Decoder Uncertainty H[Z | Y].

All in all, we want to minimize both the Decoder Uncertainty H[Y | Z] and the Reverse Decoder Uncertainty H[Z | Y].

C.2. IB objectives

“THE INFORMATION BOTTLENECK METHOD” (IB)

Tishby et al. (2000) introduce MI(X; X̂) − βMI(X̂; Y) as optimization objective for the Information Bottleneck. We can
relate this to our notation by renaming X̂ = Z, such that the objective becomes “min I[X; Z] − βI[Y; Z]”. The IB objective
minimizes the Preserved Information I[X; Z] and trades it off with maximizing the Preserved Relevant Information I[Y; Z].
Tishby & Zaslavsky (2015) mention that the IB objective is equivalent to minimizing I[X; Z]+βI[X; Y | Z], see our discussion
above. Tishby et al. (2000) provide an optimal algorithm for the tabular case, when X, Y and Z are all categorical. This has
spawned additional research to optimize the objective for other cases and specifically for DNNs.

“DETERMINISTIC INFORMATION BOTTLENECK” (DIB)

Strouse & Schwab (2017) introduce as objective “min H[Z] − βI[Y; Z]”. Compared to the IB objective, this also minimizes
H[Z | X] and encourages determinism. Vice-versa, for deterministic encoders, H[Z | X] = 0, and their objective matches the
IB objective. Like Tishby et al. (2000), they provide an algorithm for the tabular case. To do so, they examine an analytical
solution for their objective as it is unbounded: H[Z | X]→ −∞ for the optimal solution. As we discuss in section 2.3, it does
not easily translate to a continuous latent representation.

“DEEP VARIATIONAL INFORMATION BOTTLENECK”

Alemi et al. (2016) rewrite the terms in the bottleneck as maximization problem “max I[Y; Z] − βI[X; Z]” and swap the β
parameter. Their β would be 1

β
in IB above, which emphasizes that I[Y; Z] is important for performance and I[X; Z] acts as

regularizer.

The paper derives the following variational approximation to the IB objective, where z = fθ(x, ε) denotes a stochastic latent
embedding with distribution pθ(z | x), pθ(ŷ | z) denotes the decoder, and r(z) is some fixed prior distribution on the latent

4That is, it does not depend on θ.
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embedding:

minEp̂(x,y)Eε∼p(ε)

[
− log pθ(Ŷ = y | z = fθ(xn, ε)) + γDKL(p(z|xn)||r(z))

]
. (27)

In principle, the distributions pθ(ŷ | z) and pθ(z | x) could be given by arbitrary parameterizations and function approximators.
In practice, the implementation of DVIB presented by Alemi et al. (2016) constructs pθ(z | x) as a multivariate Gaussian
with parameterized mean and parameterized diagonal covariance using a neural network, and then uses a simple logistic
regression to obtain pθ(ŷ | z), while arbitrarily setting r(z) to be a unit Gaussian around the origin. The requirement for
pθ(z | x) to have a closed-form Kullback-Leibler divergence limits the applicability of the DVIB objective.

The DVIB objective can be written more concisely as

min Hθ[Y | Z] + γDKL(p(z | x) || r(z))

in the notation introduced in section 2.1. We discuss the regularizer in more detail in section F.3.

“CONDITIONAL ENTROPY BOTTLENECK”

Fisher (2019) introduce their Conditional Entropy Bottleneck as “min I[X; Z | Y] − I[Y; Z]”. We can rewrite the objective
as I[X; Z | Y] + I[X; Y | Z] − I[X; Y], using equations (25) and (26). The last term is constant for the dataset and can thus
be dropped. Likewise, the IB objective can be rewritten as minimizing I[X; Z | Y] + (β − 1)I[X; Y | Z]. The two match for
β = 2. Fisher (2019) provides experimental results that favorably compare to Alemi et al. (2016), possibly due to additional
flexibility as Fisher (2019) do not constrain p(z) to be a unit Gaussian and employ variational approximations for all terms.

C.3. Canonical IB & DIB objectives

We expand the IB and DIB objectives into “disjoint” terms and drop constant ones to find a more canonical form. This
leads us to focus on the optimization of the Decoder Uncertainty H[Y | Z] along with additional regularization terms. In
section 3.1, we discuss the properties of H[Y | Z], and in section 3.2 we examine the regularization terms.

Observation. For IB, we obtain

arg min I[X; Z] − βI[Y; Z] = arg min H[Y | Z] + β′ I[X; Z | Y]︸      ︷︷      ︸
=H[Z|Y]−H[Z|X]

, (28)

and, for DIB,

arg min H[Z] − βI[Y; Z] = arg min H[Y | Z] + β′H[Z | Y] = arg min H[Y | Z] + β′′H[Z] (29)

with β′ := 1
β−1 ∈ [0,∞) and β′′ := 1

β
∈ [0, 1).

Proof. For the steps marked with *, we make use of β > 1. For IB, we obtain

arg min I[X; Z] − βI[Y; Z] = arg min I[X; Z | Y] + (β − 1)H[Y | Z]
(*)
= arg min H[Y | Z] + β′ I[X; Z | Y]
arg min H[Y | Z] + β′(H[Z | Y] − H[Z | X]), (IB)

and, for DIB,

arg min H[Z] − βI[Y; Z] = arg min H[Z | Y] + (β − 1)H[Y | Z]
(*)
= arg min H[Y | Z] + β′H[Z | Y], (DIB)

with β′ := 1
β−1 ∈ [0,∞). Similarly, we show for DIB

arg min H[Z] − βI[Y; Z] = arg min H[Z] + βH[Y | Z]
(*)
= arg min H[Y | Z] + β′′H[Z],
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with β′′ := 1
β
∈ [0, 1), which is relevant in section 3.2.

We limit ourselves to β > 1, because, for β < 1, we would be maximizing the Decoder Uncertainty, which does not make
sense: the obvious solution to this is one where Z contains no information on Y, that is p(y | z) is uniform. In the case of DIB,
it is to map every input deterministically to a single latent; whereas for IB, we only minimize the Redundant Information,
and the solution is free to contain noise. For β = 1, we would not care about Decoder Uncertainty and only minimize
Redundant Information and Reverse Decoder Uncertainty, respectively, which allows for arbitrarily bad predictions. �

We note that we have β′ =
β′′

1−β′′ using the relations above.

C.4. IB objectives and the Entropy Distance Metric

Another perspective on the IB objectives is by expressing them using the Entropy Distance Metric. MacKay (2003, p. 140)
introduces the entropy distance

EDM (Y,Z) = H[Y | Z] + H[Z | Y]. (30)

as a metric when we identify random variables up to permutations of the labels for categorical variables: if the entropy
distance is 0, Y and Z are the same distribution up to a consistent permutation of the labels (independent of X). If the
entropy distance becomes 0, both H[Y | Z] = 0 = H[Z | Y], and we can find a bijective map from Z to Y.5

We can express the Reverse Decoder Uncertainty H[Z | Y] using the Decoder Uncertainty H[Y | Z] and the entropies:

H[Z | Y] + H[Y] = H[Y | Z] + H[Z],

and rewrite equation (30) as
EDM (Y,Z) = 2H[Y | Z] + H[Z] − H[Y].

For optimization purposes, we can drop constant terms and rearrange:

arg min EDM (Y,Z) = arg min H[Y | Z] + 1
2 H[Z].

C.4.1. REWRITING IB AND DIB USING THE ENTROPY DISTANCE METRIC

For β ≥ 1, we can rewrite equations (IB) and (DIB) as:

arg min EDM (Y,Z) + γ (H[Y | Z] − H[Z | Y]) + (γ − 1) H[Z | X] (31)

for IB, and

arg min EDM (Y,Z) + γ (H[Y | Z] − H[Z | Y]) (32)

for DIB and replace β with γ = 1 − 2
β
∈ [−1, 1] which allows for a linear mix between H[Y | Z] and H[Z | Y].

DIB will encourage the model to match both distributions for γ = 0 (β = 2), as we obtain a term that matches the Entropy
Distance Metric from section C.4, and otherwise trades off Decoder Uncertainty and Reverse Decoder Uncertainty. IB
behaves similarly but tends to maximize Encoding Uncertainty as γ − 1 ∈ [−2, 0]. Fisher (2019) argues for picking this
configuration similar to the arguments in section C.1. DIB will force both distributions to become exactly the same, which
would turn the decoder into a permutation matrix for categorical variables.

D. Decoder Uncertainty H[Y | Z]

D.1. Cross-entropy loss

The cross-entropy loss features prominently in section 3.1. We can derive the usual cross-entropy loss for our model
by minimizing the Kullback-Leibler divergence between the empirical sample distribution p̂(x, y) and the parameterized

5The argument for continuous variables is the same. We need to identify distributions up to “isentropic” bijections.
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distribution pθ(x) pθ(ŷ | x). For discriminative models, we are only interested in pθ(ŷ | x), and can simply set pθ(x) = p̂(x):

arg min
θ

DKL(p̂(x, y) || pθ(x) pθ(Ŷ = y | x))

= arg min
θ

DKL(p̂(y | x) || pθ(Ŷ = y | x)) + DKL(p̂(x) || pθ(x))︸                ︷︷                ︸
=0

= arg min
θ

H(p̂(y | x) || pθ(Ŷ = y | x)) − H[Y | X]︸    ︷︷    ︸
const.

= arg min
θ

H(p̂(y | x) || pθ(Ŷ = y | x)).

In section 3.1, we introduce the shorthand Hθ[Y | X] for H(p̂(y | x) || pθ(Ŷ = y | x)) and refer to it as Prediction Cross-Entropy.

D.2. Upper bounds & training error minimization

To motivate that H[Y | Z] (or Hθ[Y | Z]) can be used as main loss term, we show that it can bound the (training) error
probability since accuracy is often the true objective when machine learning models are deployed on real-world problems6.
Observation. The Decoder Cross-Entropy provides an upper bound on the Decoder Uncertainty:

H[Y | Z] ≤ H[Y | Z] + DKL(p(y | z) || pθ(ŷ | z)) = Hθ[Y | Z],

and further bounds the training error:

p(“Ŷ is wrong”) ≤ 1 − e−Hθ[Y|Z] = 1 − e−(H[Y|Z]+DKL(p(y|z)||pθ(ŷ|z))).

Likewise, for the Prediction Cross-Entropy Hθ[Y | X] and the Label Uncertainty H[Y | X].

Proof. The upper bounds for Decoder Uncertainty H[Y | Z] and Label Uncertainty H[Y | X] follow from the non-negativity
of the Kullback-Leibler divergence, for example:

0 ≤ DKL(p(y | z) || pθ(ŷ | z)) = Hθ[Y | Z] − H[Y | Z],
0 ≤ DKL(p̂(y | x) || pθ(ŷ | x)) = Hθ[Y | X] − H[Y | X].

The derivation for the training error probability is as follows:

p(“Ŷ is correct”) = Ep̂(x,y) p(“Ŷ is correct” | x, y) = Ep̂(x,y)Epθ(z|x) pθ(Ŷ = y | z)

= Ep(y,z) pθ(Ŷ = y | z).

We can then apply Jensen’s inequality using convex h (x) = − ln x:

h
(
Ep(y,z) pθ(Ŷ = y | z)

)
≤ Ep(y,z) h

(
pθ(Ŷ = y | z)

)
⇔ p(“Ŷ is correct”) ≥ e−H(p(y|z)||pθ(Ŷ=y|z))

⇔ p(“Ŷ is wrong”) ≤ 1 − e−Hθ[Y|Z].

For small Hθ[Y | Z], we note that one can use the approximation ex ≈ 1 + x to obtain:

p(“Ŷ is wrong”) / Hθ[Y | Z]. (33)

Finally, we split the Decoder Cross-Entropy into the Decoder Uncertainty and a Kullback-Leibler divergence:

Hθ[Y | Z] = H[Y | Z] + DKL(p(y | z) || pθ(Ŷ = y | z)).

If we upper-bound DKL(p(y |z) ||pθ(Ŷ = y |z)), minimizing the Decoder Uncertainty H[Y | Z] becomes a sensible minimization
objective as it reduces the probability of misclassification.

We can similarly show that the training error is bounded by the Prediction Cross-Entropy Hθ[Y | X]. �

In the next section, we examine categorical Z for which optimal decoders can be constructed and DKL(p(y | z) || pθ(Ŷ = y | z))
becomes zero.

6As we only take into account the empirical distribution p̂(x, y) available for training, the following derivation refers only to the
empirical risk, and not to the expected risk of the estimator Ŷ.
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E. Categorical Z

For categorical Z, p(y | z) can be computed exactly for a given encoder pθ(z | x) by using the empirical data distribution,
which, in turn, allows us to compute H[Y | Z]7. This is similar to computing a confusion matrix between Y and Z but using
information content instead of probabilities.

Moreover, if we set pθ(ŷ | z) := p(Y = ŷ | z) to have an optimal decoder, we obtain equality in equation (6), and obtain
Hθ[Y | X] ≤ Hθ[Y | Z] = H[Y | Z]. If the encoder were also deterministic, we would obtain Hθ[Y | X] = Hθ[Y | Z] =

H[Y | Z]. We can minimize H[Y | Z] directly using gradient descent. d
dθH[Y | Z] only depends on p(y | z) and d

dθ pθ(z | x):

d
dθ

H[Y | Z] = Ep(x,z)

[
d
dθ

[
ln pθ(z | x)

]
Ep̂(y|x) h

(
p(y | z)

)]
.

Proof.

d
dθ

H[Y | Z] =
d
dθ
Ep(y,z) h

(
p(y | z)

)
=

d
dθ
Ep(x,y,z) h

(
p(y | z)

)
= Ep̂(x,y)

d
dθ
Epθ(z|x) h

(
p(y | z)

)
= Epθ(z|x)Ep̂(x,y)

d
dθ

[
h
(
p(y | z)

)]
+ h

(
p(y | z)

) d
dθ

[
ln pθ(z | x)

]
= Ep(x,y,z)

d
dθ

[
h
(
p(y | z)

)]
+ h

(
p(y | z)

) d
dθ

[
ln pθ(z | x)

]
.

And now we show that Ep(x,y,z)
d
dθ

[
h
(
p(y | z)

)]
= 0:

Ep(x,y,z)
d
dθ

[
h
(
p(y | z)

)]
= Ep(y,z)

d
dθ

[
h
(
p(y | z)

)]
= Ep(y,z)

−1
p(y | z)

d
dθ

p(y | z)

= −

∫
p(y, z)
p(y | z)

d
dθ

p(y | z) dy dz = −

∫
p(z)

∫
d
dθ

p(y | z) dy dz

= −

∫
p(z)

d
dθ

[ ∫
p(y | z) dy︸         ︷︷         ︸

=1

]
dz = 0.

Splitting the expectation and reordering of Ep(x,y,z) h
(
p(y | z)

) d
dθ

[
ln pθ(z | x)

]
, we obtain the result. �

The same holds for Reverse Decoder Uncertainty H[Z | Y] and for the other quantities as can be verified easily.

If we minimize H[Y | Z] directly, we can compute p(y | z) after every training epoch and fix pθ(ŷ | z) := p(Y = ŷ | z) to create
the discriminative model pθ(ŷ | x). This is a different perspective on the self-consistent equations from Tishby et al. (2000);
Gondek & Hofmann (2003).

E.1. Empirical evaluation of DKL(p(y | z) || pθ(Ŷ = y | z)) during training

We examine the size of the gap between Decoder Uncertainty and Decoder Cross-Entropy and the training behavior of the
two cross-entropies with categorical latent Z on Permutation MNIST and CIFAR10. For Permutation MNIST (Goodfellow
et al., 2013), we use the common fully-connected ReLU 784−1024−1024−C encoder architecture, with C = 100 categories
for Z. For CIFAR10 (Krizhevsky et al., 2009), we use a standard ResNet18 model with C many output classes as encoder
(He et al., 2016a). See section G for more details about the hyperparameters. Even though a C × 10 matrix and a SoftMax
would suffice to describe the decoder matrix pθ(ŷ | z)8, we have found that over-parameterization using a separate DNN
benefits optimization a lot. Thus, to parameterize the decoder matrix, we use fully-connected ReLUs C − 1024 − 1024 − 10
with a final SoftMax layer. We compute it once per batch during training and back-propagate into it.

Figure E.1 shows the three metrics as we train with each of them in turn. Our results do not achieve SOTA accuracy on
the test set—we impose a harder optimization problem as Z is categorical, and we are essentially solving a hard-clustering
problem first and then map these clusters to Ŷ. Results are provided for the training set in order to compare with the optimal
decoder.

7p(y | z) depends on θ through pθ(z | x): p(y | z) =
∑

x p̂(x,y) pθ(z|x)∑
x p̂(x) pθ(z|x) .

8For categorical Z, pθ(ŷ | z) is a stochastic matrix which sums to 1 along the Ŷ dimension.
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Figure E.1. Decoder Uncertainty, Decoder Cross-Entropy and Prediction Cross-Entropy for Permutation-MNIST and CIFAR10 with
a categorical Z. C = 100 categories are used for Z. We optimize with different minimization objectives in turn and plot the metrics.
DKL(p(y|z)||pθ(Ŷ = y|z)) is small when training with Hθ[Y | Z] or H[Y | Z]. When training with Hθ[Y | X] on CIFAR10, DKL(p(y|z)||pθ(Ŷ =

y | z)) remains quite large. We run 8 trials each and plot the median with confidence bounds (25% and 75% quartiles). See section E.1 for
more details.

As predicted, the Decoder Cross-Entropy upper-bounds both the Decoder Uncertainty H[Y | Z] and the Prediction Cross-
Entropy in all cases. Likewise, the gap between Hθ[Y | Z] and H[Y | Z] is tiny when we minimize Hθ[Y | Z]. On the other
hand, minimizing Prediction Cross-Entropy can lead to large gaps between Hθ[Y | Z] and H[Y | Z], as can be seen for
CIFAR10.

Very interestingly, on MNIST Decoder Cross-Entropy provides a better training objective whereas on CIFAR10 Prediction
Cross-Entropy trains lower. Decoder Uncertainty does not train very well on CIFAR10, and Prediction Cross-Entropy does
not train well on Permutation MNIST at all. We suspect DNN architectures in the literature have evolved to train well with
cross-entropies, but we are surprised by the heterogeneity of the results for the two datasets and models.

F. Surrogates for regularization terms
F.1. Differential entropies

Observation. After adding zero-entropy noise, the inequality I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z] also holds in the continuous
case, and we can minimize I[X; Z | Y] in the IB objective by minimizing H[Z | Y] or H[Z], similarly to the DIB objective. We
present a formal proof in section F.1.
Theorem 1. For random variables A, B, we have

H[A + B] ≥ H[B].

Proof. See Bercher & Vignat (2002, section 2.2). �

Proposition 1. Let Y , Z and X be random variables satisfying the independence property Z ⊥ Y |X, and F a possibly
stochastic function such that Z = F(X) + ε, with independent noise ε satisfying ε ⊥ F(X), ε ⊥ Y and H(ε) = 0. Then the
following holds whenever I[Y; Z] is well-defined.

I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z].

Proof. First, we note that H[Z | X] = H[F(X) + ε | X] ≥ H[ε | X] = H[ε] with theorem 1, as ε is independent of X, and thus
H[Z | X] ≥ 0. We have H[Z | X] = H[Z | X,Y] by the conditional independence assumption, and by the non-negativity of
mutual information, I[Y; Z] ≥ 0. Then:

I[X; Z | Y] + H[Z | X]︸   ︷︷   ︸
≥0

= H[Z | Y]

H[Z | Y] + I[Y; Z]︸ ︷︷ ︸
≥0

= H[Z]
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�

The probabilistic model from section 2.1 fulfills the conditions exactly, and the two statements motivate our observation.

It is important to note that while zero-entropy noise is necessary for preserving inequalities like I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z]
in the continuous case, any Gaussian noise will suffice for optimization purposes: we optimize via pushing down an upper
bound, and constant offsets will not affect this.

Thus, if we had H[ε] , 0, even though I[X; Z | Y] + H[Z | X] 6≤ H[Z | Y], we could instead use

I[X; Z | Y] + H[Z | X] − H[ε] ≤ H[Z | Y] − H[ε]

as upper bound to minimize. The gradients remain the same.

This also points to the nature of differential entropies as lacking a proper point of origin by themselves. We choose one by
fixing H[ε]. Just like other literature usually only considers mutual information as meaningful, we consider H[Z | X] − H[ε]
as more meaningful than H[Z | X]. However, we can side-step this discussion conveniently by picking a canonical noise as
point of origin in the form of zero-entropy noise H[ε] = 0.

F.2. Upper bounds

We derive this result as follows:

H[Z | Y] = Ep̂(y) H[Z | y]

≤ Ep̂(y)
1
2 ln det(2πe Cov[Z | y])

≤ Ep̂(y)

∑
i

1
2 ln(2πe Var[Zi | y])

≈ Ep̂(y)

∑
i

1
2 ln(2πe V̂ar[Zi | y]),

Theorem 2. Given a k-dimensional random variable X = (Xi)k
i=1 with Var[Xi] > 0 for all i,

H[X] ≤ 1
2 ln det(2πe Cov[X])

≤
∑

i

1
2 ln(2πe Var[Xi]).

Proof. First, the multivariate normal distribution with same covariance is the maximum entropy distribution for that
covariance, and thus H[X] ≤ ln det(2πe Cov[X]), when we substitute the differential entropy for a multivariate normal
distribution with covariance Cov[X]. Let Σ0 := Cov[X] be the covariance matrix and Σ1 := diag(Var[Xi])i the matrix
that only contains the diagonal. Because we add independent noise, Var[Xi] > 0 and thus Σ−1

1 exists. It is clear that
tr(Σ−1

1 Σ0) = k. Then, we can use the KL-Divergence between two multivariate normal distributions N0, N1 with same mean
0 and covariances Σ0 and Σ1 to show that ln det Σ0 ≤ ln det Σ1:

0 ≤ DKL(N0 || N1) = 1
2

(
tr(Σ−1

1 Σ0) − k + ln
(

det Σ1

det Σ0

))
⇔ 0 ≤ 1

2 ln
(

det Σ1

det Σ0

)
⇔ 1

2 ln det Σ0 ≤
1
2 ln det Σ1.

We substitute the definitions of Σ0 and Σ1, and obtain the second inequality after adding k ln(2πe) on both sides. �

Theorem 3. Given a k-dimensional real-valued random variable X = (Xi)k
i=1 ∈ R

k, we can bound the entropy by the mean
squared norm of the latent:

E ‖X‖2 ≤ C′ ⇒ H[X] ≤ C, (34)

with C′ := ke2C/k

2πe .
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Proof. We begin with the previous bound:

H[X] ≤
∑

i

1
2 ln(2πe Var[Xi]) = k

2 ln 2πe + 1
2 ln

∏
i

Var[Xi]

≤ k
2 ln 2πe + 1

2 ln

 1
k

∑
i

Var[Xi]

k

= k
2 ln 2πe

k

∑
i

Var[Xi]

≤ k
2 ln 2πe

k E ‖X‖
2,

where we use the AM-GM inequality:

∏
i

Var[Xi]


1
k
≤ 1

k

∑
i

Var[Xi]

and the monotony of the logarithm with:∑
i

Var[Xi] =
∑

i

E

[
X2

i

]
−E [Xi]2 ≤

∑
i

E

[
X2

i

]
= E ‖X‖2

Bounding using E ‖X‖2 ≤ C′, we obtain

H[X] ≤ k
2 ln 2πe

k C′ = C,

and solving for C′ yields the statement. �

This theorem provides justification for the use of lnE ‖Z‖2 as a regularizer, but does not justify the use of E ‖Z‖2 directly.
Here, we give two motivations. We first observe that ln x ≤ x − 1 due to ln’s strict convexity and ln 1 = 0, and thus:

H[X] ≤ k
2 ln 2πe

k E ‖X‖
2 = k

2

(
ln 2π

k E ‖X‖
2 − 1

)
≤ πE ‖X‖2.

We can also take a step back and remind ourselves that IB objectives are actually Lagrangians, and β in min I[X; Z]−βI[Y; Z]
is introduced as Lagrangian multiplier for the constrained objective:

min I[X; Z] s.t. I[Y; Z] ≥ C.

We can similarly write our canonical DIB objective H[Y | Z] + β′′H[Z] as constrained objective

min H[Y | Z] s.t. H[Z] ≤ C,

and use above statement to find the approximate form

min H[Y | Z] s.t. E ‖Z‖2 ≤ C′.

Reintroducing a Lagrangian multiplier recovers our reguralized E ‖Z‖2 objective:

min H[Y | Z] + γE ‖Z‖2.

F.3. Alemi et al. (2016) and E ‖Z‖2

Alemi et al. (2016) model pθ(z | x) explicitly as multivariate Gaussian with parameterized mean and parameterized diagonal
covariance in their encoder and regularize it to become close to N(0, Ik) by minimizing the Kullback-Leibler divergence
DKL(pθ(z | x) || N(0, Ik)) alongside the cross-entropy:

min Hθ[Y | Z] + γDKL(p(z | x) || r(z)),

as detailed in section C.2.
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We can expand the regularization term to

DKL(p(z | x) || N(0, Ik))

= Ep̂(x)Ep(z|x) h
(
(2π)−

k
2 e−

1
2 ‖Z‖

2 |
)
− H[Z | X]

= Ep(z)

[
k
2

ln(2π) +
1
2
‖Z‖2

]
− H[Z | X].

After dropping constant terms (as they don’t matter for optimization purposes), we obtain

=
1
2
E ‖Z‖2 − H[Z | X].

When we inject zero-entropy noise into the latent Z, we have H[Z | X] ≥ 0 and thus E ‖Z‖2 − H[Z | X] ≤ E ‖Z‖2. Thus, the
E ‖Z‖2 regularizer also upper-bounds DVIB’s regularizer in this case.

In particular, we have equality when we use a deterministic encoder. When we inject zero-entropy noise and use a
deterministic encoder, we are optimizing the DVIB objective function when we use the E ‖Z‖2 regularizer. In other words,
in this particular case, we could reinterpret “min Hθ[Y | Z] + γE ‖Z‖2” as optimzing the DVIB objective from Alemi et al.
(2016) if they were using a constant covariance instead of parameterizing it in their encoder. This does not hold for stochastic
encoders.

F.4. Soft clustering by entropy Minimization with Gaussian noise

Consider the problem of minimizing H[Z | Y] and H[Y | Z], in the setting where Z = fθ(X) + ε ∼ N(0, σ2)—i.e. the
embedding Z is obtained by adding Gaussian noise to a deterministic function of the input. Let the training set be enumerated
x1, . . . , xn, with µi = fθ(xi). Then the distribution of Z is given by a mixture of Gaussians with the following density, where
d(x, µi) := ‖x − µi‖/σ

2.

p(z) ∝
1
n

n∑
i=1

exp(−d(z, µi))

Assuming that each xi has a deterministic label yi, we then find that the conditional distributions p(y | z) and p(z | y) are given
as follows:

p(z | y) ∝
1
ny

∑
i:yi=y

exp(−d(z, µi))

p(y | z) =
∑
i:yi=y

p(µi | z) =
∑
i:yi=y

p(z | µi) p(µi)
p(z)

=

∑
i:yi=y p(z | µi)∑n
k=1 p(z | µk)

=

∑
i:yi=y exp(−d(z, µi))∑n
k=1 exp(−d(z, µk))

,

where ny is the number of xi with class yi = y. Thus, the conditional Z|Y can be interpreted as a mixture of Gaussians and
Y |Z as a Softmax marginal with respect to the distances between Z and the mean embeddings. We observe that H[Z | Y] is
lower-bounded by the entropy of the random noise added to the embeddings:

H[Z | Y] ≥ H[ fθ(X) + ε | Y] ≥ H[ε]

with equality when the distribution of fθ(X)|Y is deterministic – that is fθ is constant for each equivalence class.

Further, the entropy H[Y | Z] is minimized when H[Z] is large compared to H[Z | Y] as we have the decomposition

H[Y | Z] = H[Z | Y] − H[Z] + H[Y].

In particular, when fθ is constant over equivalence classes of the input, then H[Y | Z] is minimized when the entropy
H[ fθ(X) + ε] is large – i.e. the values of fθ(xi) for each equivalence class are distant from each other and there is minimal
overlap between the clusters. Therefore, the optima of the information bottleneck objective under Gaussian noise share
similar properties to the optima of geometric clustering of the inputs according to their output class.
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To gain a better understanding of local optimization behavior, we decompose the objective terms as follows:

H[Z | Y] = Ep̂(y) H(p(z | y) || p(z | y))
= Ep̂(x,y) H(p(z | x) || p(z | y))
= Ep̂(x,y) DKL(p(z | x) || p(z | y)) + H[Z | x]
= Ep̂(x,y) DKL(p(z | x) || p(z | y))

+ H[Z | X]︸   ︷︷   ︸
=const

.

To examine how the mean embedding µk of a single datapoint xk affects this entropy term, we look at the derivative of this
expression with respect to µk = fθ(xk). We obtain:

d
dµk

H[Z | Y] =
d

dµk
H[Z | yk]

=
d

dµk
Ep(x|yk) DKL(p(z | x) || p(z | y))

=
∑

i,i:yi=yk

1
nyk

d
dµk

DKL(p(z | xi) || p(z | yk))

+
1

nyk

d
dµk

DKL(p(z | xk) || p(z | yk)).

While these derivatives do not have a simple analytic form, we can use known properties of the KL divergence to develop
an intuition on how the gradient will behave. We observe that in the left-hand sum µk only affects the distribution of Z|Y
(that is we are differentiating a sum of terms that look like a reverse KL), whereas it has greater influence on p(z | xk) in the
right-hand term, and so its gradient will more closely resemble that of the forward KL. The left-hand-side term will therefore
push µk towards the centroid of the means of inputs mapping to y, whereas the right-hand side term is mode-seeking.

F.5. A note on differential and discrete entropies

The mutual information between two random variables can be defined in terms of the KL divergence between the product of
their marginals and their joint distribution. However, the KL divergence is only well-defined when the Radon-Nikodym
derivative of the density of the joint with respect to the product exists. Mixing continuous and discrete distributions—and
thus differential and continuous entropies—can violate this requirement, and so lead to negative values of the “mutual
information”. This is particularly worrying in the setting of training stochastic neural networks, as we often assume that an
stochastic embedding is generated as a deterministic transformation of an input from a finite dataset to which a continuous
perturbation is added. We provide an examples where naive computation without ensuring that the product and joint
distributions of the two random variables have a well-defined Radon-Nikodym derivative yields negative mutual information.

Let X ∼ U([0, 0.1]), Z = X + R with R ∼ U({0, 1}). Then

I[X; Z] = H[X] = log 1
10 ≤ 0.

Generally, given X as above and an invertible function f such that Z = f (X), I[X; Z] = H[X] and can thus be negative. In a
way, these cases can be reduced to (degenerate) expressions of the form I[X; X] = H[X].

We can avoid these cases by adding independent continuous noise.

These examples show that not adding noise can lead to unexpected results. While they still yield finite quantities that bear
a relation to the entropies of the random variables, they violate some of the core assumptions we have such that mutual
information is always positive.

G. Experiment details
G.1. DNN architectures and hyperparameters

For our experiments, we use PyTorch (Paszke et al., 2019) and the Adam optimizer (Kingma & Ba, 2014). In general, we
use an initial learning rate of 0.5 × 10−3 and multiply the learning rate by

√
0.1 whenever the loss plateaus for more than 10
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epochs for CIFAR10. For MNIST and Permutation MNIST, we use an initial learning rate of 10−4 and multiply the learning
rate by 0.8 whenever the loss plateaus for more than 3 epochs.

Sadly, we deviate from this in the following experiments: when optimizing the decoder uncertainty for categorical Z for
CIFAR10, we used 5 epochs patience for the decoder uncertainty objective and a initial learning rate of 10−4. We do not
expect this difference to affect the qualitative results mentioned in section E when comparing to other objectives. We also
only used 5 epochs patience when comparing the two cross-entropies on CIFAR10 in section 3.1. As this was used for both
sets of experiments, it does not matter.

We train the experiments for creating the information plane plots for 150 epochs.

We use a batchsize of 128 for most experiments. We use a batchsize of 32 for comparing the cross-entropies for CIFAR10
(where we take 8 Dropout samples each), and a batchsize of 16 for MNIST (where we take 64 Dropout sampels each).

For MNIST, we use a standard Dropout CNN, following https://github.com/pytorch/examples/blob/
master/mnist/main.py. For Permutation MNIST, we use a fully-connected model (for experiments with categorical
Z in section E): 784×1024×1024×C. For CIFAR10, we use use a ResNet18v2 (He et al., 2016b) with K = 256 dimensions
for Z, and use a K × 10 linear unit with softmax as decoder. When we need a stochastic model for CIFAR10 (for continuous
Z), we add DropConnect with rate 0.1 to all but the first convolutional layers and Dropout with rate 0.1 before the final
fully-connected layer. Because of memory issues, we reuse the Dropout masks within one batch. The model trains to 94%
accuracy on CIFAR10.

For CIFAR10, we always remove the maximum pooling layer and change the first convolutional layer to have kernel size 3
with stride 1 and padding 1. We also use dataset augmentation during training, but not during evaluation on the training set
and test set for purposes of computing metrics. We crop randomly after the padding the training images by 4 pixels in every
direction and randomly flip images horizontally.

We generally sample 30 values of γ for the information plane plots from the specified ranges, using a log scale. For the
ablation studies mentioned below, we sample 10 values of γ each. We always sample γ = 0 separately and run a trial with it.

Baselines were tuned by hand (without regularization) using grad-student descent and small grid searches.

G.2. Cluster setup & used resources

We make use of a local SLURM cluster (Jette et al., 2002). We run our experiments on GPUs (Geforce RTX 2080 Ti). We
estimate reproducing all results would take 94 GPU days.

G.3. Differential entropies and noise

We demonstrate the importance of adding noise to continuous latents by constructing a pathological sequence of parameters
which attain monotonically improving and unbounded regularized objective values (H[Z]) while all computing the same
function. We use MNIST with a standard Dropout CNN as encoder, with K = 128 continuous dimensions in Z, and a K × 10
linear layer as decoder. After every training epoch, we decrease the entropy of the latent by normalizing and then scaling the
latent to bound the entropy. We multiply the weights of the decoder to not change the overall function.

G.4. Comparison of the surrogate objectives

G.4.1. MEASUREMENTS OF INFORMATION QUANTITIES

Measuring information quantities can be challenging. As mentionend in the introduction, there are many complex ways
of measuring entropies and mutual information terms. We can side-step the issue by making use of the bounds we have
established and the zero-entropy noise we are injecting, and design experiments around that.

First, to estimate the Preserved Information I[X; Z], we note that when we use a deterministic model as encoder and only
inject zero-entropy noise, we have H[Z | X] = 0 and I[X; Z] = I[X; Z] + H[Z | X] = H[Z]. We use the entropy estimator
from Kraskov et al. (2004, equation (20)) to estimate the Encoding Entropy H[Z] and thus I[X; Z].

To estimate the Residual Information I[X; Y | Z], we similarly note that I[X; Y | Z] = I[X; Y | Z] + H[Y | X] = H[Y | Z].
Instead of estimating the entropy using Kraskov et al. (2004), we can use the Decoder Cross-Entropy Hθ[Y | Z] which
provides a tighter bound as long as we also minimize Hθ[Y | Z] as part of the training objective.

https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
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Figure G.1. Information Plane Plot of the latent Z similar to Tishby & Zaslavsky (2015) but using a ResNet18 model on CIFAR10 using
the different regularizes from section 3 (without Dropout, but with zero-entropy noise). The dots are colored by γ. See section 4 for more
details.

When we use stochastic models as encoder, we cannot easily compute I[X; Z] anymore. In the ablation study in the next
section, we thus change the X axis accordingly.

Similarly, when we look at the trajectories on the test set instead of the training set, for example in figure G.2, we change the
Y axis to signify the Decoder Uncertainty Hθ[Y | Z]. It is still an upper-bound, but we do not minimize it directly anymore.

At this point, it is important to recall that the Decoder Uncertainty is also the negative log-likelihood (when training with
a single Dropout sample), which provides a different perspective on the plots. It makes it clear that we can see how
much a model overfits by comparing the best and final epochs of a trajectory in the plot (marked by a circle and a square,
respectively).

G.4.2. ABLATION STUDY

We perform an ablation study to determine whether injecting noise is necessary. Furthermore, we investigate the more
interesting case of using a stochastic model as encoder, and if we can use a stochastic model without injecting zero-entropy
noise.

We also investigate whether log Var[Z | Y] performs better when we increase batchsize as we hypothesized that a batchsize
of 128 does not suffice as it leaves only ≈ 13 samples per class to approximate H[Z | Y]).

Figure G.3 shows a larger version of figure 1 for all three regularizers and also training trajectories on the test set. As
described in the previous section, this allows us to validate that the regularizers prevent overfitting on the training set: with
increasing γ, the model overfits less.

Figure G.6 and figure G.5 shows that injecting noise is necessary independently of whether we use Dropout or not.
Regularizing with E ‖Z‖2 still has a very weak effect. We hypothesize that floating-point precision issues might provide a
natural noise source eventually. This would change the effectiveness of γ and might require much higher values to observe
similar regularization effects as when we do inject zero-entropy noise.

Figure G.4 shows trajectories for a stochastic encoder (as described above with DropConnect/Dropout rate 0.1). It overfits
less than a deterministic one.

Figure G.7 shows the effects of using higher dropout rates (using DropConnect/Dropout rates of 0.3/0.5). It overfits less
than model with DropConnect/Dropout rates of 0.1/0.1.

The plots in figure G.10 show the effects of different γ with different regularizers more clearly. On both training and test set,
one can clearly see the effects of regularization.

Overall, log Var[Z | Y] performs worse as a regularizer. In figure G.8, we compare the effect of doubling batchsize. Indeed,
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Figure G.2. Entropy estimates while training with different γ and with different surrogate regularizers on CIFAR10 with a ResNet18
model. Entropies are estimated on training data based on Kraskov et al. (2004). Qualitatively all three regularizers push H[Z] and H[Z | Y]
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Figure G.3. Without dropout but with zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on CIFAR10
and different regularizers. The trajectories are colored by their respective γ; their transparency changes by epoch. Compression (Preserved
Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks the final epoch of a trajectory. The
square marks the best epoch (Residual Information�).

log Var[Z | Y] performs better with higher batchsize and looks closer to log Var[Z].
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Figure G.4. With dropout and with zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on CIFAR10
and different regularizers. The trajectories are colored by their respective γ; their transparency changes by epoch. Compression (Preserved
Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks the final epoch of a trajectory. The
square marks the best epoch (Residual Information�).
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Figure G.5. With dropout but without zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on CIFAR10
and different regularizers. The trajectories are colored by their respective γ; their transparency changes by epoch. Compression (Preserved
Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks the final epoch of a trajectory. The
square marks the best epoch (Residual Information�).
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Figure G.6. Without dropout and without zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on
CIFAR10 and different regularizers. The trajectories are colored by their respective γ; their transparency changes by epoch. Compression
(Preserved Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks the final epoch of a
trajectory. The square marks the best epoch (Residual Information�).
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Figure G.7. With more dropout and zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on CIFAR10
and log Var[Z | Y] regularizer with batchsizes 128 and 256. The trajectories are colored by their respective γ; their transparency changes
by epoch. Compression (Preserved Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks
the final epoch of a trajectory. The square marks the best epoch (Residual Information�). A DropConnect rate of 0.3 and Dropout rate of
0.4 were used instead of 0.1 for each.
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Figure G.8. Without dropout but with zero-entropy noise: Information Plane Plot of training trajectories for ResNet18 models on CIFAR10
and log Var[Z | Y] regularizer with batchsizes 128 and 256. The trajectories are colored by their respective γ; their transparency changes
by epoch. Compression (Preserved Information ↓) trades-off with performance (Residual Information ↓). See section 4. The circle marks
the final epoch of a trajectory. The square marks the best epoch (Residual Information�).
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Figure G.9. Information Plane Plot of the latent Z similar to Tishby & Zaslavsky (2015) but using a ResNet18 model on CIFAR10 using
the different regularizes from section 3 (with Dropout and zero-entropy noise). The dots are colored by γ. See section 4 for more details.
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(a) With dropout and zero-entropy noise.
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(b) Without dropout but with zero-entropy noise.
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(c) Without dropout and without zero-entropy noise.

Figure G.10. Information quantites for different γ at the end of training for ResNet18 models on CIFAR10 and log Var[Z | Y] regularizer
with batchsizes 128 and 256. Compression (Preserved Information ↓) trades-off with performance (Residual Information ↓). See section 4.
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Figure G.11. Training error probability, Decoder Cross-Entropy Hθ[Y | Z] and Prediction Cross-Entropy Hθ[Y | X] with continuous Z.
K = 100 dimensions are used for Z, and we use Dropout to obtain stochastic models. Minimizing Hθ[Y | Z] (solid) leads to smaller
cross-entropies and lower training error probability than minimizing Hθ[Y | X] (dashed). This suggests a better data fit, which is what we
desire for a loss term. We run 8 trials each and plot the median with confidence bounds (25% and 75% quartiles). See section 3.1 and 4
for more details.
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Figure H.1. Mickey Mouse I-diagram.


