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Abstract
Noisy labels are very common in real-world train-
ing data, which lead to poor generalization on test
data because of overfitting to the noisy labels. In
this paper, we claim that such overfitting can be
avoided by “early stopping” training a deep neu-
ral network before the noisy labels are severely
memorized. Then, we resume training the early
stopped network using a “maximal safe set,”
which maintains a collection of almost certainly
true-labeled samples at each epoch since the early
stop point. Putting them all together, our novel
two-phase training method, called Prestopping,
realizes noise-free training under any type of label
noise for practical use. Extensive experiments
using four image benchmark data sets verify that
our method significantly outperforms four state-
of-the-art methods in test error by 0.4–8.2 percent
points under the existence of real-world noise.

1. Introduction
By virtue of massive labeled data, deep neural net-
works (DNNs) have achieved a remarkable success in numer-
ous machine learning tasks (Krizhevsky et al., 2012; Red-
mon et al., 2016). However, owing to their high capacity to
memorize any label noise, the generalization performance of
DNNs drastically falls down when noisy labels are contained
in the training data (Jiang et al., 2018; Han et al., 2018; Song
et al., 2019). In particular, Zhang et al. (2017) have shown
that a standard convolutional neural network (CNN) can eas-
ily fit the entire training data with any ratio of noisy labels
and eventually leads to very poor generalization on the test
data. Thus, it is challenging to train a DNN robustly even
when noisy labels exist in the training data.

A popular approach to dealing with noisy labels is “sample
selection” that selects true-labeled samples from the noisy
training data (Ren et al., 2018; Han et al., 2018; Yu et al.,
2019). Here, (1−τ)×100% of small-loss training samples are
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treated as true-labeled ones and then used to update a DNN
robustly, where τ ∈ [0, 1] is a noise rate. This loss-based
separation is well known to be justified by the memoriza-
tion effect (Arpit et al., 2017) that DNNs tend to learn easy
patterns first and then gradually memorize all samples.

Despite its great success, a recent study (Song et al., 2019)
has argued that the performance of the loss-based separation
becomes considerably worse depending on the type of label
noise. For instance, the loss-based approach well separates
true-labeled samples from false-labeled ones in symmetric
noise (Figure 1(a)), but many false-labeled samples are mis-
classified as true-labeled ones because the two distributions
overlap closely in pair and real-world noises (Figures 1(b)
and 1(c)), both of which are more realistic than symmetric
noise (Ren et al., 2018; Yu et al., 2019). This limitation
definitely calls for a new approach that supports any type of
label noise for practical use.

In this regard, as shown in Figure 2(a), we thoroughly inves-
tigated the memorization effect of a DNN on the two types
of noises and found two interesting properties as follows:
• A noise type affects the memorization rate for false-

labeled samples: The memorization rate for false-labeled
samples is faster with pair noise than with symmetric
noise. That is, the red portion in Figure 2(a) starts to ap-
pear earlier in pair noise than in symmetric noise. This ob-
servation supports the significant overlap of true-labeled
and false-labeled samples in Figure 1(b). Thus, the loss-
based separation performs well only if the false-labeled
samples are scarcely learned at an early stage of training,
as in symmetric noise.

• There is a period where the network accumulates
the label noise severely: Regardless of the noise type,
the memorization of false-labeled samples significantly
increases at a late stage of training. That is, the red
portion in Figure 2(a) increases rapidly after the dashed
line, in which we call the error-prone period. We note
that the training in that period brings no benefit. The
generalization performance of “Default” deteriorates
sharply, as shown in Figure 2(c).

Based on these findings, we contend that eliminating this
error-prone period should make a profound impact on robust
optimization. In this paper, we propose a novel approach,
called Prestopping, that achieves noise-free training based
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(a) Symmetric Noise. (b) Pair Noise. (c) Real-World Noise.
Figure 1. Loss distributions at a training accuracy of 50%: (a) and (b) show those on CIFAR-100 with two types of synthetic noises of
40%, where “symmetric noise” flips a true label into other labels with equal probability, and “pair noise” flips a true label into a specific
false label; (c) shows those on FOOD-101N (Lee et al., 2018) with the real-world noise of 18.4%.
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Figure 2. Key idea of Prestopping: (a) and (b) show how many true-labeled and false-labeled samples are memorized when training
DenseNet (L=40, k=12)2on CIFAR-100 with the pair noise of 40%. “Default” is a standard training method, and “Prestopping” is our
proposed one; (c) contrasts the convergence of test error between the two methods.

on the early stopping mechanism. Because there is no bene-
fit from the error-prone period, Prestopping early stops train-
ing before that period begins. This early stopping effectively
prevents a network from overfitting to false-labeled samples,
and the samples memorized until that point are added to a
maximal safe set because they are true-labeled (i.e., blue
in Figure 2(a)) with high precision. Then, Prestopping re-
sumes training the early stopped network only using the
maximal safe set in support of noise-free training. Notably,
our proposed merger of “early stopping” and “learning from
the maximal safe set” indeed eliminates the error-prone pe-
riod from the training process, as shown in Figure 2(b). As a
result, the generalization performance of a DNN remarkably
improves in both noise types, as shown in Figure 2(c).

2. Preliminaries
A k-class classification problem requires the training data
D = {xi, y∗i }Ni=1, where xi is a sample and y∗i ∈
{1, 2, . . . , k} is its true label. Following the label noise sce-
nario, let’s consider the noisy training data D̃ = {xi, ỹi}Ni=1,
where ỹi ∈ {1, 2, . . . , k} is a noisy label which may not be
true. Then, in conventional training, when a mini-batch
Bt = {xi, ỹi}bi=1 consists of b samples randomly drawn
from the noisy training data D̃ at time t, the network param-
eter θt is updated in the descent direction of the expected
loss on the mini-batch Bt as in Eq. (1), where α is a learning
rate and L is a loss function.

θt+1 = θt − α∇
( 1

|Bt|
∑
x∈Bt

L(x, ỹ; θt)
)

(1)

2The learning rate, as usual, was decayed at 50% and 75% of
the total number of training epochs.

As for the notion of network memorization, a sample x is
defined to be memorized by a network if the majority of its
recent predictions at time t coincide with the given label, as
in Definition 2.1.
Definition 2.1. (Memorized Sample) Let ŷt = Φ(x|θt)
be the predicted label of a sample x at time t and Ht

x(q) =
{ŷt1 , ŷt2 , . . . , ŷtq} be the history of the sample x that stores
the predicted labels of the recent q epochs, where Φ is a
neural network. Next, P (y|x, t; q) is formulated such that
it provides the probability of the label y ∈ {1, 2, ..., k}
estimated as the label of the sample x based on Ht

x as in
Eq. (2), where [·] is the Iverson bracket3.

P (y|x, t; q) =

∑
ŷ∈Ht

x(q)
[ŷ = y]

|Ht
x(q)|

(2)

Then, the sample x with its noisy label ỹ is a memorized
sample of the network with the parameter θt at time t if
argmaxyP (y|x, t; q) = ỹ holds.

3. Robust training via Prestopping
The key idea of Prestopping is learning from a maximal
safe set with an early stopped network. Thus, the two
components of “early stopping” and “learning from the
maximal safe set” respectively raise the questions about
(Q1) when is the best point to early stop the training
process? and (Q2) what is the maximal safe set to enable
noise-free training during the remaining period?

3.1. Q1: Best point to early stop
It is desirable to stop the training process at the point when
the network (i) not only accumulates little noise from the

3The Iverson bracket [P ] returns 1 if P is true; 0 otherwise.
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Figure 3. Early stop point estimated by ideal and heuristic methods when training DenseNet (L=40, k=12) on CIFAR-100 with two types
of synthetic noises of 40%: (a) and (b) show the stop point derived by the ground-truth labels and the clean validation set, respectively.

false-labeled samples, (ii) but also acquires sufficient infor-
mation from the true-labeled ones. Intuitively speaking, as
indicated by the dashed line in Figure 3(a), the best stop
point is the moment when memorization precision and mem-
orization recall in Definition 3.1 cross with each other be-
cause it is the best trade-off between the two metrics. The pe-
riod beyond this point is what we call the error-prone period
because memorization precision starts decreasing rapidly.

If the ground truth y∗ of a noisy label ỹ is known, the best
stop point can be easily calculated by these metrics.
Definition 3.1. (Memorization Metrics) LetMt ⊆ D̃ be
a set of memorized samples at time t. Then, memoriza-
tion precision (MP) and recall (MR) (Han et al., 2018) are
formulated as Eq. (3).

MP=
|{(x, ỹ)∈Mt : ỹ=y∗}|

|Mt|
, MR=

|{(x, ỹ)∈Mt : ỹ=y∗}|
|{(x, ỹ)∈D̃ : ỹ=y∗}|

(3)
However, it is not straightforward to find the exact best stop
point without the ground-truth labels. Hence, we present
two practical heuristics of approximating the best stop point
with minimal supervision. These two heuristics require
either a small clean validation set or a noise rate τ for the
minimal supervision, where they are widely regarded as
available in many studies (Veit et al., 2017; Ren et al., 2018;
Han et al., 2018; Yu et al., 2019; Song et al., 2019).

• Validation Heuristic: If a clean validation set is given,
we stop training the network when the validation error
is the lowest. It is reasonable to expect that the lowest
validation error is achieved near the cross point; after that
point (i.e., in the error-prone period), the validation error
likely increases because the network will be overfitted to
the false-labeled samples. As shown in Figure 3(b), the
estimated stop point is fairly close to the best stop point.

• Noise-Rate Heuristic: If a noise rate τ is known, we stop
training the network when the training error reaches τ×
100%. If we assume that all true-labeled samples of (1−
τ)×100% are memorized before any false-labeled samples
of τ×100% (Arpit et al., 2017), this point indicates the
cross point of MP and MR with their values to be all 1.
This heuristic performs worse than the validation heuristic
because the assumption does not hold perfectly.

3.2. Q2: Criterion of a maximal safe set
Because the network is early stopped at the (estimated)
best point, the set of memorized samples at that time is
quantitatively sufficient and qualitatively less noisy. That
is, it can be used as a safe and effective training set to
resume the training of the early stopped network without
accumulating the label noise. Based on this intuition, we
define a maximal safe set in Definition 3.2, which is initially
derived from the memorized samples at the early stop point
and gradually increased as well as purified along with the
network’s learning progress. In each mini-batch Bt, the
network parameter θt is updated using the current maximal
safe set St as in Eq. (4), and subsequently a more refined
maximal safe set St+1 is derived by the updated network.
Definition 3.2. (Maximal Safe Set) Let tstop be the early
stop point. A maximal safe set St at time t is defined to be
the set of the memorized samples of the network Φ(x; θt)
when t ≥ tstop. The network Φ(x; θt) at t = tstop is
the early stopped network, i.e., Ststop = Mtstop , and the
network Φ(x; θt) at t > tstop is obtained by Eq. (4).

θt+1 = θt − α∇
( 1

|B′
t|
∑
x∈B′

t

L(x, ỹ; θt)
)

B
′

t = {x|x ∈ St ∩ Bt}

(4)

Hence, Prestopping iteratively updates its maximal safe set
at each iteration, thereby adding more hard-yet-informative
clean samples, which was empirically proven by the gradual
increase in MR after the transition point in Appendix A

3.3. Algorithm

Because of the lack of space, we describe the overall pro-
cedure of Prestopping with the validation and noise-rate
heuristics in Appendix B.

4. Evaluation
We compared Prestopping and Prestopping+4 with not only
a baseline algorithm but also the four state-of-the-art robust
training algorithms: Default trains the network without any

4Collaboration with sample refurbishment in SELFIE (Song
et al., 2019). See Appendix C for details.
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Figure 4. Best test errors using DenseNet on two data sets with varying pair and symmetric noise rates.
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Figure 5. Best test errors using two CNNs on two data sets with real-world noises.

processing for noisy labels; Active Bias re-weights the loss
of training samples based on their prediction variance; Co-
teaching selects a certain number of small-loss samples to
train the network based on the co-training (Blum & Mitchell,
1998); Co-teaching+ is similar to Co-teaching, but its small-
loss samples are selected from the disagreement set; SELFIE
selectively refurbishes noisy samples and exploits them to-
gether with the small-loss samples. Related work and exper-
imental setup are detailed in Appendix D and E.

4.1. Performance Comparison
Figures 4 show the test error of the seven training methods
using two CNNs on two data sets with varying pair and
symmetric noise rates. Figure 5 shows the test error on two
real-world noisy data sets with different noise rates. The
results of Prestopping and Prestopping+ in Section 4 were
obtained using the validation heuristic. See Appendix B.2
for the results of the noise-rate heuristic.

4.1.1. RESULT WITH PAIR NOISE (FIGURE 4(A))
In general, either Prestopping or Prestopping+ achieved
the lowest test error in a wide range of noise rates on both
CIFAR data sets. With help of the refurbished samples,
Prestopping+ achieved a slightly better performance than
Prestopping in CIFAR-10. However, an opposite trend was
observed in CIFAR-100. Although SELFIE achieved rela-
tively lower test error among the existing methods, the test
error of SELFIE was still worse than that of Prestopping.
Co-teaching did not work well because many false-labeled
samples were misclassified as clean ones; Co-teaching+
was shown to be even worse than Co-teaching despite it
being an improvement of Co-teaching (see Section F.2 for

details). The test error of Active Bias was not comparable to
that of Prestopping. The performance improvement of ours
over the others increased as the label noise became heavier.
In particular, at a heavy noise rate of 40%, Prestopping or
Prestopping+ significantly reduced the absolute test error
by 2.2pp–18.1pp compared with the other robust methods.

4.1.2. RESULT WITH SYMMETRIC NOISE (FIGURE 4(B))

Similar to the pair noise, both Prestopping and Prestopping+
generally outperformed the others. Particularly, the perfor-
mance of Prestopping+ was the best at any noise rate on all
data sets, because the synergistic effect was higher in sym-
metric noise than in pair noise. At a heavy noise rate of 40%,
our methods showed significant reduction in the absolute
test error by 0.3pp–11.7pp compared with the other robust
methods. Unlike the pair noise, Co-teaching and SELFIE
achieved a low test error comparable to Prestopping.

4.1.3. RESULT WITH REAL-WORLD NOISE (FIGURE 5)

Both Prestopping and Prestopping+ maintained their
dominance over the other methods under real-world label
noise as well. Prestopping+ achieved the lowest test error
when the number of classes is small (e.g., ANIMAL-10N),
while Prestopping was the best when the number of classes
is large (e.g., FOOD-101N) owing to the difficulty in label
correction of Prestopping+. (Thus, practitioners are recom-
mended to choose between Prestopping and Prestopping+
depending on the number of classes in hand.) Specifically,
they improved the absolute test error by 0.4pp–4.6pp
and 0.5pp–8.2pp in ANIMAL-10N and FOOD-101N,
respectively. Therefore, we believe that the advantage of our
methods is unquestionable even in the real-world scenarios.
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5. Conclusion
In this paper, we proposed a novel two-phase training strat-
egy for the noisy training data, which we call Prestopping.
The first phase, “early stopping,” retrieves an initial set of
true-labeled samples as many as possible, and the second
phase, “learning from a maximal safe set,” completes the
rest training process only using the true-labeled samples
with high precision. Prestopping can be easily applied to
many real-world cases because it additionally requires only
either a small clean validation set or a noise rate. Further-
more, we combined this novel strategy with sample refur-
bishment to develop Prestopping+. Through extensive ex-
periments using various real-world and simulated noisy data
sets, we verified that either Prestopping or Prestopping+
achieved the lowest test error among the seven compared
methods, thus significantly improving the robustness to di-
verse types of label noise. Overall, we believe that our
work of dividing the training process into two phases by
early stopping is a new direction for robust training and can
trigger a lot of subsequent studies.
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A. Ablation Study on Learning from the Maximal Safe Set
Figure 6 shows the main advantage of learning from the maximal safe set during the remaining period. Even when the noise
rate is quite high (e.g., 40%), this learning paradigm exploits most of true-labeled samples, in considering that the label recall
of the maximal safe set was maintained over 0.81 in symmetric noise and over 0.84 in pair noise after the 80th epoch. Further,
by excluding unsafe samples that might accumulate the label noise, the label precision of the maximal safe set increases
rapidly at the beginning of the remaining period; it was maintained over 0.99 in symmetric noise and over 0.94 even in
pair noise after the 80th epoch, which could not be realized by the small-loss separation (Han et al., 2018; Song et al., 2019).
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Figure 6. Memorization precision and Memorization recall of the maximal safe set during the remaining epochs when training
DenseNet (L=40, k=12) on CIFAR-100 with two types of synthetic noises of 40%.

B. Algorithm Description

Algorithm 1 Prestopping with Validation Heuristic

INPUT: D̃: data, V: clean validation data, epochs: total number of epochs, q: history length
OUTPUT: θt: network parameters

1: t← 1; θt ← Initialize the network parameter;
2: θtstop ← ∅; /* The parameter of the stopped network */
3: for i = 1 to epochs do /* Phase I: Learning from a noisy training data set */
4: for j = 1 to |D̃|/|Bt| do
5: Draw a mini-batch Bt from D̃;
6: θt+1 = θt − α∇

(
1
|Bt|

∑
x∈Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (1) */

7: val err ← Get Validation Error(V , θt); /* A validation error at time t */
8: if isMin(val err) then θtstop ← θt; /*Save the network when val error is the lowest*/
9: t← t+ 1;

10: θt ← θtstop ; /* Load the network stopped at tstop */
11: for i = stop epoch to epochs do /* Phase II: Learning from a maximal safe set */
12: for j = 1 to |D̃|/|Bt| do
13: Draw a mini-batch Bt from D̃;
14: St ← {x|argmaxyP (y|x, t; q) = ỹ}; /* A maximal safe set in Definition 3.2 */
15: θt+1 = θt − α∇

(
1

|St∩Bt|
∑
x∈St∩Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (4) */

16: t← t+ 1;
17: return θt, St;

B.1. Prestopping with Validation Heuristic (Main Algorithm)

Algorithm 1 describes the overall procedure of Prestopping with the validation heuristic, which is self-explanatory. First,
the network is trained on the noisy training data D̃ in the default manner (Lines 3–6). During this first phase, the validation
data V is used to evaluate the best point for the early stop, and the network parameter is saved at the time of the lowest
validation error (Lines 7–8). Then, during the second phase, Prestopping continues to train the early stopped network for
the remaining learning period (Lines 10–12). Here, the maximal safe set St at the current moment is retrieved, and each
sample x ∈ St ∩ Bt is used to update the network parameter. The mini-batch samples not included in St are no longer
used in pursuit of robust learning (Lines 14–15).
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Algorithm 2 Prestopping with Noise-Rate Heuristic

INPUT: D̃: data, epochs: total number of epochs, q: history length, τ : noise rate
OUTPUT: θt: network parameters

1: t← 1; θt ← Initialize the network parameter;
2: θtstop ← ∅; /* The parameter of the stopped network */
3: for i = 1 to epochs do /* Phase I: Learning from a noisy training data set */
4: for j = 1 to |D̃|/|Bt| do
5: Draw a mini-batch Bt from D̃;
6: θt+1 = θt − α∇

(
1
|Bt|

∑
x∈Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (1) */

7: train err ← Get Training Error(D̃, θt); /* A training error at time t */
8: if train err ≤ τ then /*Save the network when train err ≤ τ */
9: θtstop ← θt; break;

10: t← t+ 1;
11: θt ← θtstop ; /* Load the network stopped at tstop */
12: for i = stop epoch to epochs do /* Phase II: Learning from a maximal safe set */
13: for j = 1 to |D̃|/|Bt| do
14: Draw a mini-batch Bt from D̃;
15: St ← {x|argmaxyP (y|x, t; q) = ỹ}; /* A maximal safe set in Definition 3.2 */
16: θt+1 = θt − α∇

(
1

|St∩Bt|
∑
x∈St∩Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (4) */

17: t← t+ 1;
18: return θt, St;

B.2. Prestopping with Noise-Rate Heuristic

Algorithm 2 describes the overall procedure of Prestopping with the noise-rate heuristic, which is also self-explanatory.
Compared with Algorithm 1, only the way of determining the best stop point in Lines 7–9 has changed.

B.2.1. RESULT WITH SYNTHETIC NOISE (FIGURE 7)

To verify the performance of Prestopping and Prestopping+ with the noise-rate heuristic in Section 3.1, we trained a
VGG-19 network on two simulated noisy data sets with the same configuration as in Section 4. Figure 7 shows the test error
of our two methods using the noise-rate heuristic as well as those of the other five training methods. Again, the test error
of either Prestopping or Prestopping+ was the lowest at most error rates with any noise type. The trend of the noise-rate
heuristic here was almost the same as that of the validation heuristic in Section 4.1. Especially when the noise rate was
40%, Prestopping and Prestopping+ significantly improved the test error by 5.1pp–17.0pp in the pair noise (Figure 7(a))
and 0.3pp–17.3pp in the symmetric noise (Figure 7(b)) compared with the other robust methods.
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Figure 7. Best test errors using VGG-19 on two simulated noisy data sets with varying noise rates.

B.2.2. COMPARISON WITH VALIDATION HEURISTIC (FIGURE 8)

Figure 8 shows the difference in test error caused by the two heuristics. Overall, the performance with the noise-rate heuristic
was worse than that with validation heuristic, even though the worse one outperformed the other training methods as shown
in Figure 7. As the assumption of the noise-rate heuristic does not hold perfectly, a lower performance of the noise-rate
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heuristic looks reasonable. However, we expect that the performance with this heuristic can be improved by stopping a little
earlier than the estimated point, and we leave this extension as the future work.
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Figure 8. Difference in test error between two heuristics on two simulated noisy data sets.

C. Collaboration with Sample Refurbishment: Prestopping+

To further improve the performance of Prestopping, we introduce Prestopping+ that employs the concept of selectively
refurbishing false-labeled samples in SELFIE (Song et al., 2019). In detail, the final maximal safe set Stend

is retrieved
from the first run of Prestopping, and then it is used as the true-labeled set for the next run of SELFIE with initializing the
network parameter. Following the update principle of SELFIE, the modified gradient update rule in Eq. (5) is used to train
the network. For each sample x in the mini-batch Bt, the given label ỹ of x is selectively refurbished into yrefurb if it can
be corrected with high precision. However, the mini-batch samples included in Stend

are omitted from the refurbishment
because their label is already highly credible. Then, the mini-batch samples in the refurbished setRt are provided to update
the network together with those in the final maximal safe set Stend

. Refer to Song et al. (2019)’s work for more details.

θt+1 = θt − α∇
( 1

|{x|x ∈ Rt ∩ Stend
}|
( ∑
x∈Rt∩Sc

tend

L(x, yrefurb; θt) +
∑

x∈Stend

L(x, ỹ; θt)
))

(5)

D. Related Work
Numerous studies have been conducted to address the problem of learning from noisy labels. A typical method is using “loss
correction” that estimates the label transition matrix and corrects the loss of the samples in the mini-batch. Bootstrap (Reed
et al., 2015) updates the network based on their own reconstruction-based objective with the notion of perceptual consistency.
F-correction (Patrini et al., 2017) reweights the forward or backward loss of the training samples based on the label transition
matrix estimated by a pre-trained normal network. D2L (Ma et al., 2018) employs a simple measure called local intrinsic
dimensionality and then uses it to modify the forward loss in order to reduce the effects of false-labeled samples in learning.

Active Bias (Chang et al., 2017) heuristically evaluates uncertain samples with high prediction variances and then gives
higher weights to their backward losses. Ren et al. (2018) include small clean validation data into the training data and
re-weight the backward loss of the mini-batch samples such that the updated gradient minimizes the loss of those validation
data. However, this family of methods is known to accumulate severe noise from the false correction, especially when
the number of classes or the number of false-labeled samples is large (Han et al., 2018; Yu et al., 2019).

To be free from the false correction, many recent researches have adopted “sample selection” that trains the network on
selected samples. These methods attempt to select true-labeled samples from the noisy training data for use in updating the
network. Decouple (Malach & Shalev-Shwartz, 2017) maintains two networks simultaneously and updates the models only
using the samples that have different label predictions from these two networks. Wang et al. (2018) proposed an iterative
learning framework that learns deep discriminative features from well-classified noisy samples based on the local outlier
factor algorithm (Breunig et al., 2000).

MentorNet (Jiang et al., 2018) introduces a collaborative learning paradigm that a pre-trained mentor network guides the
training of a student network. Based on the small-loss criteria, the mentor network provides the student network with the
samples whose label is probably correct. Co-teaching (Han et al., 2018) and Co-teaching+ (Yu et al., 2019) also maintain
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two networks, but each network selects a certain number of small-loss samples and feeds them to its peer network for further
training. Compared with Co-teaching, Co-teaching+ further employs the disagreement strategy of Decouple. ITLM (Shen &
Sanghavi, 2019) iteratively minimizes the trimmed loss by alternating between selecting a fraction of small-loss samples at
current moment and retraining the network using them. INCV (Chen et al., 2019) randomly divides the noisy training data and
then utilizes cross-validation to classify true-labeled samples with removing large-loss samples at each iteration. However,
their general philosophy of selecting small-loss samples works well only in some cases such as symmetric noise. Differently
to this family, we exploit the maximal safe set initially derived from the memorized samples at the early stop point.

Most recently, a hybrid of “loss correction” and “sample selection” approaches was proposed by Song et al. (2019). Their
algorithm called SELFIE trains the network on selectively refurbished false-labeled samples together with small-loss
samples. SELFIE not only minimizes the number of falsely corrected samples but also exploits full exploration of the entire
training data. Its component for sample selection can be replaced by our method to further improve the performance.

For the completeness of the survey, we mention the work that provides an empirical or a theoretical analysis on why early
stopping helps learn with the label noise. Oymak et al. (2019) and Hendrycks et al. (2019) have argued that early stopping
is a suitable strategy because the network eventually begins to memorize all noisy samples if it is trained too long. Li
et al. (2019) have theoretically proved that the network memorizes false-labeled samples at a later stage of training, and
thus claimed that the early stopped network is fairly robust to the label noise. However, they did not mention how to take
advantage of the early stopped network for further training. Please note that Prestopping adopts early stopping to derive a
seed for the maximal safe set, which is exploited to achieve noise-free training during the remaining learning period. Thus,
our novelty lies in the “merger” of early stopping and learning from the maximal safe set.

E. Experimental Configuration
All the algorithms were implemented using TensorFlow 1.8.0 and executed using 16 NVIDIA Titan Volta GPUs. For
reproducibility, we provide the source code at https://bit.ly/2l3g9Jx. In support of reliable evaluation, we
repeated every task thrice and reported the average and standard error of the best test errors, which are the common measures
of robustness to noisy labels (Chang et al., 2017; Jiang et al., 2018; Ren et al., 2018; Song et al., 2019).

Data Sets: To verify the superiority of Prestopping, we performed an image classification task on four benchmark data sets:
CIFAR-10 (10 classes)5 and CIFAR-100 (100 classes)4, a subset of 80 million categorical images (Krizhevsky et al., 2014);
ANIMAL-10N (10 classes)6, a real-world noisy data of human-labeled online images for confusing animals (Song et al.,
2019); FOOD-101N (101 classes)7, a real-world noisy data of crawled food images annotated by their search keywords in
the FOOD-101 taxonomy (Bossard et al., 2014; Lee et al., 2018). We did not apply any data augmentation.

Noise Injection: As all labels in the CIFAR data sets are clean, we artificially corrupted the labels in these data sets using
typical methods for the evaluation of synthetic noises (Ren et al., 2018; Han et al., 2018; Yu et al., 2019). For k classes, we
applied the label transition matrix T: (i) symmetric noise: ∀j 6=iTij = τ

k−1 and (ii) pair noise: ∃j 6=iTij = τ ∧∀k 6=i,k 6=jTik =
0, where Tij is the probability of the true label i being flipped to the corrupted label j and τ is the noise rate. For the pair
noise, the corrupted label j was set to be the next label of the true label i following the recent work (Yu et al., 2019; Song
et al., 2019). To evaluate the robustness on varying noise rates from light noise to heavy noise, we tested five noise rates
τ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. In contrast, we did not inject any label noise into ANIMAL-10N and FOOD-101N8 because
they contain real label noise estimated at 8.0% and 18.4% respectively (Lee et al., 2018; Song et al., 2019).

Clean Validation Data: Recall that a clean validation set is needed for the validation heuristic in Section 3.1. As for
ANIMAL-10N and Food-101N, we did exploit their own clean validation data; 5, 000 and 3, 824 images, respectively, were
included in their validation set. However, as no validation data exists for the CIFAR data sets, we constructed a small clean
validation set by randomly selecting 1, 000 images from the original training data of 50, 000 images. Please note that the
noise injection process was applied to only the rest 49, 000 training images.

Networks and Hyperparameters: For the classification task, we trained DenseNet (L=40, k=12) and VGG-19 with a
momentum optimizer. Specifically, we used a momentum of 0.9, a batch size of 128, a dropout of 0.1, and batch

5https://www.cs.toronto.edu/ kriz/cifar.html
6https://dm.kaist.ac.kr/datasets/animal-10n
7https://kuanghuei.github.io/Food-101N
8In FOOD-101N, we used a subset of the entire training data marked with whether the label is correct or not.

https://bit.ly/2l3g9Jx


How does Early Stopping Help Generalization against Label Noise?

normalization. Prestopping has only one unique hyperparameter, the history length q, and it was set to be 10, which was the
best value found by the grid search (see Appendix F.1 for details). The hyperparameters used in the compared algorithms
were favorably set to be the best values presented in the original papers. As for the training schedule, we trained the network
for 120 epochs and used an initial learning rate 0.1, which was divided by 5 at 50% and 75% of the total number of epochs.

F. Supplementary Evaluation
F.1. Hyperparameter Selection (Figure 9)

Prestopping requires one additional hyperparameter, the history length q in Definition 2.1. For hyperparameter tuning,
we trained DenseNet (L=40, k=12) on CIFAR-10 and CIFAR-100 with a noise rate of 40%, and the history length q was
chosen in a grid ∈ {1, 5, 10, 15, 20}. Figure 9 shows the test error of Prestopping obtained by the grid search on two noisy
CIFAR data sets. Regardless of the noise type, the lowest test error was typically achieved when the value of q was 10
in both data sets. Therefore, the history length q was set to be 10 in all experiments.
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Figure 9. Grid search on CIFAR-10 and CIFAR-100 with two types of noises of 40%.

F.2. Anatomy of Co-teaching+ (Figure 10)

Although Co-teaching+ is the latest method, its performance was worse than expected, as shown in Section 4.1. Thus, we
looked into Co-teaching+ in more detail. A poor performance of Co-teaching+ was attributed to the fast consensus of
the label predictions for true-labeled samples, especially when training a complex network. In other words, because two
complex networks in Co-teaching+ start making the same predictions for true-labeled samples too early, these samples are
excluded too early. As shown in Figures 10(a) and 10(b), the disagreement ratio with regard to the true-labeled samples
dropped faster with a complex network than with a simple network, in considering that the ratio drastically decreased to
49.8% during the first 5 epochs. Accordingly, it is evident that Co-teaching+ with a complex network causes a narrow
exploration of the true-labeled samples, and the selection accuracy of Co-teaching+ naturally degraded from 60.4% to
44.8% for that reason, as shown in Figure 10(c). Therefore, we conclude that Co-teaching+ may not suit a complex network.

T
o

tal tru
e-lab

eled

0%

25%

50%

75%

100%

Disagreement Agreement

Epochs

0%

25%

50%

75%

100%

D
is

ag
re

em
en

t 
R

at
io

Large Drop

Small Drop

Co-teaching Co-teaching+

0 12030 60 90

Epochs

0 12030 60 90

Epochs

0 12030 60 90

5th epoch

25%

50%

75%

100%

S
el

ec
ti

o
n

 A
cc

u
ra

y

(a) Simple Network. (b) Complex Network. (c) Selection Accuracy.

Figure 10. Anatomy of Co-teaching+ on CIFAR-100 with 40% symmetric noise: (a) and (b) show the change in disagreement ratio for all
true-labeled samples, when using Co-teaching+ to train two networks with different complexity, where “simple network” is a network
with seven layers used by Yu et al. (2019), and “complex network” is a DenseNet (L=40, k=12) used for our evaluation; (c) shows the
accuracy of selecting true-labeled samples on the DenseNet.
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G. Case Study: Noisy Labels in Original CIFAR-100
One interesting observation is a noticeable improvement of Prestopping+ even when the noise rate was 0%. It was turned
out that Prestopping+ sometimes refurbished the labels of the false-labeled samples which were originally contained in
the CIFAR data sets. Figure 11 shows a few successful refurbishment cases. For example, an image falsely annotated as
a “Boy” was refurbished as a “Baby” (Figure 11(a)), and an image falsely annotated as a “Mouse” was refurbished as a
“Hamster” (Figure 11(c)). Thus, this sophisticated label correction of Prestopping+ helps overcome the residual label noise
in well-known benchmark data sets, which are misconceived to be clean, and ultimately further improves the generalization
performance of a network.

(a) Boy → Baby (b) Boy → Baby (c) Mouse → Hamster (d) Shrew → Mouse (e) Lion → Tiger (f) Worm → Snake

(g) Spider → Crab (h) Flat Fish → Trout (i) Train → Street Car (j) Train → Street Car (k) Street Car → Train (l) Pear →Apple

(m) Sweet Pepper →Apple (n) Pear → Sweet Pepper (o) Tulip → Poppy (p) Forest → Maple Tree (q) House → Road (r) Plain → Sea

(s) Sea → Plain (t) Plain → Cloud (u) Cloud → Can (v) Can → Bowl (w) Can → Bottle (x) Skyscraper  → Rocket

Figure 11. Refurbishing of false-labeled samples originally contained in CIFAR-100. The subcaption represents “original label”→
“refurbished label” recognized by Prestopping+.


