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Abstract

We propose an algorithm combining calibrated
prediction and generalization bounds from learn-
ing theory to construct confidence sets for deep
neural networks with PAC guarantees—i.e., the
confidence set for a given input contains the true
label with high probability. We demonstrate how
our approach can be used to construct PAC con-
fidence sets on ResNet for ImageNet, a visual
object tracking model, and a dynamics model for
the half-cheetah reinforcement learning problem.

1. Introduction
A key challenge facing deep neural networks is that they
do not produce reliable confidence estimates, which are
important for applications such as safe reinforcement learn-
ing (Berkenkamp et al., 2017), guided exploration (Malik
et al., 2019), and active learning (Gal et al., 2017).

We consider the setting where the test data follows the same
distribution as the training data (i.e., we do not consider
adversarial examples designed to fool the network (Szegedy
et al., 2014)); even in this setting, confidence estimates
produced by deep neural networks are notoriously unreli-
able (Guo et al., 2017). One intuition for this shortcoming is
that unlike traditional supervised learning algorithms, deep
learning models typically overfit the training data (Zhang
et al., 2017). As a consequence, the confidence estimates
of deep neural networks are flawed even for test data from
the training distribution since, by construction, they overes-
timate the likelihood of the training data.

A promising approach to addressing this challenge is tem-
perature scaling (Platt, 1999). This approach takes as input
a trained neural network fφ̂(y | x)—i.e., whose parameters

φ̂ have already been fit to a training dataset Ztrain—which
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produces unreliable probabilities fφ̂(y | x). Then, this
approach rescales these confidence estimates based on a
validation dataset to improve their “calibration”. More pre-
cisely, this approach fits confidence estimates of the form

fφ̂,τ (y | x) ∝ exp(τ log fφ̂(y | x)),

where τ ∈ R>0 is a temperature scaling parameter that is
fit based on the validation dataset. The goal is to choose τ
to minimize calibration error, which roughly speaking mea-
sures the degree to which the reported error rate differs from
the actual error rate. The key insight is that the temperature
scaling approach fits just a single parameter τ to the valida-
tion data—thus, unlike fitting the original neural network,
the temperature scaling algorithm generalizes well.

Nevertheless, these confidence estimates still do not come
with theoretical guarantees. We are interested in producing
confidence sets that satisfy statistical guarantees while being
as small as possible. Given a test input x ∈ X , a confidence
set CT (x) ⊆ Y (parameterized by T ∈ R) should contain
the true label y for at least a 1− ε fraction of cases:

P(x,y)∼D[y ∈ CT (x)] ≥ 1− ε.

Since we are fitting a parameter T to based on Zval, we
additionally incur a probability of failure due to the random-
ness in Zval. In other words, given ε, δ ∈ R>0, we aim to
obtain probably approximately correct (PAC) confidence
sets CT (x) ⊆ Y satisfying the guarantee

PZval∼Dn

(
P(x,y)∼D(y ∈ CT (x)) ≥ 1− ε

)
≥ 1− δ.

Indeed, techniques from statistical learning theory (Vapnik,
1999) can be used to do so (Vovk, 2013).

There are a number of reasons why confidence sets can
be useful. First, they can inform safety critical decision
making—e.g., a doctor using prediction tools to help per-
form diagnosis can use the confidence set to understand
both the uncertainty and the set of possible diagnoses. Sec-
ond, having a confidence set can be useful for reasoning
about safety since they contain the true outcome with high
probability—e.g., robots may use a confidence set over pre-
dicted trajectories to determine whether it is safe to act with
high probability. For instance, consider a self-driving car
that uses a deep neural network to predict the path that a
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Table 1. Confidence sets of ImageNet images with varying ResNet confidence set sizes. The predicted confidence set is shown to the right
of the corresponding input image. The true label is shown in red, and the predicted label is shown with a hat.

pedestrian might take; we can ensure safety with high prob-
ability by having the car avoid the predicted confidence set
of all possible paths taken by the pedestrian.

We evaluate our approach on three benchmarks: ResNet (He
et al., 2016) for ImageNet (Russakovsky et al., 2015), a
model (Held et al., 2016) learned for a visual object tracking
benchmark (Wu et al., 2013), and a probabilistic dynamics
model (Chua et al., 2018) learned for the half-cheetah envi-
ronment (Brockman et al., 2016) (Section 4). Examples of
confidence sets for ResNet are shown in Table 1.

Related work. There has been work on constructing confi-
dence sets with PAC guarantees specific to binary classifica-
tion (Lei, 2014; Wang & Qiao, 2018). There has also been
work for regression (Lei et al., 2018; Barber et al., 2019).
However, these confidence sets are fixed in size (i.e., they
do not depend on the input x); furthermore, they assume
the learning algorithm is stable. The most closely related
work is on conformal prediction (Papadopoulos, 2008; Vovk,
2013), which provides a way to construct PAC confidence
sets from a given confidence predictor. In contrast to their
approach, we proposed to use calibrated prediction to con-
struct confidence predictors that can suitably be used with
deep neural networks. In addition, they do not provide an
efficient algorithm for constructing confidence sets.

2. PAC Confidence Sets
Our goal is to estimate confidence sets that are as small
as possible, while simultaneously ensuring that they are
probably approximately correct (PAC) (Valiant, 1984). Es-
sentially, a confidence set is correct if it contains the true
label. More precisely, let X be the inputs and Y be the
labels, and let D be a distribution over Z = X × Y . A
confidence set predictor is a function C : X → 2Y such that
C(x) ⊆ Y is a set of labels; we denote the set of all confi-
dence set predictors by C. For a given example (x, y) ∼ D,
we say C is correct if y ∈ C(x). Then, the error of C is

L(C) = P(x,y)∼D[y 6∈ C(x)]. (1)

Finally, consider an algorithm A that takes as input a valida-
tion set Zval ⊆ Z consisting of n i.i.d. samples (x, y) ∼ D,
and outputs a confidence set predictor Ĉ. Given ε, δ ∈ R>0,
we say that A is probably approximately correct (PAC) if

PZval∼Dn

[
L(Ĉ) > ε where Ĉ = A(Zval)

]
< δ. (2)

Our goal is to design an algorithm A that satisfies (2) while
constructing confidence sets C(x) that are as “small in size”
as possible. The size of C(x) depends on the domain. For
classification, we consider confidence sets that are arbitrary
subsets of labels C(x) ⊆ Y = {1, ..., Y }, and we measure
the size by |C(x)| ∈ N—i.e., the number of labels in C(x).
For regression, we consider confidence sets that are intervals
C(x) = [a, b] ⊆ Y = R, and we measure size by b − a—
i.e., the length of the predicted interval. There is a tradeoff
between satisfying (2) and average size of C(x); larger
confidence sets are more likely to satisfy (2).

3. PAC Confidence Set Algorithm
At a high level, our algorithm takes as input a training set
Zval ⊆ Z of n i.i.d. samples (x, y) ∼ D and PAC parame-
ters ε, δ ∈ R>0. Then, it constructs a parametric family of
confidence set predictors C = {Cθ | θ ∈ Θ}, where Θ is
the parameter space, and computes

θ̂ = arg min
θ∈Θ

S(θ) subj. to L̂(Cθ;Zval) ≤ α (3)

L̂(C;Zval) =
1

n

∑
(x,y)∈Zval

I[y 6∈ C(x)],

where the empirical risk L̂ is an estimate of the confidence
set error (1) based on Zval. In (3), (i) α = α(n, ε, δ) ∈ R≥0

is chosen to enforce the PAC constraint based on generaliza-
tion bounds from statistical learning theory (Valiant, 1984),
(ii) the parameter space Θ is chosen to be one dimensional
(based on temperature scaling (Platt, 1999)) to enable good
generalization, and (iii) S is chosen to measure the size of
the confidence set predictor Cθ; in the remainder of this
section, we describe how these objects are chosen. Finally,
our algorithm outputs the confidence set predictor Cθ̂.
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Algorithm 1 Algorithm for solving (3).
Input: Ztrain, Z

′
train, and Zval

Estimate φ̂, τ̂ using (4) and (5), respectively
Compute α(n, ε, δ) using (7)
Let k∗ = n · α(n, ε, δ) (note that k ∈ {0, 1, ..., n})
Sort (x, y) ∈ Zval in ascending order of fφ̂,τ̂ (y | x)

Let (xk∗+1, yk∗+1) be the (k∗ + 1)st element in Zval
Solve (3) by choosing T̂ = − log fφ̂,τ̂ (yk∗+1 | xk∗+1)

Return: CT̂ : x 7→ {y ∈ Y | fφ̂,τ̂ (y | x) ≥ e−T̂ }

3.1. Choice of Parameter Space Θ

Probability forecasters. Our construction of the parame-
teric family of confidence set predictors Cθ assumes given a
probability forecaster f : X → PY , where PY is a space of
probability distributions over Y . Given such an f , we use
f(y | x) to denote the probability of label y under distri-
bution f(x). Intuitively, f(y | x) should be the probability
(or probability density) that y is the true label for a given
input x—i.e., f(y | x) ≈ P(X,Y )∼D[Y = y | X = x].
For example, in classification, we can choose PY to be the
space of categorical distributions over Y , and f may be
a neural network whose last layer is a softmax layer with
|Y| outputs. Then, f(y | x) = f(x)y. Alternatively, in
regression, we can choose PY to be the space of Gaussian
distributions, and f may be a neural network whose last
layer outputs the values (µ, σ) ∈ R × R>0 of a Gaussian
distribution. Then, f(y | x) = N (x;µ(x), σ(x)2), where
(µ(x), σ(x)) = f(x), and N (·;µ, σ2) is the Gaussian den-
sity function with mean µ and variance σ2.

Training a probability forecaster. To train a probability
forecaster, we use a standard approach to calibrated pre-
diction that combines maximum likelihood estimation with
temperature scaling. 1 First, we consider a parametric
model family F = {fφ | φ ∈ Φ}, where Φ is the parame-
ter space. Note that Φ can be high-dimensional—e.g., the
weights of a neural network model. Given a training set
Ztrain ⊆ Z of m i.i.d. samples (x, y) ∼ D, the maximum
likelihood estimate (MLE) of φ is

φ̂ = arg min
φ∈Φ

`(φ;Ztrain) (4)

`(φ;Ztrain) = −
∑

(x,y)∈Ztrain

log fφ(y | x).

We could now use fφ̂ as the probability forecaster. However,

the problem with directly using φ̂ is that because φ̂ may be
high-dimensional, it often overfits the training data Ztrain.
Thus, the probabilities are typically overconfident compared
to what they should be. To reduce their confidence, we use

1A priori, it is not obvious that using temperature scaling can
improve our confidence set predictor; see Appendix B.1.

the temperature scaling approach to calibrate the predicted
probabilities (Platt, 1999; Guo et al., 2017). Intuitively, this
approach is to train an MLE estimate using exactly the same
approach used to train φ̂, but using a single new parameter
τ ∈ R>0. The key idea is that this time, the model family
is based on the parameters φ̂ from (4). In other words, the
“shape” of the probabilities forecast by fφ̂ are preserved, but
their exact values are shifted. More precisely, consider the
model family F ′ = {fφ̂,τ | τ ∈ R>0}, where

fφ̂,τ (y | x) ∝ exp
(
τ log fφ̂(y | x)

)
.

Then, we have the following MLE for τ :

τ̂ = arg min
τ∈R>0

`′(τ ;Z ′train) where (5)

`′(τ ;Z ′train) = −
∑

(x,y)∈Z′train

log fφ̂,τ (y | x).

Note that τ̂ is estimated based on a second training set Z ′train.
Since we are only fitting a single parameter, this training set
can be much smaller than the training set Ztrain used to fit φ̂.

Parametric family of confidence set predictors. Finally,
given a probability forecaster f , we consider one dimen-
sional parameter space Θ = R; in an analogy to the temper-
ature scaling technique for calibrated prediction, we denote
this parameter by T ∈ Θ. In particular, we assume a confi-
dence probability predictor f is given, and consider

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }.

In other words, CT (x) is the set of y with high probability
given x according to f . Considering this scalar parameter
space, we denote the minimum of (3) by T̂ .

3.2. Choice of Size Metric S(T )

To choose the size metric S(T ), we note that for our chosen
parametric family of confidence set predictors, smaller val-
ues correspond to uniformly smaller confidence sets—i.e.,

T ≤ T ′ ⇒ ∀x, CT (x) ⊆ CT ′(x).

Thus, we can simply choose the size metric to be

S(T ) = T. (6)

This choice minimizes the predicted confidence set sizes.

3.3. Choice of Confidence Level α(n, ε, δ)

The problem of estimating T̂ is equivalent to a binary classi-
fication problem, and the VC dimension of Θ for this prob-
lem is 1. Thus, a naive approach to choosing α(n, ε, δ) is to
do so based on the VC dimension generalization bound (Vap-
nik, 1999). However, we can get better choices of α by
directly bounding generalization error:
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Figure 1. Results on ResNet for ImageNet with n = 20000. Default parameters are ε = 0.01 and δ = 10−5. We plot the median and
min/max confidence set sizes. (a) Ablation study; C is “calibrated predictor” (i.e., use fφ̂,τ̂ instead of fφ̂), and D is “direct bound” (i.e.,
use Theorem 1 instead of VC bound). (b) Restricted to correctly vs. incorrectly labeled images. (c) Varying ε. (d) Varying δ.

Theorem 1. For any ε ∈ [0, 1], n ∈ N>0, and k ∈
{0, 1, ..., n}, we have

PZval∼Dn

[
L(CT̂ ) > ε

]
≤

k∑
i=0

(
n

i

)
εi(1− ε)n−i,

where T̂ is the solution to (3) with α = k/n. 2

We give a proof in Appendix C.2. Thus, we can choose

α(n, ε, δ) = max
k∈N∪{0}

k/n (7)

subj. to
k∑
i=0

(
n

i

)
εi(1− ε)n−i < δ.

With this choice, for the solution T̂ of (3) with α =
α(n, ε, δ), the constraint in (3) ensures that L̂(CT̂ ;Zval) ≤
α(n, ε, δ). Together with Theorem 1, we have

PZval∼Dn

[
L(CT̂ ) > ε

]
< δ,

which is our desired the PAC constraint. Thus, we have:

Corollary 1. Let T̂ be the solution to (3) for α = α(n, ε, δ)
chosen according to (7). Then, our algorithm is PAC.

3.4. Practical Implementation

Our algorithm for estimating a confidence set predictor CT̂
is summarized in Algorithm 1. The algorithm solves the
optimization problem (3) using the choices of Θ, S(T ), and
α(n, ε, δ) described in the preceding sections. We discuss
implementation details in Appendix A.1, and choices of
probability forecaster for specific tasks in Appendix A.2

4. Experiments
We describe our experiments on ResNet (He et al., 2016) on
ImageNet (Russakovsky et al., 2015) (a classification task);

2The theorem statement relies on additional standard technical
conditions; see Appendix C.1.

we give additional results in Appendix E. We use our algo-
rithm to compute confidence sets, for ε = 0.01, δ = 10−5,
and n = 20000 validation images. We show the results in
Figure 1. In (a), we compare our approach to an ablation.
In particular, C refers to performing an initial temperature
scaling step to calibrate the neural network predictor (i.e.,
using fφ̂ instead of fφ̂,τ̂ ), and (ii) D refers to using Theo-
rem 1. Thus, C +D refers to our approach. As can be seen,
using calibrated predictor produces a noticeable reduction
in the maximum confidence set size. We also compared
to the ablation C—i.e., using the VC generalization bound
instead of Theorem 1 (see Appendix E.1). However, we
were unable to obtain valid confidence sets for our choice
of ε and δ—i.e., (3) is infeasible. That is, using Theorem 1
outperforms using the VC generalization bound since the
VC bound is too loose to satisfy the PAC criterion for our
choice of parameters. In addition, in Table 4 in Appendix E,
we show results for larger choices of ε and δ; these results
show that our approach substantially outperforms the ab-
lation based on the VC bound even when the VC bound
produces valid confidence sets.

In (b), we show the confidence set sizes for images correctly
vs. incorrectly labeled by ResNet. As expected, the sizes are
substantially larger for incorrectly labeled images. Finally,
in (c) and (d), we show how the sizes vary with ε and δ,
respectively. As expected, the dependence on ε is much
more pronounced (note that δ is log-scale).

5. Conclusion
We have proposed an algorithm for constructing PAC confi-
dence sets for deep neural networks, which leverages statis-
tical learning theory to obtain theoretical guarantees on the
predicted confidence sets. Future work includes extending
these results to more complex tasks (e.g., structured predic-
tion), and handling covariate shift (e.g., to handle policy
updates in reinforcement learning).
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A. Algorithm Details
A.1. Implementation Details

There are two key implementation details that we describe here.

Computing α(n, ε, δ). To compute α(n, ε, δ), we need to solve (7). A straightforward approach is to enumerate all possible
choices of k ∈ {0, 1, ..., n}. There are two optimizations. First, the objective is monotone increasing in k, so we can
enumerate k in ascending order until the constraint no longer holds. Second, rather than re-compute the left-hand side of the
constraint

∑k
i=0

(
n
i

)
εi(1− ε)n−i, we can accumulate the sum as we iterate over k. We can also incrementally compute

(
n
i

)
,

εi, and (1− ε)n−i. For numerical stability, we perform these computations in log space.

Solving (3). To solve (3), note that the constraint in (3) is equivalent to∑
(x,y)∈Zval

E(x, y;T ) ≤ n · α(n, ε, δ) where

E(x, y;T ) = I
[
fφ̂,τ̂ (y | x) < e−T

]
. (8)

Also, note that k∗ = n · α(n, ε, δ) is an integer due to the definition of α(n, ε, δ) in (7). Thus, we can interpret (8) as saying
that E(x, y;T ) = 1 for at most k∗ of the points (x, y) ∈ Zval.

In addition, note that E(x, y;T ) decreases monotonically as fφ̂,τ̂ (y | x) becomes larger. Thus, we can sort the points
(x, y) ∈ Zval in ascending order of fφ̂,τ̂ (y | x), and require that only the first k∗ points (x, y) in this list satisfy E(x, y;T ) =

1. In particular, letting (xk∗+1, yk∗+1) be the (k∗ + 1)st point, (8) is equivalent to

fφ̂,τ̂ (yk∗+1 | xk∗+1) ≥ e−T . (9)

In other words, this constraint says that T must satisfy yk∗+1 ∈ CT (xk∗+1). Finally, the solution T̂ to (3) is the smallest T
that satisfies (9), which is the T that makes (9) hold with equality—i.e.,

T̂ = − log fφ̂,τ̂ (yk∗+1 | xk∗+1). (10)

We have assumed fφ̂,τ̂ (yk∗+1 | xk∗+1) > fφ̂,τ̂ (yk∗ | xk∗); if not, we decrement k∗ until this holds.

A.2. Probability Forecasters for Specific Tasks

We briefly discuss the architectures we use for probability forecasters for various tasks. We give details, including how we
measure the sizes of predicted confidence sets CT (x), in Appendix D. We consider three tasks: classification, regression,
and model-based reinforcement learning. For classification, we use the standard approach of using a soft-max layer to
predict label probabilities f(y | x). For regression, we also use a standard approach where the neural network predicts both
the mean µ(x) and covariance Σ(x) of a Gaussian distribution N (µ(x),Σ(x)); then, f(y | x) = N (y;µ(x),Σ(x)) is the
probability density of y according to this Gaussian distribution.

Finally, for model-based reinforcement learning, our goal is to construct confidence sets over trajectories predicted using
a learned model of the dynamics. We consider unknown dynamics g∗(x′ | x, u) mapping a state-action pair (x, u) to a
distribution over states x′, and consider a known (and fixed) policy π(u | x) mapping a given state x to a distribution over
actions u ∈ U ⊆ RdU . Then, we let f∗(x′ | x) = Eπ(u|x)[g

∗(x′ | u)] denote the (unknown) closed-loop dynamics.

Next, we consider a forecaster f(x′ | x) ≈ f∗(x′ | x) of the form f(x′ | x) = N (x′;µ(x),Σ(x)), and our goal is to
construct confidence sets for the predictions of f . However, we want to do so for not just for one-step predictions, but for
predictions over a time horizon H ∈ N. In particular, given initial state x0 ∈ X , we can sample x∗1:H = (x1, ..., xH) ∼ f∗
by letting x∗0 = x0 and sequentially sampling x∗t+1 ∼ f( · | x∗t ) for each t ∈ {0, 1, ...,H−1}. Then, our goal is to construct
a confidence set that contains x∗1:H ∈ XH with high probability (over both the randomness in an initial state distribution
x0 ∼ d0 and the randomness in f∗).

To do so, we construct and use a forecaster f̃(x1:H | x0) based on f . In principle, this task is a special case of multivariate
regression, where the inputs are X (i.e., the initial state x0) and the outputs are Y = XH (i.e., a predicted trajectory x1:H ).
However, the variance Σ(x) predicted by our probability forecaster is only for a single step, and does not take into account
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the fact that x is itself uncertain. Thus, we use a simple heuristic where we accumulate variances over time. More precisely,
we construct (i) the predicted mean x̄1:H = (x̄1, ..., x̄H) by x̄0 = x0 and x̄t+1 = µ(x̄t) for t ∈ {0, 1, ...,H − 1}, and (ii)
the predicted variances Σ̃1:H = (Σ̃1, ..., Σ̃H) by

Σ̃t = Σ(x̄0) + Σ(x̄1) + ...+ Σ(x̄t−1).

We use a probability forecaster f̃(x1:H | x0) = N (x1:H ; x̄1:H , Σ̃1:H) to construct confidence sets.

B. Discussion of Algorithm Design Choices
B.1. Usefulness of Temperature Scaling

In this section, we discuss why temperature scaling can help improve the predicted confidence sets. A concern is that
temperature scaling does not change the ordering of label probabilities. Thus, we may expect that temperature scaling does
not affect the predicted confidence sets. However, this fact only holds when considering a single input x—i.e., the ordering
of the probabilities p(y | x) for y ∈ Y is not changed by temperature scaling. Indeed, the order of confidences for labels for
different inputs can change. For a concrete example, consider two inputs x and x′, and the case Y = {0, 1, 2}. Assume that
the label probabilities are

f( · | x) =
[
1/3 1/3 1/3

]>
f( · | x′) =

[
3/4 1/4 0

]>
.

Now, if we take temperature τ very large, then the labels become roughly

fτ ( · | x) =
[
1/3 1/3 1/3

]>
fτ ( · | x′) =

[
1/2 1/2 0

]>
.

As a consequence, there are confidence sets that are achievable when using fτ that are not achievable when using f . In
particular, the confidence sets

CT (x) = ∅
CT (x′) = {0, 1}

can be achieved using fτ (e.g., with e−T = 2/5). However, it is impossible to achieve these confidence sets using f for
any choice of T , since if 1 ∈ CT (x′), then it must be the case that CT (x) = {0, 1, 2}. Intuitively, we expect calibrated
prediction to improve the ordering of probabilities across different inputs. Our experiments support this intuition, since they
show that empirically, using calibrated predictors fτ produces confidence sets of smaller size.

B.2. Usefulness of Direct Bound

One key design choice is to use a specialized generalization bound that directly provides PAC guarantees on our confidence
sets rather than simply applying the VC dimension bound. The easiest way to determine which bound is better is to examine
which one produces a smaller confidence set. In our approach, the size of the confidence set decreases monotonically with
the choice of α = α(n, ε, δ) in (3). Thus, the bound that produces larger α is better. Recall that the VC dimension bound
produces

αVC(n, ε, δ) = ε−
√

log(2n) + 1− log(δ/4)

n
,

whereas our direct bound produces (for k = 0)

αdirect(n, ε, δ) = max
k∈N

k/n subj. to
k∑
i=0

(
n

i

)
εi(1− ε)n−i < δ.

Directly comparing these two choices of α is difficult, but our experiments show empirically that using the direct bound
outperforms using the indirect bound.



PAC Confidence Sets for DNNs

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0

50000

100000

150000

200000

250000

n

VC
direct

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0

2000

4000

6000

8000

n

k = 0
k = 5
k = 10
k = 50

Figure 2. Sample complexity of different bounds; we fix δ = 10−5. Left: Sample complexity of VC bound and direct bound when k = 0.
Right: Sample complexity of direct bound for varying k.

A more direct way to compare the two approaches is to instead ask how large n needs to be to achieve α(n, ε, δ) = 0. For
αVC, it is easy to check that we need

n ≥ log(2n) + 1 + log(4/δ)

ε2
.

Thus, we need n to be at least O(log(1/δ)/ε2) (and possibly greater, to account for the log(2n) term). In contrast, for our
direct bound, α = 0 corresponds to the case k = 0. To achieve k = 0, it suffices to have n satisfying (1− ε)n < δ. Using
(1− ε)n ≤ e−nε, it suffices to have n satisfying

n ≥ log(1/δ)

ε
.

In other words, n only needs to be O(log(1/δ)/ε). For small ε (e.g., ε = 0.01), we need 100× fewer samples to achieve the
same size confidence set (i.e., with choice α(n, ε, δ) = 0). In Figure 2 (right), we compute the exact values of n needed
to get α(n, ε, δ) = 0 as a function of ε for each bound (fixing δ = 10−5). As expected, our bound requires substantially
smaller n.

Finally, in Figure 2 (right), we compare the magnitude of n needed to achieve larger values of α using our direct bound; for
simplicity, we actually consider larger values of k (where α = k/n), but the qualitative insights are the same. As can be
seen, even for large k, (e.g., k = 50), the number of samples increases, but not substantially.

C. Theoretical Guarantees
C.1. Assumptions

We make two additional technical assumptions in Theorem 1, both of which are standard. First, we assume that f is
measurable; this assumption holds for all models used in practice, including neural networks (e.g., it holds as long as f is
continuous).

Second, letting φ : Z → R, where Z = X × Y , be defined by φ((x, y)) = − log f(y | x), we assume that the distribution
D̄ induced by φ on R has continuous cumulative distribution function (CDF). More precisely, letting µD be the measure
defining D, then D̄ is defined by the measure

µD̄(t) = µD(φ−1(t)),

where φ−1 : R → 2Z is the inverse of φ in the sense that z ∈ φ−1(φ(z)) for all z ∈ Z . Then, we assume that the CDF
corresponding to D̄ is continuous. This second assumption is standard in statistical learning theory (Kearns & Vazirani,
1994). Essentially, it says that for any t ∈ R, the probability that t = − log f(y | x) must equal zero. This assumption
should hold unless p(x, y) or f(y | x) are degenerate in some way. Furthermore, we can detect this case. In particular,
the failure mode corresponds to the case that we see multiple points with the same value − log f(y | x). Thus, choosing
T̂ = − log f(y | x) would include all these points, so the realized error rate α is larger than desired for T̂ . In this case, we
can simply choose a slightly larger T̂ to avoid this problem.
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C.2. Proof of Theorem 1

At a high level, our proof proceeds in three steps. First, we show that a confidence set predictor CT can be encoded as a
binary classifier MT . Second, we show that a PAC bound for MT implies a PAC bound for CT (where in both cases, the
unknown parameter is T ∈ R). Third, we prove PAC bounds on the error of MT̂ ; by the second step, these bounds complete
our proof.

Encoding CT as a binary classifier MT . We begin by showing how the problem of learning a PAC confidence set predictor
CT reduces to the problem of learning a PAC binary classifier MT . First, we show that for any T ∈ R, the confidence set
predictor CT can be encoded as a binary classifier MT . Consider any parameter T ∈ Θ = R. Recall that we use the model
f(y | x) to construct the confidence set predictor

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }.

Now, define the map φ : Z → R by φ(x, y) = − log f(y | x), where Z = X × Y , and define the binary classifier
MT : R→ {0, 1} by

MT (t) = I[t ≤ T ].

Here, I[s] is the indicator function, which returns one if a statement s is true and zero otherwise. We claim that

CT (x) = {y ∈ Y |MT (φ(x, y)) = 1}. (11)

To see this claim, note that

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }
= {y ∈ Y | − log f(y | x) ≤ T}
= {y ∈ Y | φ(x, y) ≤ T}
= {y ∈ Y | I[φ(x, y) ≤ T ] = 1}
= {y ∈ Y |MT (φ(x, y)) = 1},

as claimed.

PAC bound for MT implies PAC bound for CT . Next, we show that a PAC bound for MT implies a PAC bound for CT .
More precisely, we design a data distribution D̃ and loss ˜̀, and show that (i) the distribution of T̃ (trained to optimize MT )
is the same as the distribution of T̂ (constructed using our algorithm), and (ii) a PAC bound for MT̃ (where T̃ is trained on
data from D̃) implies a PAC bound for CT̃ . We show that as a consequence, a PAC bound on MT̃ implies a PAC bound on
CT̂ .

We begin by constructing D̃ and ˜̀. To this end, recall that D is a given distribution over X ×Y . We define a data distribution
D̃ over X̃ × Ỹ , where X̃ = R and Ỹ = {0, 1}, as follows. The first component of D̃ is the distribution over X̃ induced by
φ from D, and the second component is the distribution over Ỹ that places all probability mass on 1. Formally, D̃ exists
assuming φ is measurable, so the induced distribution exists; for all our choices of f (i.e., categorical or Gaussian), this
property is satisfied. Then,

µD̃((t, a)) = µD(φ−1(t)) · I[a = 1],

where µD̃ is the measure encoding D̃, and µD is the measure encoding D. Furthermore, we define ` : Ỹ × Ỹ → {0, 1} to
be the 0-1 loss `(a, a′) = I[a 6= a′]. Finally, let T̂ be chosen using our algorithm—i.e.,

T̂ = arg min T subj. to L(CT ;Z) ≤ α

L(CT ;Z) =
1

|Z|
∑

(x,y)∈Z

I[y 6∈ CT (x)],

for any α ∈ R≥0, and let T̃ be chosen similarly for MT—i.e.,

T̃ = arg min T subj. to L(MT ; Z̃) ≤ α

L(MT ; Z̃) =
1

|Z̃|

∑
(t,a)∈Z̃

`(MT (t), a) =
1

|Z̃|

∑
(t,a)∈Z̃

I[MT (t) 6= a].
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Now, we show (i) above. In particular, we claim that T̂ (Z) has the same distribution as T̃ (Z̃), where Z ∼ Dn and Z̃ ∼ D̃n

are random datasets. To this end, define Φ : Zn 7→ Z̃n by

Φ((z1, ..., zn)) = ((φ(z1), 1), ..., (φ(zn), 1)).

Note that

L̃(MT ; Φ(Z)) =
1

|Φ(Z)|

n∑
i=1

I[MT (φ(xi, yi)) 6= 1]

=
1

|Z|

n∑
i=1

I[yi 6∈ CT (xi)]

= L(CT ;Z),

from which it follows that

T̂ (Z) = arg min T subj. to L(CT ;Z) ≤ α
= arg min T subj. to L̃(MT ; Φ(Z)) ≤ α
= T̃ (Φ(Z)).

By construction of Φ, the random variables Z̃ and Φ(Z) have the same distribution; thus, it follows that the random
variables T̃ (Z̃) and T̃ (Φ(Z)) have the same distribution as well. Since T̂ (Z) = T̃ (Φ(Z)), it follows that T̂ (Z) has the
same distribution as T̃ (Z̃), as claimed.

Next, we show (ii) above. In particular, we claim that a PAC bound for MT̃ (Z̃)—i.e.,

PZ̃∼D̃n [L̃(MT̃ (Z̃)) ≤ ε] ≥ 1− δ,

implies a PAC bound for CT̃ (Z̃)—i.e.,

PZ̃∼D̃n [L(CT̃ (Z̃)) ≤ ε] ≥ 1− δ,

where the true losses are

L̃(MT ) = E(t,a)∼D̃[`(MT (t), a)] = P(t,a)∼D̃[MT (t) 6= a]

L(CT ) = E(x,y)∼D[I[y 6∈ CT (x)]] = P(x,y)∼D[y 6∈ CT (x)].

Note that it suffices to show that the true loss for CT equals the true loss for MT—i.e.,

L(CT ) = L̃(MT ),

since this equation (together with the PAC bound for MT̃ (Z̃)) implies

PZ̃∼D̃n [L(CT̃ (Z̃)) ≤ ε] = PZ̃∼D̃n [L̃(MT̃ (Z̃)) ≤ ε] ≥ 1− δ,

as desired. To see the claim, note that

L̃(MT ) = P(t,a)∼D̃[MT (t) 6= a]

=

∫
I[MT (t) 6= a]dµD̃((t, a))

=

1∑
a=0

I[a = 1] ·
∫

I[MT (t) 6= a]dµD(φ−1(t))

=

∫
I[MT (t) 6= 1]dµD(φ−1(t))
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Now, using the change of variables t 7→ φ(z), we have

L̃(MT ) =

∫
I[MT (φ(z)) 6= 1]dµD(z)

=

∫
I[MT (φ(x, y)) 6= 1] ·D(x, y)dxdy.

Then, using (11), we have

L̃(MT ) =

∫
I[y /∈ CT (x)]D(x, y)dxdy

= P(x,y)∼D[y /∈ CT (x)]

= L(CT ),

as claimed.

Finally, combining (i) and (ii), we have

PZ∼Dn [L(CT̂ (Z)) ≤ ε] = PZ̃∼D̃n [L(CT̃ (Z̃)) ≤ ε] ≥ 1− δ,

where the first equality follows since (i) says that T̂ (Z) (where Z ∼ Dn) has the same distribution as T̃ (Z̃) (where
Z̃ ∼ D̃n), and the second inequality follows by (ii).

Generalization bound. Finally, we prove the PAC bound

PZ̃∼D̃n [L̃(MT̃ ) ≤ ε] ≥ 1− δ0, (12)

for MT̃ , where δ0 =
∑k
i=0

(
n
i

)
εi(1− ε)n−i; for conciseness, we have dropped the dependence of T̃ on Z̃. By the previous

step, this bound implies the theorem statement. To this end, we first simplify the left-hand side of the inequality (12). In
particular, let T ∗ be the smallest T for which L̃(MT∗) = ε; such a T ∗ exists by our assumption that D̃ has continuous
density function.

First, we claim that T < T ∗ implies L̃(MT ) > L̃(MT∗). Assuming T < T ∗, then

L̃(MT ) = P(t,a)∼D̃[MT (t) 6= a]

= E(t,a)∼D̃[I[MT (t) 6= a]

= E(t,a)∼D̃[I[MT̂ (t) 6= 1]]

= E(t,a)∼D̃ [I[I[t ≤ T ] 6= 1]]

= E(t,a)∼D̃ [I[t > T ]]

> E(t,a)∼D̃ [I[t > T ∗]]

= L̃(MT∗).

Assuming T ≥ T ∗, we can similarly show that L̃(MT̂ ) ≤ L̃(MT∗). It follows that

PZ̃∼D̃n

[
L̃(MT̃ ) > ε

]
= PZ̃∼D̃n

[
L̃(MT̃ ) > L̃(MT∗)

]
= PZ̃∼D̃n

[
T̃ < T ∗

]
.

As a consequence, (12) is equivalent to

PZ̃∼D̃n

[
T̃ < T ∗

]
≤ δ0.

Next, recall that T̃ must satisfy L̃(MT̃ ; Z̃) ≤ α, where

L̃(MT̃ ; Z̃) =
1

n

∑
(t,a)∈Z̃

I[MT̃ (t) 6= a].
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Assuming T̂ < T ∗, and using k = n · α, it follows that

k ≥
∑

(t,a)∈Z̃

I[MT̃ (t) 6= a] =
∑

(t,a)∈Z̃

I[MT̃ (t) 6= 1]

=
∑

(t,a)∈Z̃

I[t > T̃ ]

≥
∑

(t,a)∈Z̃

I[t > T ∗].

As a consequence, we have

PZ̃∼D̃n

[
T̃ < T ∗

]
≤ PZ̃∼D̃n

 ∑
(t,a)∈Z̃

I[t > T ∗] ≤ k


=

k∑
i=0

PZ̃∼D̃n

 ∑
(t,a)∈Z̃val

I[t > T ∗] = i

 .
By our definition of T ∗, the event in the final expression says that the sum of n i.i.d. Bernoulli random variables
I[t > T ∗] ∼ Bernoulli(ε) is at most k. Thus, this event follows a distribution Binomial(n, ε), so

PZ̃∼D̃n

[
T̃ < T ∗

]
≤

k∑
i=0

Binomial(i;n, ε) =

k∑
i=0

(
n

i

)
εi(1− ε)n−i = δ0,

as claimed. The theorem statement follows. �

D. Details on Probability Forecasters for Specific Tasks
In this section, we describe architectures for probability forecasters for classification, regression, and model-based reinforce-
ment learning.

Classification. For the case Y = {1, ..., Y }, we choose the probability forecaster f to be a neural network with a softmax
output. Then, we can compute a given confidence set

CT (x) = {y ∈ Y | f(y | x) ≥ e−T }

by explicitly enumerating y ∈ Y . We measure the size of CT (x) as |CT (x)|.

Regression. For the case Y = R, we choose the probability forecaster f to be a neural network that outputs the parameters
(µ, σ) ∈ Y × R>0 of a Gaussian distribution. Then, we have

CT (x) =

[
µ− σ

√
2(T − log(σ

√
2π)), µ+ σ

√
2(T − log(σ

√
2π))

]
.

This choice generalizes to Y = Rd by having f output the parameters (µ,Σ) ∈ Y × Sd�0 (where Sd�0 is the set of d
dimensional symmetric positive definite matrices) of a d dimensional Gaussian distribution. Note that CT (x) is an ellipsoid
CT (x) = µ+ ΛSd−1, where Λ ∈ Rd×d and Sd−1 is the unit sphere in Rd; in particular, Λ = D−

1
2Q, where QDQ> is the

eigendecomposition of

(2T − d ln 2π − ln det Σ)−1 · Σ−1.

We measure the size of CT (x) as ‖Λ‖F , where ‖ · ‖F is the Frobenius norm.

Model-based reinforcement learning. In model-based reinforcement learning, the goal is to predict trajectories based on a
model of the dynamics. We consider an MDP with states X ⊆ RdX , actions U ⊆ RdU , an unknown distribution over initial
states x0 ∼ d0, and unknown dynamics g∗(x′ | x, u) mapping a state-action pair (x, u) ∈ X × U to a distribution over
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states x′ ∈ X . We assume a fixed, known policy π(u | x), mapping a state x ∈ X to a distribution over actions u ∈ U . The
(unknown) closed-loop dynamics are f∗(x′ | x) = Eπ(u|x)[g

∗(x′ | x, u)].

Given initial state x0 ∈ X and time horizon H ∈ N, we can sample a trajectory x∗1:H = (x∗1, ..., x
∗
H) ∼ f∗ by setting

x∗0 = x0 and sequentially sampling x∗t+1 ∼ f∗( · | x∗t ) for t ∈ {0, 1, ...,H − 1}. Our goal is to predict a confidence set
CT (x0) ⊆ XH that contains x∗1:H ∈ XH with high probability (according to both the randomness in initial states x0 ∼ d0

and in f ). This problem is a multivariate regression problem with inputs X and outputs Y = XH .

We assume given a probability forecaster f(x′ | x) = N (x′;µ(x),Σ(x)) trained to predict the distribution over next
states—i.e., f(x′ | x) ≈ f∗(x′ | x). Given initial state x0 ∈ X and time horizon H ∈ N, we construct the mean trajectory
x̄1:H by setting x̄0 = x0 and letting x̄t+1 = µ(x̄t). To account for the fact that the variances accumulate over time, we sum
them together to obtain the predicted variances Σ̃1:H—i.e.,

Σ̃t = Σ(x̄0) + Σ(x̄1) + ...+ Σ(x̄t−1).

Then, we use the probability forecast f̃(x̄1:H , Σ̃1:H) = N (x̄1:H , Σ̃1:H) (where we think of x̄1:H as a vector in RH·dX and
Σ̃1:H as a block diagonal matrix in R(H·dX)×(H·dX)) to construct confidence sets.

Finally, we describe how we measure the size of a predicted confidence set CT (x0) ⊆ XH . In particular, note that CT (x0)
has the form

CT (x0) = (CT,1(x0), ..., CT,H(x0)),

i.e., CT,t(x0) is the confidence set for the state xt reached after t time steps. Then, we measure the size of the confidence set
for each component CT,t(x0) (for t ∈ {1, ...,H}) individually, and take the average. As in the case of regression, CT,t(x0)

is an ellipsoid CT,t(x0) = x̄t + ΛtS
dX−1; then, the size of CT (x0) is H−1

∑H
t=1 ‖Λt‖F .

An additional detail is that when we calibrate this forecaster, we calibrate each component CT,t(x0) individually—i.e., we
use H calibration parameters τ1, ..., τH .

E. Additional Results
E.1. VC Dimension Generalization Bound Ablation

A naive approach to choosing α(n, ε, δ) is to do so based on the VC dimension generalization bound (Vapnik, 1999). It is
not hard to show that the problem of estimating T̂ is equivalent to a binary classification problem, and that the VC dimension
of Θ for this problem is 1. Thus, the VC dimension bound implies that for all T ∈ Θ,

PZval∼Dn

[
L(CT ) ≤ L̂(CT ;Zval) +

√
log(2n) + 1− log(δ/4)

n

]
≥ 1− δ. (13)

The details of this equivalence are given in Appendix C.2. Then, suppose we choose

α(n, ε, δ) = ε−
√

log(2n) + 1− log(δ/4)

n
.

With this choice, for the solution T̂ of (3) with α = α(n, ε, δ), the constraint in (3) ensures that L̂(CT̂ ;Zval) ≤ α(n, ε, δ).
Together with the VC generalization bound (13), we have

PZval∼Dn

[
L(CT̂ ) > ε

]
< δ,

which is exactly desired the PAC constraint on our predicted confidence sets. As demonstrated in our experiments, our direct
generalization bound provides tighter convergence guarantees.

E.2. Results on Visual Object Tracking

We apply our confidence set prediction algorithm to a 2D visual single-object tracking task, which is a multivariate regression
problem. Specifically, the input space X consists of the previous image, the previous bounding box (in R4), and the current



PAC Confidence Sets for DNNs

naive
(no cal.)

naive ours0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

Co
nf

. s
et

 e
rro

r

= 0.01

naive
(no cal.)

naive ours0

200

400

600

800

1000

Co
nf

. s
et

 si
ze

(a) (b)

(c) (d)

Figure 3. Comparison to baselines that do not have theoretical guarantees. In (a) and (b), we show results for ImageNet, and in (c) and
(d), we show results for the half-cheetah. In (a) and (c), we show the empirical error in the confidence set sizes; the dotted line denotes
ε = 0.01, our target confidence set error. In (b) and (d), we show the sizes of the constructed confidence sets.
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Figure 4. Confidence set sizes for an object tracking benchmark (Wu et al., 2013); we use n = 5, 000, ε = 0.01, and δ = 10−5. (a)
Ablation study similar to Figure 5. In (b) and (c), we show how the confidence set sizes produced using our algorithm vary with respect to
ε and δ, respectively.

image. The output space Y = R4 is a current bounding box. We use the regression-based tracker from (Held et al., 2016),
and retrain the regressor neural network to predict the mean and variance of a Gaussian distribution. More precisely, our
object tracking model predicts the mean and variance of each bounding box parameter—i.e., (xmin, ymin, xmax, ymax). Given
this bounding box forecaster fφ̂, we calibrate and estimate a confidence set predictor as described in Section A.2.

We use the visual object tracking benchmark from (Wu et al., 2013) to train and evaluate our confidence set predictor. This
benchmark consists of 99 video sequences labeled with ground truth bounding boxes. We randomly split these sequences
to form the training set for calibration, validation set for confidence set estimation, and test set for evaluation. For each
sequence, a pair of two adjacent frames constitute a single example. Our training dataset contains 20,882 labeled examples,
each consisting of of a pair of consecutive images and ground truth bounding boxes. The validation set for confidence set
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Figure 5. Results on the dynamics model for the half-cheetah with n = 5000. Default parameters are ε = 0.01 and δ = 10−5. (a)
Ablation study; A is “accumulated variance” (i.e., for each t ∈ {1, ..., 20}, use Σ̃t instead of Σt = Σ(x̄t−1)), and C and D are as for
ResNet. We plot the median and min/max confidence set sizes (see Section A.2), averaged across t ∈ {1, ..., 20}. (b) Same ablations, but
with per time step size. We plot the average size of the confidence set for the predicted state xt on step t, as a function of t ∈ {1, ..., 20}.
(c) Varying ε, and (d) varying δ.

estimation and test set contain 22,761 and 22,761 labeled examples, respectively. Figure 4 shows the sizes of the predicted
confidence sets; the sizes are measured as described in Section A.2 for regression tasks. As for ResNet, we omit results for
the VC bound ablation since n is too small to get a bound. The trends are similar to the ones for ResNet.

E.3. Results on Half-Cheetah

We use our algorithm to compute confidence sets for a probabilistic neural network dynamics model (Chua et al., 2018)
for the half-cheetah environment (Brockman et al., 2016), for ε = 0.01, δ = 10−5, H = 20 time steps, and n = 5000
validation rollouts. When using temperature scaling to calibrate fφ̂ to obtain fφ̂,τ̂ , we calibrate each dimension of time steps
independently (i.e., we fit H parameters, where H is time horizon). We show the results in Figure 5.

In (a), we compare to two ablations. The labels C and D are as for ResNet; in addition, A refers to using the accumulated
variance Σ̃t instead of the one-step predicted variances Σt = Σ(x̄t−1). Thus, A+ C +D is our approach. As before, we
omit results for the ablation using the VC generalization bound since n is so small that the bound does not hold for any k
for the given ε and δ. In (b), we show the same ablations over the entire trajectory until t = 20. As can be seen, using the
calibrated predictor produces a large gain; these gains are most noticeable in the tails. Using the accumulated confidence
produces a smaller, but still significant, gain. In (c) and (d), we show how the sizes vary with ε and δ, respectively. The
trends are similar those for ResNet.
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E.4. Comparison to Additional Baselines

We compare to two baselines that do not have theoretical guarantees. We assume given a probability forecaster f(y | x).
Then, given an input x ∈ X , we construct the confidence set to satisfy∑

y∈C(x)

f(y | x) ≥ 1− ε. (14)

More precisely, we first rank the labels in decreasing order of f(y | x), to obtain a list (y1, y2, ..., y|Y|). Then, we choose
the smallest k such that (14) holds for C(x) = {y1, ..., yk}. Intuitively, if the probabilities f(y | x) are correct (i.e., f(y | x)
is the true probability of y given x), then this confidence set should contain the true label y with high probability.

For regression, we cannot explicitly rank labels y ∈ Y ⊆ Rd, but they are monotonically decreasing away from the mean.
Then, assuming f(y | x) = N (y;µ(x),Σ(x)) is Gaussian, we take an ellipsoid of shape Σ(x) around µ(x) with minimum
radius that captures 1− ε of the probability mass of f(y | x). More precisely, we choose

C(x) = CT̂ (x)(x)

T̂ (x) = arg minT∈R T subj. to Pf(y|x)[y ∈ CT (x)] ≥ 1− ε,

where CT (x) = {y ∈ Y | f(y | x) ≥ e−T } as before. Note that unlike our algorithm, the threshold T̂ (x) is not a learned
parameter, but is computed independently for each new input x. We can solve for T̂ (x) efficiently by changing basis to
convert f(y | x) to a standard Gaussian distribution, and then using the error function to compute the cutoff that includes the
desired probability mass.

In Figure 3, we compare the confidence sets constructed using this approach with (i) the forecaster fφ̂(y | x) without any
calibration, and (ii) the calibrated forecaster fφ̂,τ̂ (y | x). We plot both the confidence set sizes and the empirical error rates.
For the latter, recall that a confidence set predictor C is correct if L(C) < ε, where L(C) the true error rate. However, we
cannot measure L(C); instead, we approximate it on a held-out test set Ztest ⊆ X × Y—i.e., L(C) ≈ L̂(C;Ztest), where

L̂(C;Ztest) =
1

|Ztest|
∑

(x,y)∈Ztest

I[y 6∈ C(x)].

Intuitively, L̂(C;Ztest) is the fraction of inputs (x, y) ∈ Ztest such that the predicted confidence set for x does not contain y.
We say a confidence set C is empirically valid when L̂(C;Ztest) < ε. Recall that our algorithm guarantees correctness with
probability at least 1− δ, where δ = 10−5.

As can be seen, the baseline approaches are not empirically valid in all cases. In one case—namely, the baseline with the
calibrated forecaster on ImageNet—the confidence sets are almost empirically valid. However, in this case, the confidence
sets are much larger than those based on our approach, despite the fact that the error rate of our confidence sets are empirically
valid. Thus, our algorithms outperform the baselines in all cases.

E.5. Results on Additional ImageNet Neural Network Architectures

We apply our approach to two additional neural network architectures for ImageNet: AlexNet (Krizhevsky, 2014) and
GoogLeNet (Szegedy et al., 2015). Our results are shown in Figure 6. As can be seen, calibration reduces the confidence set
sizes for AlexNet, but actually increases the confidence set sizes for GoogleNet. Thus, both calibrated and uncalibrated
models may need to be considered when constructing confidence set predictors. Also, we find that confidence set sizes are
correlated with classification error—the test errors for AlexNet, GoogleNet, and ResNet are 47.83%, 29.41%, and 21.34%,
respectively, and their confidence set sizes decrease in the same order.

E.6. Results on Additional Classification Datasets

We apply our approach to three small classification datasets: an Arrhythmia detection dataset (Guvenir et al., 1997), a car
evaluation dataset (Bohanec & Rajkovic, 1988), and a medical alarm dataset (Bonafide et al., 2017). The confidence set
sizes are shown in Figure 7. We choose larger values of ε and δ since we cannot obtain confidence sets that satisfy the PAC
criterion with smaller ε and δ when the number of validation examples n is too small. For all three datasets, the empirical
confidence set error is smaller than the specified error ε; thus, the constructed confidence sets are empirically valid. For
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Figure 6. Confidence set sizes for two neural network architectures trained on ImageNet; for both, we use n = 20, 000, ε = 0.01
and δ = 10−5. Left: AlexNet (Krizhevsky, 2014); here, the empirical confidence set error of our approach C + D is 0.0066. Right:
GoogLeNet (Szegedy et al., 2015); here, the empirical confidence set error of our approach is 0.0061.

these datasets, the confidence set sizes of our approach C +D and our approach without calibration D are similar, most
likely due to the small number of class labels.

We additionally ran our approach on a medical dataset where classification decisions are safety critical; thus, correct
predicted confidence sets are required. In particular, we use the Children’s Hospital of Philadelphia (CHOP) alarm dataset
(Bonafide et al., 2017). This dataset consists of vital signs from 100 patients around one year of age. One of the vital signs is
the oxygen level of the blood, and a medical device generates an alarm if the oxygen level is below a specified level. The
labels indicate whether the generated alarm is true (y = 1) or false (y = 0). We use n = 1000, ε = 0.02, and δ = 10−5.
The empirical confidence set error of our approach is L̂(C;Ztest) = 0.0159.

The key question is how many false alarms can be reliably detected using machine learning to help reduce alarm fatigue.
We consider an approach where we use the predicted confidence sets to detect false alarms. In particular, we first train a
probability forecaster f : X → PY , where Y = {0, 1}, to predict the probability that an alarm is true, and then construct a
calibrated confidence set predictor f̃ : X → 2Y based on this forecaster. We consider an alarm to be false if the predicted
confidence set is f̃(x) = {0}—i.e., according to our confidence set predictor, the alarm is definitely false. Then, our
PAC guarantee says that the alarm is actually false with probability at least 1 − ε. In summary, we suppress an alarm if
f̃(x) = {0}. Using our approach, 176/630 (i.e., 27.94%) of false alarms are suppressed, while only 13/187 (i.e., 6.95%)
true alarms are suppressed (see Figure 7 (d)).

E.7. Results on Additional Regression Datasets

We ran our algorithm on two small regression baselines—the Auto MPG dataset (Quinlan, 1993) and the student grade
dataset (Cortez & Silva, 2008). We show results in Figure 8. The parameters we use are ε = 0.1 and δ = 0.05; as with the
smaller classification datasets, we use larger choices of ε and δ since we cannot construct valid confidence sets for smaller
choices. For the Auto MPG dataset, the empirical confidence set error of our final model C +D is L̂(C;Ztest) = 0.0597, so
these are empirically valid. For the student grade dataset, the error is L̂(C;Ztest) = 0.1250, which is slightly larger than
desired; this failure is likely due to the fact that the failure probability δ = 0.05 is somewhat large.

E.8. Additional Results on ImageNet, Half-Cheetah, and Object Tracking

Table 2 & 3 show examples of ResNet confidence set sizes for ImageNet images. Table 4 shows results for varying ε, δ on
ResNet. Tables 5 & 6 show results for varying ε, δ on the Half-Cheetah. Table 7 shows visualizations of the confidence sets
predicted for our object tracking benchmark.
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Figure 7. Confidence set sizes for three additional classification benchmarks: (a) the arrhythmia detection dataset (Guvenir et al., 1997);
here, n = 90, ε = 0.1, δ = 0.05, and the empirical confidence set error of our approach C +D is 0.0435, (b) the car evaluation dataset
(Bohanec & Rajkovic, 1988); here, n = 345, ε = 0.05, δ = 10−5, and the empirical confidence set error of our approach C + D is
0.0172, and (c) the CHOP alarm dataset (Bonafide et al., 2017); here, n = 1000, ε = 0.02, δ = 10−5, and the empirical confidence set
error of our approach C +D is 0.0159. (d) The fractions of actionable and false alarms with a confidence set {0} (i.e., only contains
false alarm).
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Figure 8. Confidence set sizes for two benchmarks focused on regression; for both, we use ε = 0.1 and δ = 0.05. Left: the Auto MPG
dataset (Quinlan, 1993); here, n = 70, and the empirical confidence set error of our approach C +D is 0.1250. Right: The student grade
dataset (Cortez & Silva, 2008); here, n = 100, and the empirical confidence set error of our approach is 0.0597.
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Table 2. ImageNet images with varying ResNet confidence set sizes. The confidence set sizes are on the top. The true label is on the
left-hand side. Incorrectly labeled images are boxed in red.
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Table 3. Confidence sets of ImageNet images with varying ResNet confidence set sizes. The predicted confidence set is shown to the right
of the corresponding input image. The true label is shown in red, and the predicted label is shown with a hat.
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Table 4. Confidence set sizes for ResNet trained on ImageNet, for varying ε, δ and for n = 20, 000. The plots are as in Figure 1 (a).
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Table 5. Confidence set sizes for a neural network dynamics model trained on the half-cheetah environment, for varying ε, δ and for
n = 5000. The plots are as in Figure 5 (a).
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Table 6. Confidence set sizes for a neural network dynamics model trained on the half-cheetah environment, for varying ε, δ and for
n = 5000. The plots are as in Figure 5 (b).
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Table 7. Visualization of confidence sets for the tracking dataset (Wu et al., 2013), including the ground truth bounding box (white), the
bounding box predicted by the original neural network (Held et al., 2016) (red), and the bounding box produced using our confidence set
predictor (green). We have overapproximated the predicted ellipsoid confidence set with a box. Our bounding box contains the ground
truth bounding box with high probability.


