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Abstract
Recent research has focused on distilling ensem-
bles into a single compact model, reducing the
burden of computation and memory of the ensem-
ble while trying to preserve its predictive behavior.
Most existing distillation formulations summarize
the ensemble by capturing its average predictions.
As a consequence, the diversity of the ensemble
predictions is lost and the distilled model can-
not provide a measure of uncertainty compara-
ble to that of the original ensemble. To retain
the diversity of the ensemble more faithfully, we
propose a distillation method based on a single
multi-headed neural network which we refer to as
Hydra. We demonstrate that with a slight increase
in parameter count, Hydra improves distillation
performance on classification and regression set-
tings while capturing the uncertainty behavior of
the original ensemble over both in-domain and
out-of-distribution tasks.

1. Introduction
Deep neural networks have achieved impressive perfor-
mance, however, they tend to make over-confident predic-
tions and poorly quantify uncertainty (Lakshminarayanan
et al., 2017). It has been demonstrated that ensembles of
models improve predictive performance and offer higher
quality uncertainty quantification (Dietterich, 2000; Laksh-
minarayanan et al., 2017; Ovadia et al., 2019). A fundamen-
tal limitation of ensembles is the cost of computation and
memory at evaluation time. A popular solution is to distill
an ensemble of models into a single compact network by
attempting to match the average predictions of the original
ensemble. This idea goes back to the foundational work
of Hinton et al. (2015), itself inspired by earlier ideas devel-
oped by (Bucilua et al., 2006). While this process has led
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to simple and well-performing algorithms, it fails to take
into account the intrinsic diversity of the predictions of the
ensemble, as represented by the individual predictions of
each of its members. In particular, this diversity is all the
more important in tasks that hinge on the uncertainty output
of the ensemble, e.g., in out-of-distribution scenarios (Lak-
shminarayanan et al., 2017; Ovadia et al., 2019).

Inspired by multi-headed architectures already widely ap-
plied in various applications (Szegedy et al., 2015; Sercu
et al., 2016; Osband et al., 2016; Song & Chai, 2018), we
propose a multi-headed model to distill ensembles. Our
multi-headed approach—which we name Hydra—can be
seen as an interpolation between the full ensemble of models
and the knowledge distillation proposed by (Hinton et al.,
2015). Our distillation model is comprised of (1) a sin-
gle body and (2) as many heads as there are members in
the original ensemble. The heads share the same body
network whose role is to provide a common feature repre-
sentation. Each head is assigned to an ensemble member
and tries to mimic the individual predictions of this ensem-
ble member, as illustrated in Figure 1. The design of the
body and the heads makes it possible to trade off the com-
putational and memory efficiency against the fidelity with
which the diversity of the ensemble is retained. We show
through experimental evaluation that Hydra outperforms
existing distillation methods for both classification and re-
gression tasks w.r.t. predictive test performance. Further,
we investigate Hydra’s behavior in terms of in-domain and
out-of-distribution data and demonstrate that Hydra comes
closest to the ensemble behavior in comparison to existing
distillation methods.

To the best of our knowledge, our approach is the first to em-
ploy a multi-headed architecture in the context of ensemble
distillation. It is simple to implement, does not make strong
parametric assumptions, requires few modifications to the
distilled ensemble model and works well in practice, thereby
making it attractive to apply to a wide range of ensemble
models and tasks.

2. Hydra: A Multi-Headed Approach
With a focus on offline distillation, our goal is to
train a student network to match the predictive distri-
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ŷpredfsmall

(a) Knowledge distillation
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ŷpred

DKL

(b) Distillation of ensembles

y1

y2

y3

f1

f2

f3
D

(1)

KL

ŷ1
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Figure 1. Existing distillation methods compared to Hydra. Knowledge distillation, (Hinton et al., 2015), trains a distillation network to
imitate the prediction of a larger network. Applying knowledge distillation to ensemble models (Hinton et al., 2015) train a network to
imitate the average ensemble prediction. Hydra instead learns to distill the individual predictions of each ensemble member into separate
light-weight head models while amortizing the computation through a shared heavy-weight body network. This retains the diversity of
ensemble member predictions which is otherwise lost in knowledge distillation.

bution of the teacher models, which is an ensemble of
(deep) neural networks. Formally, given a dataset D =
{(x(i), y(i))}Ni=1, we consider an ensemble of M models’
parameters θens = {θens,m}Mm=1 and prediction outputs
{p(y(i)|x(i); θens,m)}Mm=1.

Hydra builds upon the approach of knowledge distillation
and extends it to a multi-headed student model. Hydra
is defined as a (deep) neural network with a single body
and M heads, and has as many heads as there are ensem-
ble members. The distillation model is parametrized by
θhydra =

{
θbody, {θhead,m}Mm=1

}
in which the body, θbody, is

shared among all heads {θhead,m}Mm=1. The objective is to
minimize the average KL divergence between each head m
and corresponding ensemble member m. We differentiate
between two tasks, classification and regression.

Classification. For classification tasks, the ensemble of
models has access to D during training, with each x belong-
ing to one of C classes, i.e., y ∈ {1, 2, . . . , C}. Assuming
zm = fθhead,m(fθbody(x)) corresponds to the logits, the cate-
gorical distribution for a sample x over a class c is computed
as p(c|x) = exp(zm,c/T )∑C

j=1 exp(zm,j/T )
, where T is a temperature re-

scaling the logits. As discussed in (Hinton et al., 2015;
Malinin et al., 2019) the distribution of the teacher network
is often “sharp", which can limit the common support be-
tween the output distribution of the model and the target
empirical distribution. To alleviate this issue, we follow
the common practice (Hinton et al., 2015; Song & Chai,
2018; Lan et al., 2018) to use temperature to “heat up" both
distributions and increase common support during train-
ing. The soft probability distributions are used to match the
teacher ensemble of models by minimizing the average KL
divergence between each head m and ensemble model m:

L =
T 2

M

M∑
m=1

KL
(
p(y|x; θens,m) ‖ p(y|x; θbody, θhead,m)

)
(1)

= − T 2

M

M∑
m=1

p(y|x; θens,m) log p(y|x; θbody, θhead,m),

(2)

where the final line is reduced to the standard cross entropy
loss by ignoring the constant entropy terms. We scale our
objective by T 2 as the gradient magnitudes produced by the
soft targets are scaled by 1/T 2. By multiplying the loss
term by a factor of T 2 we ensure that the relative contri-
butions to additional regularization losses remain roughly
unchanged (Song & Chai, 2018; Lan et al., 2018).

Regression. We focus on heteroscedastic regression tasks
where each ensemble member m outputs a mean µm and
σ2
m given an input x. The output is modeled as p(y|x, θm) =
N (µm, σ

2
m) for a given head m and the ensemble of mod-

els are trained by minimizing the negative log-likelihood.
Traditional knowledge distillation matches a single Gaus-
sian (“student") outputting µdistill and σ2

distill to a mixture
of Gaussians (a “teacher" ensemble). With Hydra, each
head m outputs a mean µhydra,m and variance σ2

hydra,m and
optimizes the KL divergence between each head output and
corresponding ensemble member output:

L =
1

M

M∑
m=1

KL
(
N (µm, σ

2,(i)
m ) ‖ N (µhydra,m, σ

2
hydra,m)

)
(3)

= − 1

M

M∑
m=1

σ2
m + (µm − µdistill)

2

2σ2
distill

+
1

2
log(2πσ2

distill),

(4)

where the final line uses the fact that each KL term has an
analytical solution.

Training with multi-head growth. Hydra is trained in two
phases. First, Hydra mimics knowledge distillation in that it
is trained until convergence with a single head—the “Hinton
head"—to match the average predictions of the ensemble.
Hydra is then extended by M − 1 heads, all of which ini-
tialized with the parameter values of the “Hinton head".
The resulting M heads are finally further trained to match
the individual predictions of the M ensemble members. In
practice, we sometimes experienced difficulties for Hydra
to converge in absence of this initialization scheme and this
two-phase training scheme led to overall quicker conver-
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Figure 2. Model uncertainty, total uncertainty and expected data
uncertainty applied on in-domain and out-of-distribution data for
both (a) ensemble and (b). The original dataset is visualized (c),
where each color corresponds to a single class.

gence.

3. Evaluation
We demonstrate that Hydra not only best matches the be-
havior of the teacher ensemble in terms of uncertainty quan-
tification but also improves the predictive performance com-
pared to existing distillation approaches over both classifi-
cation and regression tasks.

Experimental settings We use a spiral toy dataset for visu-
alizing and explaining model uncertainty, MNIST and CI-
FAR10 for classification and the standard regression datasets
from the UCI repository (Asuncion & Newman, 2007) for
regression. For evaluating CIFAR10, we also used cyclic
translated test data. For the toy dataset we trained a 10-
ensemble multi-layer perceptron (MLP) model. Following
the settings of (Ovadia et al., 2019), we trained ensembles
of 50 MLP for MNIST and ensembles of 50 ResNet-20 V1
models for CIFAR10. For all regression tasks, we used an
ensemble of 50 MLPs. We compare our work with two
core distillation approaches, Knowledge Distillation (Hin-
ton et al., 2015) and Prior Networks (Malinin et al., 2019;
Malinin & Gales, 2018). All baseline models have the
same architecture as the ensemble one for distillation. For
MNIST, Hydra uses the original ensemble member archi-
tecture and adds an MLP with two hidden layers of 100
units each as head. For CIFAR10, the original Resnet20 V1
model without the last residual block was used as body. For
both classification and regression, we evaluate the negative
log likelihood (NLL), Brier score and model uncertainty
(MU) (Depeweg et al., 2017; Malinin et al., 2019).

Model capacity and efficiency The ensemble for MNIST
has 9, 960, 500 parameters and 9.0 · 107 floating point op-
erations (FLOPs). Both Knowledge Distillation and Prior
Networks use distillation models with 199, 210 parameters
and 1.8 · 108 FLOPs, which amount to 2% of the ensemble
model for both parameter count and FLOPs. Hydra’s model

Figure 3. Model evaluation metrics plotted against intensity of
distributional shift for CIFAR10. The plots contain all distillation
models as well as the original ensemble of models. We observe
that Hydra consistently more accurately captures the uncertainty
of the ensemble.

has 1,757,700 parameters and requires 2.5 · 107 FLOPs,
reducing the original ensemble model to 17.6% of its param-
eters and 27.7% of its FLOPs. For CIFAR10, the ensemble
model has 13,722,100 parameters and requires 4.09 · 1010
FLOPs. Both Knowledge Distillation and Prior Networks
models take up to 2% of both parameter count (274,442)
and FLOPs (8.18 · 108). In contrast, Hydra has a higher
parameter count of 3,950,324 (28.7%) and a higher FLOPs
count of 5.45 · 109 (13.3%).

Uncertainty Quantification We assess Hydra’s ability to
distill uncertainty metrics from an ensemble on classifica-
tion tasks with the toy spiral dataset and CIFAR10. One way
to quantify uncertainty is through model uncertainty (De-
peweg et al., 2017; Malinin et al., 2019) which measures the
spread or disagreement of an ensemble. It can be expressed
as the difference of the total uncertainty and the expected
data uncertainty, where total uncertainty is the entropy of
the expected predictive distribution and expected data un-
certainty is the expected entropy of individual predictive
distribution. The total uncertainty will be high whenever the
model is uncertain – both in regions of severe class overlap
and out-of-distribution. However, for out-of-distribution
data the estimates of expected data uncertainty are poor,
resulting in high model uncertainty. Figure 2 visualizes
the model uncertainty and its decomposition for the spiral
toy dataset. Hydra successfully models uncertainty and its
decomposition, although with a slight decrease in scale. We
observe, as expected, a low model uncertainty where classes
overlap due to both high total uncertainty and expected data
uncertainty, and high model uncertainty where at the border
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Model ACC ↑ NLL ↓ BS ↓ MU
Ensemble (M = 50) 0.9851 0.0439 -0.9780 9.97 · 10−6

Prior Networks 0.9842 0.0521 -0.9285 0.1158
((Malinin et al., 2019))
Knowledge distillation 0.9843 0.0497 -0.9764 N/A
((Hinton et al., 2015))
Hydra 0.9857 0.0465 -0.9776 2.28 · 10−5

(head = [100,100,10])

(a) MNIST
Model ACC ↑ NLL ↓ BS ↓ MU
Ensemble (M = 50) 0.9226 0.2392 -0.9033 0.1055
Prior Networks 0.8731 0.4392 -0.8231 0.0280
((Malinin et al., 2019))
Knowledge distillation 0.8933 0.3598 -0.8373 N/A
((Hinton et al., 2015))
Hydra 0.8992 0.3179 -0.8468 0.0074
(head = last res. block)

(b) CIFAR10
Table 1. Average (n = 3) test performance for different baselines
and Hydra for MNIST and CIFAR10. For all models, classification
accuracy (ACC), negative log-likelihood (NLL), Brier score (BS)
and model uncertainty (MU) are reported. Bold numbers represent
best performance w.r.t. the specific evaluation metric (columns)
across distillation models (rows) except for MU, where we report
the model uncertainty closest to the ensemble one.

of in-domain and out-of-distribution data.

We plot all evaluation metrics against the intensity of skew
of cyclic translated CIFAR10 in Figure 3 to evaluate Hydra
w.r.t. in-domain and out-of-distribution behavior. Figure 3
shows that Hydra best matches the behavior of the ensemble
in terms of accuracy, Brier score and NLL. As expected,
Hydra with a larger head configuration even improves on
overall performance compared to a smaller head-sized Hy-
dra and the baseline comparisons.

Classification Performance on MNIST and CIFAR10.
We report all metrics for MNIST in Table 1a and for CI-
FAR10 in Table 1b. For MNIST all distillation methods
match the accuracy of the target ensemble with Hydra
outperforming both knowledge distillation and prior net-
works in terms of capturing the ensemble uncertainty, al-
most matching the ensemble predictive NLL and Brier score.
For CIFAR10, all distillation methods retain a gap in NLL
performance compared to the ensemble, but Hydra has the
smallest accuracy gap and a significantly smaller NLL com-
pared to Knowledge distillation and Prior networks. In-
distribution model uncertainty (MU) is comparable for both
Prior Networks and Hydra but smaller compared to target
ensemble MU, meaning it is possible to improve uncertainty
quantification in all distillation methods tested.

Regression Performance on UCI Regression Datasets.
We trained both Knowledge Distillation (Hinton et al., 2015)
and Hydra on standard regression UCI datasets shown in
Table 2. Here, Prior Network is not applicable because
for probabilistic regression we cannot take averages of dis-
tributions. For regression Hydra outperforms knowledge
distillation w.r.t. predictive performance (NLL) because

Dataset Ensemble Prior Network Knowledge Hydra
distillation

(Malinin et al., 2019) (Hinton et al., 2015) (head = [10, 1])
bost 2.3780 N/A 2.3893 2.3805

concr 3.0585 N/A 3.1231 3.0982
ener 1.2756 N/A 1.5236 1.4402
kin8 -1.2977 N/A -1.2343 -1.2555
nava -7.5983 N/A -6.4340 -7.1987
powe 2.8861 N/A 2.8940 2.8921
prot 2.8272 N/A 2.8970 2.8829
wine 0.9111 N/A 0.9112 0.9113
yach -0.1640 N/A 0.3837 0.3489

Table 2. UCI regression benchmark (Dua & Taniskidou, 2017).
Average (n = 3) test negative log-likelihood (NLL) of the 9
different datasets considered. As Prior Networks (Malinin et al.,
2019) cannot be applied to regression tasks, we denote this with
"N/A".

Hydra produces a more flexible output in the form of a
Gaussian mixture model, whereas Knowledge Distillation
can produce only a single Gaussian component.

4. Related Work
In (Hinton et al., 2015), a “student" network is trained to
match the average predictions of the “teacher" network(s).
This methodology has been later successfully applied to
the distillation of Bayesian ensembles (Balan et al., 2015).
A parallel line of research has focused on co-distillation,
also known as online distillation, to further reduce overall
training cost (Zhang et al., 2018; Anil et al., 2018; Lan et al.,
2018). Distillation has recently been the topic of theoretical
analysis to better explain its empirical success (Lopez-Paz
et al., 2015; Phuong & Lampert, 2019). Closest to our ap-
proach is the work of Lan et al. (2018) which consists in
training multiple student models whose combined predic-
tions induce an ensemble teacher model. While we share
conceptual similarities with their work, we depart from their
formulations in several ways. First, we focus on the of-
fline ensemble setting (Hinton et al., 2015) where we start
from a pre-defined ensemble whose training may be dif-
ficult to replicate inside a co-distillation process. Second,
our approach follows a different goal: we consider multiple
branches to individually match the behavior of each teacher
model. Third, our methodology has a conceivably simpler
design, as reflected by our single-component objective func-
tion and the absence of a learned gating mechanism.

5. Conclusion
We presented Hydra, a simple and effective approach to dis-
tillation for ensemble models. Hydra preserves diversity in
ensemble member predictions and we have demonstrated on
standard models that capturing this information translates
into improved performance and better uncertainty quantifi-
cation. While Hydra improves on previous approaches we
believe that we can further improve distillation performance
by leveraging techniques from fields studying sets of related
learning such as meta-learning and domain adaptation.
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