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Abstract

Decision Trees and Random Forests are among
the most widely used machine learning models,
and often achieve state-of-the-art performance
in tabular, domain-agnostic datasets. Nonethe-
less, being primarily discriminative models they
lack principled methods to manipulate the uncer-
tainty of predictions. In this paper, we exploit
Generative Forests (GeFs), a recent class of deep
probabilistic models that addresses these issues
by extending Random Forests to generative mod-
els representing the full joint distribution over
the feature space. We demonstrate that GeFs are
uncertainty-aware classifiers, capable of measur-
ing the robustness of each prediction as well as
detecting out-of-distribution samples.

1. Introduction
Decision Trees (DTs) and Random Forests (RFs) are ar-
guably the most popular non-linear machine learning mod-
els of today. In Kaggle’s 2019 report on the State of Data
Science and Machine Learning (Kaggle, 2019), DTs and
RFs appear as second most widely used techniques, right
after linear and logistic regressions. Moreover, decision
trees are often considered interpretable (Freitas, 2014) and
hence have enjoyed a surge in popularity with the increasing
interest in explainable artificial intelligence. Nonetheless,
efforts towards uncertainty-aware and reliable tree-based
models are still comparatively scarce.

In this paper, we demonstrate that some of these shortcom-
ings are addressed by Generative Forests (GeFs) (Correia
et al., 2020), a class of deep probabilistic models that sub-
sumes Random Forests. In particular, we show in a number
of classification tasks that GeFs enable new principled meth-
ods to i) estimate the uncertainty of each of the model’s
predictions and ii) monitor the input distribution to detect
out-of-domain samples or distribution shifts.
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2. Generative Forests
Before discussing the main ideas of the paper, we introduce
Generative Forests and the required notation. As we focus
on classification tasks, we denote the set of explanatory
variables as X = {X1, X2, . . . , Xm} and the target variable
as Y . As usual, we write realisations of random variables
(or collections thereof) in lowercase; for example, X = x
or Y = y. We assume the pair (X, Y ) is drawn from a fixed
joint distribution P∗(X, Y ) with density p∗(X, Y ) and that,
while the true distribution P∗ is unknown, we have a dataset
Dn = {(x1, y1), . . . , (xn, yn)} of n i.i.d. samples from P∗.

Generative Forests are in fact a class of Probabilistic Cir-
cuits (PCs) (Van den Broeck et al., 2019) satisfying smooth-
ness and decomposability (Peharz et al., 2015). PCs are a
family of deep density representations facilitating many
exact and efficient inference routines (Darwiche, 2003;
Van den Broeck et al., 2019). In short, they are computa-
tional graphs with three types of nodes: i) distribution nodes,
ii) sum nodes and iii) product nodes. Distribution nodes
compute a probability density (by an adequate choice of the
underlying measure, this also subsumes probability mass
functions) over some subset X′ ⊆ X, that is, a normalised
function mapping the state space of X′ to the non-negative
real numbers. Sum nodes compute convex combinations
over their children: if v is a sum node and ch(v) its chil-
dren, then v computes v(x) =

∑
u∈ch(v) wv,uu(x), where

wv,u ≥ 0 and
∑
u∈ch(v) wv,u = 1. Product nodes compute

the product over their children; if v is a product node, then
v(x) =

∏
u∈ch(v) u(xu), with the collection {xu}u∈ch(v)

a partition (non-overlapping projections) of x. Finally, a
(smooth and decomposable) PC represents the density over
all variables (here p(X, Y )) computed by its root node.

Generative Forests are best understood by relating individ-
ual decision trees to Probabilistic Circuits. For any given
DT, we can construct a corresponding PC—a Generative
Decision Tree (GeDT)—representing a full joint density
p(X, Y ). In a nutshell, each decision node is converted
into a sum node and each leaf into a density with support
restricted to the leaf’s cell. The training samples can be fig-
ured to be routed from the root node to the leaves, following
the decisions at each decision/sum node. The sum weights
are given by the fraction of samples which are routed from
the sum node to each of its children. The leaf densities are
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Figure 1. Illustration of a DT and its corresponding PC.

learned on the data which arrives at the respective leaves.

Note that GeDTs are proper PCs over (X, Y ), albeit rather
simple ones: they are tree-shaped and contain only sum
nodes. Nonetheless, GeDTs are in fact a class of mod-
els, as we are free to fit arbitrarily complex functions at
the leaves; say graphical models, again PCs or even ad-
vanced density estimators such as a VAEs (Kingma &
Welling, 2014) or Flows (Rezende & Mohamed, 2015).
In this work, however, we focus on arguably the simplest
density estimator, and model the density at the leaves as
p(X, Y ) = p(X1) . . . p(Xm)p(Y ), with continuous and
categorical variables represented by univariate normal and
multinomial distributions, respectively. We show these fully-
factorised leaves are already sufficient to equip standard
RFs with effective and principled ways to detect outliers
and estimate the robustness of each prediction.

The main semantic difference between DTs and GeDTs is
that a DT represents a classifier, that is, a conditional distri-
bution f(x), while the corresponding GeDT encodes a full
joint distribution p(X, Y )—the latter naturally lends itself
to classification via the conditional distribution p(Y |x) ∝
p(x, Y ). Note that, in theory, p(Y |x) might differ substan-
tially from f(x), as every feature might influence classifi-
cation in a GeDT, even if it never appears in any decision
node of the DT. Still, it is easy to see that if the distribution
at the leaves satisfy p(X, Y ) = p(X)p(Y ), then a GeDT
defines the same prediction function as the original DT.

Generative Forests are ensembles of GeDTs and can also be
made equivalent to the original RF by an appropriate choice
of density model at the leaves. However, instead of ensuring
“backwards compatibility”, in this paper we are interested
in exploiting the generative properties of GeFs. To that
end, we extend GeFs to model a single joint by considering
a uniform mixture of GeDTs (using a sum node over the
trees). That is, instead of averaging over the conditional
distributions of each of the nt trees, we define a single model
that represents the joint p(X, Y ) = n−1t

∑nt
j=1 pj(X, Y ),

where each pj comes from a GeDT. Since this model is
essentially a mixture of the different trees, we call it GeF+.

3. Outlier Detection
Most of machine learning theory relies on the assumption
that training and test data are sampled from the same distri-
bution. This is a reasonable assumption—there would be no
hope for learning otherwise—but is often violated in prac-
tice, as real-world data is constantly evolving. Reliable ma-
chine learning models should then be able to identify such
violations to either suspend judgement and fail gracefully
or signal the need for further data gathering and retraining.
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Figure 2. Normalised histograms of log p(x) (KDE and GeF+)
and maxy p(y|x) (RF) of samples from red and white wine data.

Generative models offer a natural and principled way to
detect outliers or distribution shifts. As they innately fit
the joint distribution of the training data, they are capable
of estimating the likelihood of every new sample, flagging
unlikely ones as potential anomalies. In a GeF+ this is done
by monitoring the marginal p(X), which comes at no extra
cost; classification is performed over the joint p(Y,X) and
computing p(x) only requires summing over all possible
classes, p(x) =

∑
y p(y,x).

We illustrate outlier detection in GeF+s using the wine qual-
ity dataset (Cortez et al., 2009) (where the class is a scale of
quality of wine) with a variant of transfer testing (Bradshaw
et al., 2017). We learn two different GeF+s, each with only
one type of wine (red or white), and compute the log-density
of unseen data (70/30 train-test split) for the two wine types.
As we see in the histograms of Figure 2, the marginal distri-
bution over the joints does provide a strong signal to identify
out-of-domain instances. We compare GeF+s to a Gaussian
Kernel Density Estimator (KDE) and to a common baseline



Towards Robust Classification with Deep Generative Forests

for deep models (Hendrycks & Gimpel, 2016), whereby the
probability of the predicted class, maxy p(y|x), is used as
a signal to detect outliers. We see from the histograms and
the ROC (receiver operating characteristic curve) scores,
that our models largely outperform the baseline while being
comparable to KDEs, even though the structure of a GeF+

is learned in a discriminative manner.

We note that previous works have already proposed using
Random Forests for outlier detection (Liu et al., 2008). How-
ever, these models are typically directly trained to identify
anomalies and have that as their sole purpose, while GeF+s
are unique in that, while being primarily classifiers (or re-
gressors) they also effectively detect out-of-domain samples.

4. Robust Classification
Outlier detection is related to the concept of vagueness or
epistemic uncertainty, that is, the lack of sufficient statis-
tical support for issuing a prediction. However, machine
learning models are often confronted with cases where the
data supports the thesis that a given instance is associated
with more than a single class with high probability. That is
commonly referred to as aleatory uncertainty. Effectively
quantifying both types of uncertainty is indispensable in crit-
ical applications, where overconfident predictions may lead
to catastrophic failures. One common approach to estimate
the model’s confidence in classification tasks is to manipu-
late the reported probability p(Y |x) (Guo et al., 2017; Liang
et al., 2017). Still, this is not only overly simplistic but also
fails to distinguish the types of uncertainty.
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Figure 3. Accuracy of predictions with ε-robustness (a) below and
(b) above different thresholds for 12 OpenML datasets. Some
curves end abruptly because we only computed the accuracy when
30 or more data points were available for a given threshold.

GeF+s offer an arguably more principled approach rooted
in the notion of robustness (Dietterich, 2017) as obtained
with credal sum-product networks (Mauá et al., 2017; Mauá
et al., 2018). In a nutshell, we evaluate how much we can
perturb all parameters of the model without changing its
prediction on a given instance. Formally, we quantify this

perturbation with the concept of ε-contamination for each
of the sum nodes in a PC. If w is the vector of weights of a
given sum node, then its ε-contamination is given by the set

Cw,ε = {(1− ε)w + εv : vj ≥ 0,
∑
j

vj = 1}.

This definition naturally leads to the idea of ε-robustness:
the largest ε for which all parameter configurations in Cw,ε
yield the same classification. We run such analysis for all of
the nodes at once: let Cε represent the collection {Cw,ε} for
all sum nodes in the PC and let w be one possible choice of
a w in each of the nodes.1 We compute whether there is a
label y of the class such that

∀y′ 6= y : max
w∈Cε

Ew[1(Y = y′)− 1(Y = y)|x] < 0 ,

and if so, we declare y robust for threshold ε. The maximum
ε such that this is true (which we find by binary search) is
what we call the ε-robustness of a given prediction (Mauá
et al., 2018). Note that, since GeF+s have a tree structure
and sum nodes with out-degree bounded by a constant, the
time for computing ε-robustness in GeF+s is linear in the
input size (Correia & de Campos, 2019; Mauá et al., 2018).

We experiment with ε-robustness in a selection of 12
datasets from the OpenML-CC18 benchmark2 (Vanschoren
et al., 2013). Once more, we use GeF+s composed of 30
trees with fully-factorised leaves and a 70/30 train-test split.
In Figure 3, we defined a number of robustness thresholds
and, for each of them, we computed the accuracy of the
models over instances for which ε was above and below the
threshold. We clearly see there is a positive correlation; the
higher the ε-robustness of a prediction, the more likely it
is to be correct. Obviously, the computation of robustness
does not require knowing the true labels.

This concept of robustness has a clear interpretation. Given
that for ε = 0 we have Cw,ε = {w} and for ε = 1 we have
the whole simplex, we can interpret the value of ε as the
“percentage” of variation that we allow in the parameters for
each prediction. That is in contrast to typical uncertainty
measures where individual uncertainty values are hard to
interpret in isolation (Mentch & Hooker, 2016; Shaker &
Hüllermeier, 2020).

5. Discussion and Further Experiments
We also trained GeF+s on the Mnist (LeCun et al., 2010)
and Fashion-Mnist (Xiao et al., 2017) datasets to visually
evaluate the samples with different ε-robustness values. In
Figure 4, we report test instances with lowest and highest

1Multinomial leaf nodes can be contaminated in the very same
manner as sum nodes, while normal leaf nodes are contaminated
in their means while keeping variance fixed (de Wit et al., 2019).

2https://www.openml.org/s/99/data

https://www.openml.org/s/99/data
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Figure 4. Samples from (Fashion-)Mnist datasets with lowest (left)
and highest (right) ε-robustness in the test set. Correctly and incor-
rectly classified examples are shown in green and red, respectively.

ε-robustness for each dataset. We see that samples for which
the prediction is less robust are not only less likely to be
correctly classified but also often contain irregular shapes
and patterns, justifying the model’s uncertainty.

We emphasise outlier detection and robustness estimation
are related but different notions, and GeF+effectively distin-
guishes them. Figure 5 shows a few of the most likely and
unlikely (Fashion-)Mnist samples under the training data
distribution. While samples are ordered by their marginal
density p(x), the background light is proportional to their ε-
robustness, with darker colours for larger ε. We can clearly
see how these measures differ as, for example, although the
model deems 1s highly likely, ε-robustness seems to vary
with the shape/orientation of the trace.

Moreover, these two measures complement each other and
allow us to better understand the underlying cause of the
model’s uncertainty. Notably, for a consistent model—one
that fits the true data generating distribution if given suf-
ficient data—and a sample x with high p(x) and low ε-
robustness, one may infer there is high aleatory uncertainty.
A number 9 with an incomplete circle at the top is a good
example of a pattern in handwritten digits that, albeit likely,
is still hard to tell apart from a number 4. Conversely, an
instance might be misshaped and hence unlikely, but still
be associated to high robustness values. In that case, epis-
temic uncertainty is dominant, that is, the model has not
been trained on similar examples and its high confidence
estimate should not be trusted. Distinguishing the two types
of uncertainty is not only fundamental to better understand
the task at hand but also to establish the correct course of ac-

Figure 5. Samples from (Fashion-)Mnist datasets with lowest (left)
and highest (right) p(x) in the test set. The background light is
proportional to the ε-robustness.

tion; namely, suspend judgement when faced with aleatory
uncertainty or collect more data and possibly retrain the
model in cases of epistemic uncertainty.

In all experiments3, the trees are made “deep”, that is, we
keep splitting the feature space until each leaf cell contains
either only samples of one class or a single sample. That
means the average depth of our models is Θ(log n), with n
the number of samples in the training data (Louppe, 2014).
Such deep trees make GeF+s highly expressive, while the
overall ensemble, by and large, avoids overfitting. It is
also worth noticing that our models are learned as regular
Random Forests, with bootstrapping and gini-impurity cri-
terion, and afterwards converted to GeFs. Moreover, we use
fully-factorised leaves, p(X, Y ) = p(X1) . . . p(Xm)p(Y ),
which are trivial to learn and compute but also achieve simi-
lar results as the original RF (identical predictions in each
tree of the RF (Correia et al., 2020)).

6. Conclusion
While more experimentation is still needed, initial results
indicate Generative Forests are a promising extension of
Random Forests that effective leverages the properties of
Probabilistic Circuits to detect out-of-domain samples and
estimate the robustness of its own predictions. We believe
this is not only a important step towards more reliable ma-
chine learning but also a promising avenue for future re-
search on deep hybrid discriminative-generative models.

3The source code will be available at the authors’ web-page.
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