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Abstract
Efficient ensembles such as BatchEnsemble are a
simple drop-in approach to improving a model’s
accuracy and calibration across in- and out-of-
distribution data. While they bridge the perfor-
mance gap between single model performance
and independent deep ensembles, their improve-
ments on calibration are not as substantial as that
on accuracy. We examine how to further im-
prove calibration of these models. We investi-
gate the role of data augmentation and show that
augmentation techniques which improve single
models can surprisingly make the ensemble cal-
ibration even worse. We propose a new data
augmentation that fixes this pathology and im-
proves BatchEnsemble’s calibration. We empir-
ically demonstrate the effectiveness of our ap-
proaches on in- and out-of-distribution CIFAR-
10, CIFAR-100.

1. Introduction
Efficient ensembles such as BatchEnsemble (Wen et al.,
2020; Dusenberry et al., 2020) outperform standard SGD-
trained neural nets across accuracy, log-likelihood, and
calibration, on both in-distribution test data and out-of-
distribution corruptions, at the cost of negligible parameter
overhead. In practice, efficient ensembles achieve almost
the same accuracy as the much larger deep ensembles (Lak-
shminarayanan et al., 2017). However, a gap can be ob-
served on calibration metrics, where on CIFAR-10, the
naive ensemble improves single model Expected Calibra-
tion Error (ECE) from 2.3% to 0.7% while BatchEnsem-
ble only improves the ECE from 2.3% to 1.8%. Motivated
by this significant gap, we study how to further improve
BatchEnsemble’s calibration in this work. Post-processing
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techniques such as temperature scaling (Guo et al., 2017)
can improve calibration and offer a potentially simple so-
lution. However, recent literature shows they are sensitive
to the choice of calibration metrics (Nixon et al., 2019) and
are not robust to distribution shift (Ovadia et al., 2019). To
this end, we examine methods to improve calibration based
on the uncertainty decomposition of data, within the scope
of BatchEnsemble.

We investigate data uncertainty related methods for the
purpose of improving calibration. Data uncertainty, which
accounts for the inherent stochasticity in a data gather-
ing process, is the guiding principle behind state-of-the-
art data augmentation strategies which improve robust-
ness and uncertainty performance. In this work, we em-
pirically study how data augmentation techniques such as
Mixup (Zhang et al., 2018), and AugMix (Hendrycks et al.,
2020), and moreover, how these techniques specifically
perform through the lens of data uncertainty.

Contributions. We surprisingly find that Mixup improves
calibration of individual models but degrades the calibra-
tion of the ensemble. We conclude from a detailed analy-
sis that soft labels introduce a confidence bias that hinders
its combination with ensembles. We propose CAMixup
to correct this bias. Empirically, CAMixup significantly
improves calibration on Wide ResNet 28-10 on CIFAR-
10/100 and their corrupted variants. Finally, we combine
CAMixup with AugMix and we find their improvements
are complementary, leading to new state-of-the-art calibra-
tion on CIFAR-10/100 (e.g., 0.4% and 2.3% on CIFAR-10
and CIFAR-10C) with competitive accuracy (e.g., 97.5%
and 89.8%). We successfully bridge the calibration gap be-
tween BatchEnsemble and deep ensembles.

2. Background
2.1. Efficient Ensembles
Ensembles have demonstrated state-of-the-art accuracy and
calibration on both in- and out-of-distribution data (more
background in Appendix B). However, the applicability
of deep ensembles is limited as they require storing and
predicting from multiple instances of models which can
grow intractable. Therefore, recent research has focused
on reducing both the memory and computational costs of
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deep ensembles. For example, BatchEnsemble (Wen et al.,
2020) and Rank-1 BNN (Dusenberry et al., 2020) use mul-
tiplicative rank-1 perturbations to efficiently create ensem-
bles of deep neural networks. Other efficient ensembling
approaches leverage weight averaging techniques such as
Polyak-Ruppert (Ruppert, 1988), checkpointing (Huang
et al., 2017), and stochastic weight averaging (Izmailov
et al., 2018) to collect multiple sets of weights during train-
ing and aggregate them to make predictions with only a sin-
gle set. In this paper, we build on the rank-1 perturbation
setup and specifically on BatchEnsemble which we briefly
introduce in the following.

BatchEnsemble: For a given network layer i, we define
the shared weight matrix among K ensemble members as
Wi ∈ Rm×d. For simplicity, we will omit i in the follow-
ing. A tuple of trainable vectors rk ∈ Rm and sk ∈ Rn

are associated with each ensemble member k. Then the
weight matrix corresponding to each ensemble member in
BatchEnsemble is given by:

W′
k = W ◦ Fk, where Fk = rks

>
k ∈ Rm×d,

where ◦ denotes the element-wise product. For a
given layer, BatchEnsemble’s forward pass can be rewrit-
ten as y = φ (W′

kx) = φ
((
W ◦ rks>k

)
x
)

=
φ ((W(x ◦ sk)) ◦ rk). where φ is the activation function,
and x ∈ Rd,y ∈ Rm is a single example. Using these
rank-1 perturbations significantly reduces the number of
parameters over a naive ensemble. To fully take advan-
tage of hardware accelerators, the above can be vectorized
as φ

((
(X ◦ S)W>) ◦R) where each row of X ∈ RB×d

is an example in a mini-batch and each row of R ∈ RB×m

and S ∈ RB×d is a choice of ensemble member. Following
Wen et al. (2020), we use ensemble size 4.

2.2. Data Augmentation
A simple and effective choice to capture data uncertainty is
data augmentation. With input data augmentation, the input
prior p(x̃ | x), where x̃ is the augmentation, posits seman-
tically preserving transformations of x (e.g., random flips)
and the output prior is a delta at ỹ = y in order to encourage
the model to make invariant predictions under the transfor-
mations. In this work, we investigate Mixup (Zhang et al.,
2018) and AugMix (Hendrycks et al., 2020).

Mixup: By varying both in the data prior to encourage
linearly interpolating predictions, Mixup was shown to be
effective for generalization and calibration of deep neural
networks (Zhang et al., 2018; Thulasidasan et al., 2019).
Some existing works study why Mixup leads to better gen-
eralization (Guo et al., 2018; Shimada et al., 2019) and
improves adversarial robustness (Beckham et al., 2019;
Pang et al., 2020; Mangla et al., 2020). Given an exam-
ple (xi, yi), Mixup applies

x̃i = λxi + (1− λ)xj , ỹi = λyi + (1− λ)yj .

Here, xj is sampled from the training dataset (taken from
the minibatch), and λ ∼ Beta(a, a) for a fixed hyperpa-
rameter a > 0. Another related data augmentation tech-
nique in this work is AugMix (Hendrycks et al., 2020),
which we used in Section 3.3 to further improve calibra-
tion. We delegate the introduction of it to Appendix B.

3. BatchEnsemble with Data Augmentation
We investigate the role of data uncertainty in calibration,
within the scope of BatchEnsemble. It is tempting to ex-
pect compounding benefits by combining state-of-the-art
data augmentation techniques and ensembles. Surprisingly,
we find that augmentation techniques which improve sin-
gle models can be detrimental to ensemble calibration as
illustrated by Mixup. We thus propose a novel data aug-
mentation technique to address this pathology and improve
calibration of BatchEnsemble.

3.1. Miscalibration of Ensembles with Mixup
We seek to combine data uncertainty techniques and en-
sembles to improve calibration. Ensembles are the best
known and most straightforward approach to improving
calibration (Ovadia et al., 2019). Tab. 1 and Tab. 4 confirm
that ensembling improves calibration over a single model
in both BatchEnsemble and deep (naive) ensembles. In ad-
dition, Thulasidasan et al. (2019) showed that Mixup im-
proves calibration in a single model. However, Tab. 1 illus-
trates that combining Mixup with ensembles (by applying
Mixup to each ensemble member) leads to worse calibra-
tion (for both small Mixup coefficient λ = 0.2 and large
λ = 1). This is counter-intuitive because we tend to ex-
pect ensembles to be better calibrated than their individual
members. While Tab. 1 only confirms this on BatchEnsem-
ble, we can also consistently see this pattern on deep en-
sembles (Fig. 6 and Tab. 4 in the Appendix F).

Why do Mixup ensembles degrade calibration? Fig. 1
plots a variant of reliability diagrams (DeGroot & Fienberg,
1983), computing the difference between a model’s pre-
dicted confidence and its accuracy. We group predictions
into M = 15 bins according to their confidence, which we
define as the value of the max softmax output, and compute
the accuracy in each bin. Let Bm be the examples whose
predicted confidence falls into the interval (m−1M , m

M ]. The
accuracy and the confidence of bin Bm is

Acc(Bm) =
1

|Bm|
∑

xi∈Bm

1(ŷi = yi),

Conf(Bm) =
1

|Bm|
∑

xi∈Bm

p̂i,

where ŷi and yi are the predicted and true labels for exam-
ple xi and p̂i is the confidence of example xi. A positive
difference Acc − Conf implies underconfidence; negative
implies overconfidence; zero is perfect calibration.
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Method/Metric CIFAR-10 CIFAR-100
Acc(↑) ECE(↓) cA/cE Acc(↑) ECE(↓) cA/cE

BatchEnsemble In 95.88 2.3% 76.9/15.4% 80.64 8.7% 53.4/23.5%
En 96.22 1.8% 77.5/12.9% 81.85 2.8% 54.1/19.1%

Mixup0.2 BE In 96.43 0.8% 80.4/8.7% 81.44 1.5% 56.2/11.1%
En 96.75 1.5% 81.5/7.2% 82.79 3.9% 58.0/9.10%

Mixup1 BE In 96.67 5.5% 78.9/9.6% 81.32 6.6% 56.9/8.0%
En 96.98 6.4% 80.0/9.3% 83.12 9.7% 59.3/8.8%

CAMixup0.2 BE In 96.41 0.8% 80.2/10.8% 81.54 2.4% 56.7/13%
En 96.63 0.5% 80.9/7.9% 82.79 1.8% 58.4/9.3%

CAMixup1 BE In 96.56 1.8% 80.3/12.9% 81.56 2.4% 57.8/11%
En 96.94 1.2% 81.1/9.7% 83.02 2.3% 59.7/8.9%

Table 1: Results for Wide ResNet-28-10 BatchEnsemble (Wen et al., 2020) (BE), averaged over 3 seeds. Numbers in
blue highlight that combining Mixup (Zhang et al., 2018) and ensembles worsens calibration on in-distribution data. In:
Individual model; En: Ensemble model; cA/cE: Accuracy and ECE on CIFAR-10C and CIFAR-100C (Hendrycks &
Dietterich, 2019). Results on deep ensembles can be found in Tab. 4 in the appendix.

The backbone model in Fig. 1 is BatchEnsemble with en-
semble size 4. The plot has 6 lines: we train three in-
dependent BatchEnsemble models with large, small, and
no Mixup; and for each model, we compute the calibra-
tion of both ensemble and individual predictions. Fig. 1a
shows that only Mixup models have positive (Acc− Conf)
values on the test set, which suggests that Mixup encour-
ages underconfidence. Mixup ensemble’s positive value is
also greater than Mixup individual’s. This suggests that
Mixup ensembles compound in encouraging underconfi-
dence, leading to worse calibration than when not ensem-
bling (Tab. 1).

Is this issue specific to mixup? At the core of the issue

(a) Reliability plot.

Figure 1: Reliability diagrams and confidence counts
on CIFAR-10. Table 1 shows that ensemble individual
BatchEnsemble improves test ECE from 2.3% to 1.8%.
However, Mixup0.2-individual achieves test ECE 0.8% and
Mixup0.2-ensemble worsens it to 1.5%. The plots show
that ensembling makes predictions less confident. En-
sembling and Mixup both encourage underconfidence, and
when predictions are overconfident, this improves calibra-
tion. However, combining the two can lead to excessive
underconfidence which thus worsens calibration.

is that Mixup conflates data uncertainty with model uncer-
tainty. Its soft labels can correct for the overconfidence
of single models who have no other recourse. However,
when combined with ensembles which provide model un-
certainty, the correction is unnecessary. The pathology ex-
tends to other strategies which soften labels: image classifi-
cation benchmarks tend to be deterministic, and soft labels
encourage predictions on training data to be less confident
about their true targets even if they are correct. The behav-
ior can also be found with aggressive label smoothing; and
we find that AugMix, which does not manipulate labels,
does not share this pathology (Appendix D.2’s Fig. 4).

Mixup displays a similar trend under distribution shift, as
shown by Appendix D’s Fig. 2. However, the models
tend to be overconfident as one moves further from the
original distribution (high corruption intensities), so en-
couraging underconfidence is not an issue. This explains
why Mixup ensembles maintain low calibration error on
out-of-distribution in Tab. 1. Thus, in the next section,
we propose Confidence Adjusted Mixup (CAMixup) to
adjust the under-confidence of Mixup ensembles on the
test set while maintaining its good calibration on out-of-
distribution dataset.

3.2. Confidence Adjusted Mixup Ensembles
We introduce Confidence adjusted Mixup (CAMixup) in
this section. Instead of a uniform Mixup hyperparameter
for all examples in the training set, we propose to adjust the
hyperparameter of each class by the difference between its
accuracy and confidence. Tab. 5 in the Appendix shows that
some classes are more difficult than others for deep neural
networks to predict correctly. The intuition of CAMixup is
that we want to apply Mixup on hard examples on which
models tend to be overconfident. On easy examples, we
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Method/Metric CIFAR-10 CIFAR-100
Acc(↑) ECE(↓) cA/cECE Acc(↑) ECE(↓) cA/cECE

AugMix BE 97.36 1.02% 89.49/2.6% 83.57 2.96% 67.12/7.1%

AugMixup BE 97.52 1.71% 90.05/2.8% 83.77 4.19% 69.26/4.8%

CAugMixup BE 97.47 0.45% 89.81/2.4% 83.74 2.35% 68.71/4.4%

Table 2: Results for Wide ResNet-28-10 BatchEnsemble on in- and out-of-distribution CIFAR-10/100 with various data
augmentations, averaged over 3 seeds. AugMix: AugMix + BatchEnsemble; AugMixup: AugMix + small Mixup
BatchEnsemble; CAugMixup: AugMix + small CAMixup BatchEnsemble. Adding Mixup to AugMix model increases
test accuracy and corrupt accuracy at the cost of calibration decay on testset. CAMixup bridges the gap.

impose standard data-augmentation without Mixup. This
partially prevents Mixup models from being overconfident
on difficult examples while maintaining its good calibration
on out-of-distribution inputs.1

Denote the accuracy and confidence of class i as Acc(Ci)
and Conf(Ci). We adjust Mixup’s λ in Eqn. 2.2 by the sign
of Acc(Ci) − Conf(Ci), which are defined as Acc(Ci) =
1
|Ci|

∑
xj∈Ci

1(ŷj = i) and Conf(Ci) =
1
|Ci|

∑
xj∈Ci

p̂i.

λi =

{
0 Acc(Ci) > Conf(Ci)

λ Acc(Ci) ≤ Conf(Ci).
(1)

If the model is already underconfident (Acc(Ci) >
Conf(Ci)), Mixup is not applied to examples in the class
(λ = 0). However, if Acc(Ci) ≤ Conf(Ci), the model is
overconfident on this class, and Mixup is applied to reduce
model confidence. We compute the accuracy and confi-
dence on a validation dataset after each training epoch.

Tab. 1 presents results of CAMixup. The experiments
show that CAMixup improves calibration of Mixup en-
sembles by more than 2X on the test set using a small
Mixup coefficient. Its calibration on out-of-distribution
data is also on par with Mixup ensembles. The improve-
ment increases to 5X if we use a large Mixup coefficient.
We observe a minor decrease in test accuracy by at most
0.1%, but this is a worthwhile trade-off given the improve-
ment in test ECE. Appendix D’s Fig. 3b demonstrates how
CAMixup corrects underconfidence. We provided the val-
ues of λi of each class at the end of training on CIFAR-
10 in Appendix G. The classes for which the model as-
signs Mixup match the challenging classes presented in
Tab. 5. A more detailed visualization of accuracy and ECE
across distribution shift over all methods is delegated to
Appendix D.2. CAMixup is also effective in deep ensem-
bles but fails to match BatchEnsemble’s improvement (Ap-
pendix F’s Tab. 4).

1We focus on classification, where classes form a natural
grouping of easy to hard examples. However, the same idea can be
used on metadata that we’d like to balance uncertainty estimates,
e.g., gender and age groups.

3.3. Combining CAMixup and AugMix
Mixup interpolates images between classes while AugMix
maintains labels. AugMix improves calibration by apply-
ing further data augmentations with strong empirical re-
sults. It is natural to combine these two techniques as they
manipulate data in complementary input space. This com-
bination allows the model to encounter both diverse data
augmentations and soft labels under a linearly interpolat-
ing regime. The naive combination AugMixup (AugMix +
Mixup) can be written as x = λ ∗AugMix(x1)+ (1−λ) ∗
AugMix(x2) and y = λ ∗ y1 + (1− λ) ∗ y2.

Consistent with results on Mixup, AugMixup leads to un-
derconfidence on in-distribution data (Appendix D) and
bad overall calibration (Tab. 2). With the proposed fix
CAMixup, the combination CAugMix (CAMixup + Aug-
Mix) improves calibration while retaining highest accuracy
for efficient ensembles. This successfully bridges the cali-
bration gap between BatchEnsemble and AugMix deep en-
sembles (Appendix F’s Tab. 4). We compare to deep en-
sembles with Augmix as they have the best calibration re-
sults (although worse accuracy without mixup).

To the best of our knowledge, these results are state-of-the-
art in the literature: Dusenberry et al. (2020) report 0.8%
and 1.8% for CIFAR-10 and CIFAR-100 along with 8%
ECE and 11.7% ECE for corruptions; Guo et al. (2017) re-
port 0.54% and 2.3% for the possibly smaller Wide ResNet
32 on CIFAR-10 and CIFAR-100 with temperature scal-
ing, but Ovadia et al. (2019) demonstrated that temperature
scaling does not extend to distribution shift.

4. Conclusion
We examine directions in both data uncertainty and model
uncertainty for improving calibration of BatchEnsem-
ble. We delegate more discussion and limitation of this
work to Appendix E. For data uncertainty, we propose
CAMixup which corrects the bad calibration of Mixup +
BatchEnsemble. The resulting variant CAugMixup leads
to the new state-of-the-art in calibration across CIFAR-
10/100. We successfully bridge the calibration gap between
BatchEnsemble and deep ensembles.
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A. Dataset Details
CIFAR: We consider two CIFAR datasets, CIFAR-10 and
CIFAR-100 (Krizhevsky, 2009). Each consists of a train-
ing set of size 50K and a test set of size 10K. They are
natural images with 32x32 pixels. Each class has 5,000
training images and 500 training images on CIFAR-10 and
CIFAR-100 respectively. In our experiments, we follow
the standard data pre-processing schemes including zero-
padding with 4 pixels on each sise, random crop and hori-
zon flip (Romero et al., 2015; Huang et al., 2016; Srivas-
tava et al., 2015). If a training method requires validation
dataset such as CAMixup, we use separate 2, 500 images
from 50K training images as the validation set.

CIFAR-C: It’s important to test whether our trained model
is well calibrated under distribution shift. CIFAR-10 cor-
ruption dataset (Hendrycks & Dietterich, 2019) is designed
to accomplish this. The dataset consists of 15 types of cor-
ruptions to the images. Each corruption types have 5 inten-
sities. Thus, in total CIFAR-10C has 75 corrupted datasets.
Notice that the corrupted dataset is used as a testset without
training on it. Ovadia et al. (2019) benchmarked a number
of methods on CIFAR-10 corruption. Similarly, we can ap-
ply the same corruptions to CIFAR-100 dataset to obtain
CIFAR-100C.

B. Other Related Work
In this appendix section, we introduce some related works
on Ensembles and Test Time Augmentation (TTA).

Ensembles: Aggregating the predictions of multiple mod-
els into an ensemble is a well-established strategy to im-
proving generalization (Hansen & Salamon, 1990; Perrone
& Cooper, 1992; Maclin & Opitz, 1999; Dietterich, 2000).
In neural networks, composing an ensemble of models,
each trained with a different random initialization, pro-
vides diverse predictions (Fort et al., 2019) that have been
shown to outperform strong baselines on uncertainty esti-
mation tasks (Lakshminarayanan et al., 2017). Ovadia et al.
(2019) found that ensembles achieved state-of-the-art accu-
racy and uncertainty under a variety of distributional shift
benchmarks.

AugMix: Searching or sampling over a set of data aug-
mentation operations can lead to significant improvement
on both generalization error and calibration (Cubuk et al.,
2019a;b). In this paper, we examine AugMix (Hendrycks
et al., 2020). AugMix applies a sum of augmentations, each
with random weighting, and with a Jensen-Shannon con-
sistency loss to encourage similarity across the augmenta-
tions. It achieves state-of-the-art calibration across in- and
out-of-distribution tasks (Hendrycks et al., 2020). We fo-
cus on the data augmentation scheme and do not apply the
consistency loss (how to best apply it with efficient ensem-

Dataset CIFAR-10 CIFAR-100

ensemble_size 4
base_learning_rate 0.1

per_core_batch_size 64
num_cores 8

lr_decay_ratio 0.1
train_epochs 250

lr_decay_epochs [80, 160, 200]

l2 0.0001 0.0003

random_sign_init 0.5 0.75
SyncEnsemble_BN False True

Table 3: Hyperparameters we used in Section 3 regard-
ing to BatchEnsemble. The difference between CIFAR-10
and CIFAR-100 is l2, random_sign_init and whether to use
SyncEnsemble_BN.

bles remains unclear).

Let O be the set of data augmentation operations and k
be the number of AugMix iterations. AugMix samples
w1, . . . , wk ∼ Dirichlet(a, . . . , a) for a fixed hyperparam-
eter a > 0 and op1, . . . , opk from O. Given an interpola-
tion parameter m, sampled from Beta(a, a), which is de-
noted by xaug =

∑k
i=1 wiopi(xorig), the augmented input

x̃augmix is:

x̃augmix = mxorig + (1−m)xaug (2)

C. Hyperparameters in Section 3
We kept the same set of hyperparameters as the
BatchEnsemble model in Wen et al. (2020). All hyperpa-
rameters can be found in Tab. 3. The most sensitive hy-
perparameter we found is whether to use ensemble batch
norm, and the value of random_sign_init, which controls
the standard deviation of Gaussian distributed initializa-
tion of s and r. We kept BatchEnsemble CIFAR-10 the
same as Wen et al. (2020), which does not deploy ensemble
batch norm. We enable ensemble batch norm on CIFAR-
100 and ImageNet. This allows us to use larger standard
deviation in the initialization. The random_sign_init is
−0.5 on CIFAR-10 and −0.75 on CIFAR-100 and -0.75
on ImageNet. In the code, we use negative value to denote
the standard deviation of Gaussian distribution. A positive
value corresponds to random sign initialization where the
value represents the probability of being positive. In our
case, we only use negative random_sign_init, which means
we only consider Gaussian distributed initialization in this
work.
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(a) Reliability on corrupt level 1. (b) Reliability corrupt level 3. (c) Reliability corrupt level 5.

Figure 2: Reliability diagram of WideResNet-28-10 BatchEnsemble with Mixup on CIFAR-10. This plot complements
Figure 1. It shows that the miscalibration of Mixup + BatchEnsemble only happens on in-distribution dataset.

(a) Reliability on CIFAR-100. (b) Reliability on CIFAR-10. (c) Reliability on CIFAR-100.

Figure 3: WideResNet-28-10 BatchEnsembles with Mixup on CIFAR-10 and CIFAR-100 testset. a: Mixup + ensembles
is also underconfident on CIFAR-100. b & c: We compare Mixup and CAMixup on both CIFAR-10 and CIFAR-100 testset.
CAMixup significantly improves ensembles calibration.

(a) Reliability on testset. (b) Reliability on corrupt level 3. (c) Reliability on corrupt level 5.

Figure 4: WideResNet-28-10 BatchEnsembles with different data augmentation techniques on CIFAR-10. It shows
AugMix doesn’t induce underconfidence model like Mixup. However, adding Mixup to AugMix leads to underconfidence.
This motivates us to apply CAMixup on top of AugMix.

D. More Calibration Results of
Mixup-BatchEnsemble

In Section 3.1, we demonstrated that combining Mixup
and ensembles leads to worse calibration on testset. In
this appendix section, we complement the above conclu-
sion with the analysis on corrupted datasets and with data-
augmentation techniques like AugMix.

D.1. Mixup-BatchEnsemble improves calibration
under distribution shift

In this section, we provide some complementary results
to Section 3.1. In Figure 1, we showed that Mixup +
BatchEnsemble leads to miscalibrated model on testset
because of underconfidence. Notice that an underconfi-
dence model only leads to bad calibration on in-distribution

dataset. It doesn’t undermine its calibration on out-of-
distribution because all models are overconfident as one
moves further from the original distribution (high corrup-
tion intensities). As an evidence, Figure 2 shows that com-
bining Mixup and ensembles actually improves calibration
on corrupted dataset. For simplicity, we use corruption
level 1, 3, 5 as the representatives of CIFAR-10C.

On CIFAR-100, we also observe miscalibration on testset.
In Fig. 3a, we plotted the reliability of ensemble and indi-
vidual predictions of Mixup-BatchEnsemble. The conclu-
sion is consistent to what we observe on CIFAR-10. Indi-
vidual Mixup-BatchEnsemble is well calibrated because of
underconfidence. However, ensembling it compounds the
underconfidence, leading to worse calibration. In Fig. 3b
and Fig. 3c, we showed that CAMixup effectively corrects
the confidence bias and achieves the best calibration con-
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sistently on CIFAR-10 and CIFAR-100.

D.2. BatchEnsemble with AugMix, AugMixup and
CAugMixup

In Table 2, we showed that combining AugMix and Mixup
leads to worse calibration due to the underconfidence al-
though AugMix itself does not. To better understand the
insights beyond staring at scalars, we provided the relia-
bility diagram analysis as well. In Figure 4a, we showed
that the underconfidence issue of AugMixup (Augmix +
Mixup) still exists. It suggests that applying CAMixup to
Augmix can correct the underconfidence bias as what we
showed in Fig. 3b and Fig. 3c. Notice that AugMixup only
miscalibrates on testset rather than the corrupted dataset
as shown in Fig. 4b and Appendix C (This is the same as
Mixup + BatchEnsemble, see Fig. 2).

Thus, the fix we propose on Mixup BatchEnsemble can be
directly applied to AugMixup BatchEnsemble. It is ex-
pected that CAugMixup (CAMixup + AugMix) can im-
prove calibration on testset without undermining its cali-
bration under data distribution shift. We demonstrated the
empirical results in Table 2. In this appendix, we comple-
ment Table 2 by Figure 5. It visualizes the accuracy and
ECE of all methods we consider in Section 3 on both in-
and out-of-distribution dataset.

E. Limitations and Future Work
We describe limitations of our work. One limitation of
CAMixup in this work is that all examples in the same class
still share the same Mixup coefficient. This leaves a room
for developing more fine-grained adaptive Mixup mech-
anism. However, this correlates another active research
problem which is how to better define the training difficulty
of each image given a deep network. Another limitation is
we showed that CAMixup still cannot fully fix the miscal-
ibration of Mixup + deep ensembles in Appendix F, due to
the fact that Mixup + deep ensembles leads to even worse
calibration than Mixup + BatchEnsemble. This raises a
harder question which CAMixup cannot completely solve
but also leaves more research room to further understand
why Mixup is worse on deep ensembles and how to address
it. We consider this work as an initial attempt to bridge the
calibration gap between BatchEnsemble and deep ensem-
bles. Thus, we leave the question on how to address the
above issues to future work.

Next, we determine whether to use Mixup based on the
reliability (Mean Accuracy - Mean Confidence) of each
class on validation set. One concern CAMixup is bottle-
necked by the number of classes in classification problem.
We showed that this works on problems with 10 and 100
classes (CIFAR-10 and CIFAR-100). We are eager to ex-

amine this on datasets with more classes such as ImageNet.
Additionally, Mixup only shows its effectiveness in the im-
age domain. How to leverage it in other domains such as
natural language processing is still unclear. This is an or-
thogonal research direction of this work.

One natural idea to further improve calibration of
BatchEnsemble is to combine two components we pro-
posed in this work: data-augmentation and diversity reg-
ularizer. However, our preliminary experiments on this
more sophisticated approaches did not work. Adding
diversity regularizer or (test-time augmentation) TTA to
CAugMixup BatchEnsemble (CAMixup + AugMix +
BatchEnsemble) decreases its calibration on both in- and
out-of-distribution datasets. We are eager to push on this
further given the exciting progress from CAMixup.

We also obtained some negative results when explor-
ing other sensible approaches to improve calibration of
BatchEnsemble. We think these negative results are also
inspiring. They can motivate the community to under-
stand the insights why they do not work. One particular
method we explore is to have a global mixture weights in
BatchEnsemble. Instead of uniformly averaging the predic-
tions from each ensemble member, we can have a trainable
weighted average. This leverages the end-to-end differen-
tiability of BatchEnsemble. However, we found this did not
improve the current BatchEnsemble baseline. The resulting
weights always favor one of the ensemble member.

Another potential improvement we explore is higher rank
perturbation in BatchEnsemble. Higher rank structure in-
creases the expressive power of BatchEnsemble, leading
to more diverse ensemble members. We implemented per-
turbation with rank-2 and rank-3 structures. However, we
found that it is difficult to train a BatchEnsemble model
with higher rank structure. We cannot achieve 100% train-
ing accuracy on neither CIFAR-10 or CIFAR-100. We pos-
tulate that this is because the optimizer (SGD) we use as-
sumes an independent relationship among all trainable pa-
rameters. However, higher rank structures introduce more
correlation among parameters (more than rank-1). How to
address the training difficulty of higher rank BatchEnsem-
ble is an interesting research direction.
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(a) Test Accuracy on CIFAR-10 and CIFAR-10C.

(b) Test ECE on CIFAR-10 and CIFAR-10C.

(c) Test Accuracy on CIFAR-100 and CIFAR-100C.

(d) Test ECE on CIFAR-100 and CIFAR-100C.

Figure 5: WideResNet-28-10 BatchEnsemble with different data augmentation techniques. It shows that our proposed
method CAugMixup achieves the best trade-off among all methods we consider.
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Dataset CIFAR-10 CIFAR-100

Metric Acc(↑) ECE(↓) cA/cE Acc(↑) ECE(↓) cA/cE

Deep Ensembles In 96.0 2.31% 76.16/15.3% 79.8 8.5% 51.3/23.9%
En 96.6 0.78% 76.77/9.78% 82.7 2.1% 54.1/13.8%

Mixup0.2 DE 97.02 2.76% 83.55/4.7% 83.61 4.85% 58.74/8.9%

Mixup1 DE 97.11 6.15% 83.33/8.0% 83.90 9.42% 61.02/8.9%

CAMixup0.2 DE 96.88 1.21% 81.94/4.6% 83.29 3.13% 57.92/9.3%

CAMixup1 DE 96.95 1.92% 83.01/4.4% 83.68 5.22% 59.18/8.6%

AugMix DE 97.39 0.59% 89.50/3.3% 84.15 5.13% 68.21/6.7%

AugMixup DE 97.56 2.71% 90.03/4.3% 84.85 6.86% 69.31/7.6%

CAugMixup DE 97.48 1.89% 89.94/4.7% 84.64 5.29% 69.19/5.9%

Table 4: Mixup/AugMix/AugMixup/CAugMixup on deep ensembles. We can conclude that Mixup worsens ensemble
predictions in deep ensembles as well as in BatchEnsemble (See Fig. 6a and the bad calibration of Mixup0.2 DE & Mixup1
DE in this table). This suggests we can use CAMixup on deep ensembles as well. However, the improvement is not as
obvious as it is on BatchEnsemble, leading to the fact that AugMix is the most calibrated (in- and out-of-distribution) data
augmentation strategy on deep ensembles.
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F. Deep Ensembles with Mixup
We showed that CAMixup improves Mixup BatchEnsem-
ble calibration on testset without undermining its calibra-
tion under distribution shift in Section 3.2. In this section,
we show that the improvement can also be observed on
deep ensembles. In Fig. 6, we showed the underconfidence
bias we observed on Mixup + BatchEnsemble also exists
on Mixup + deep ensembles, with an even more obvious
trend. Beyond commonly used ECE measure, we also ex-
plore other calibration measures. They further confirmed
our underconfidence intuition. We provide some brief ex-
planation on how to calculate ACE, SCE and TACE.

ACE measure is the same as ECE except for the binning
scheme. Rather than equally divide the confidence evenly
into several bins, ACE choses an adaptive scheme which
spaces the bin intervals so that each contains an equal num-
ber of predictions. SCE is the same as ECE except that
it accounts for all classes into calibration measure rather
than just looking at the class with maximum probability.
The softmax predictions induce infinitesimal probabilities.
These tiny predictions can wash out the calibration score.
TACE is proposed to set a threshold to only include predic-
tions with large predictive probability, to address the above
issue.

We present the results of Mixup, CAMixup, AugMix, Aug-
Mixup and CAugMixup on deep ensembles in Tab. 4. We
notice that the improvement of CAMixup on deep ensem-
bles is smaller than its improvement on BatchEnsemble.
We postulate that this is because Mixup + deep ensembles

is much badly calibrated than Mixup + BatchEnsemble.
For example, AugMixup + deep ensembles achieve 2.71%
and 6.86% ECE on CIFAR-10 and CIFAR-100. In the
meanwhile, AugMixup + BatchEnsemble achieve 1.71%
and 4.19%. Thus, even if CAMixup can improve the cal-
ibration of Mixup + deep ensembles, it still cannot beat
AugMix + deep ensembles. As a result, when we say we
close the calibration gap between BatchEnsemble and deep
ensembles, we are comparing CAugMixup BatchEnsem-
ble (BatchEnsemble + CAMixup + Augmix) to AugMix
deep ensembles. This is because AugMix deep ensembles
achieve the best calibration among all variants we tried.
How to completely fix the underconfidence in deep ensem-
bles is a natural extension of this work. Since we focus on
bridging the calibration gap between BatchEnsemble and
deep ensembles, we delegate the complete fix in deep en-
sembles to the future work.

G. Visualization of CAMixup Coefficient
In this section, we first examine the test accuracy of each
class in a WideResNet28-10 BatchEnsemble model trained
on CIFAR-10 in Table 5. This inspires us to assign different
Mixup coefficients to each class by their training difficulty,
in order to correctly adjust the confidence of Mixup. We
found that easier classes like class 1 and class 2 are not as-
signed mixup in Fig. 7. Harder classes like class 3 and class
4 are assigned mixup operation. These match the intuition
that applying mixup on easy examples on which we want
to be confident, while preventing overconfidence on hard
examples.
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(a) Reliability on testset. (b) Reliability on corrupt level 3.

(c) Reliability on corrupt level 3. (d) Reliability on corrupt level 5.

Figure 6: WideResNet-28-10 Deep Ensembles with Mixup on CIFAR-10. We plotted the reliability diagram of ensemble
and individual predictions. Besides ECE, we also plotted other calibration metrics such as ACE, SCE and TACE proposed
in Nixon et al. (2019). All metrics verify the conclusion that Mixup + Ensembles leads to underconfidence on testset.

Table 5: Per class test accuracy of WideResNet-28-10 BatchEnsemble model on CIFAR-10. The average test accuracy is
96.22.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

Test Acc 96.65 97.78 94.42 90.62 96.99 93.53 97.54 96.88 97.88 96.43

Figure 7: WideResNet-28-10 BatchEnsemble with different data augmentation techniques. It shows that our proposed
method CAugMixup achieves the best trade-off among all methods we consider.
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