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Abstract
Learning models that perform well under changes
to the data distribution is central to research on
domain- or out-of-distribution generalization, ro-
bust optimization and fairness. Domain-invariant
learning has enabled exciting progress in this di-
rection but has an important drawback: the re-
liance on implicit definition of which features
are considered stable or spurious by manually
partitioning the training set into “domains” or
“environments”. Our focus is on the more realis-
tic setting where environment partitions are not
provided. We propose an environment-discovery
algorithm that leverages Invariant Risk Minimiza-
tion to discover maximally informative environ-
ment partitions automatically, and connect it to
the fairness notion of group-sufficiency. We then
show theoretically and empirically how differ-
ent partitioning schemes can lead to increased or
decreased generalization performance, enabling
us to outperform IRM with handcrafted environ-
ments in multiple cases. Our method outperforms
IRM on the ColorMNIST dataset without using
the provided environment splits. However, we
also identify cases where partitioning schemes
lead to models that ignore essential features and
hence fail to generalize completely.

1. Introduction
Machine learning achieves super-human performance on
many tasks when the test data is drawn form the same distri-
bution as the training data. However, when the two distri-
butions differ, model performance can severely degrade to
even below chance predictions (Geirhos et al., 2020). Tiny
perturbations can derail classifiers, as shown by adversarial
examples (Szegedy et al., 2013) and common-corruptions
in image classification (Hendrycks & Dietterich, 2019).
Even new test sets collected from the same data acquisition
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pipeline induce distribution shifts that significantly harm
performance (Recht et al., 2019; Engstrom et al., 2020).

Many approaches have been proposed to overcome model
brittleness in the face of input distribution changes. Ro-
bust optimization aims to achieve good performance on any
distribution close to the training distribution (Goodfellow
et al., 2014; Madry et al., 2017). Domain-generalization
on the other hand tries to go one step further, to general-
ize to distributions potentially far away from the training
distribution. Invariant learning is a successful approach to
achieve domain generalization that takes inspiration from
causal discovery and encourages invariance across train-
ing environments or domains (Peters et al., 2016; Arjovsky
et al., 2019; Krueger et al., 2020). The goal is to learn pre-
dictors invariant to attributes of the data that change across
environments, allowing the model to generalize to different
and unobserved configurations of said attributes. However,
these methods rely on pre-specified environment partitions
implicitly defining the attributes one wishes to be invariant
to. Making well-informed choices about useful environment
partitions can require extensive expert knowledge or may
even be impossible in practice, where only a large observa-
tional dataset is typically available, which begs the question
of how to leverage it to make it useful for Invariant Learning.

We propose a new method to infer environment partitions
from observational training data. The core idea is to identify
environments that maximally violate an Invariant Learning
objective, using the predictive distribution of a (potentially

Method Handcrafted Train accs Test accs
Environments

ERM 7 86.3 ± 0.1 13.8 ± 0.6
IRM 3 71.1 ± 0.8 65.5 ± 2.3

EIIL+IRM 7 73.7 ± 0.5 68.4 ± 2.7

Table 1. Results on CMNIST, a digit classification task where color
is a spurious feature that correlates with the label at train time but
anti-correlates with it at test time. Our method Environment
Inference for Invariant Learning (EIIL) augments IRM to im-
prove test set performance without knowledge of pre-specified
environment labels, by instead finding worst-case environments
using aggregated observational training data and a reference classi-
fier.
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biased) classifier trained with standard empirical risk mini-
mization (ERM) on the whole dataset. We call this method
Environment Inference for Invariant Learning (EIIL)
and find that in some settings inferring environments di-
rectly from observational data improves Invariant Learning
relative to using the hand-crafted environments (Table 1).

To characterize when EIIL will succeed or fail, we study
the effect of encoding inductive biases into environment
specification more generally. It turns out that it is possible
to partition into environments in ways that hurt generaliza-
tion performance of IRM when compared to a naive ERM
baseline, highlighting the difficulty or even impossibility
of handcrafting good environments for any given problem.
We also give a sufficient condition for EIIL to succeed and
discover environments that will have maximal utility for
IRM to learn invariant representations. Finally, we point out
some very close relationships between the invariant learn-
ing and fairness learning formulations, including work on
fairness analogous to our environment discovery approach.

2. Methods
2.1. Environment Inference for Invariant Learning

We now derive a principle for inferring environments from
observational data. Our exposition extends IRM, but we
emphasize that EIIL is applicable more broadly to any
environment-based learning objective.

Let X be the input space, E the set of environments, Y
the target space.Let x, y, e ∼ pobs(x, y, e) be observational
data, perhaps realized by conditionally sampling from hand-
crafted environments: pobs(x, y, e) = pobs(e)pobs(x, y|e).
H denotes a representation space , e.g. the vector space of
logits. Φ : X → H denotes the parameterized mapping or
“model” that we optimize. We refer to Φ(x) ∈ H as the
“representation” of example x. ` : H × Y → R denotes
a scalar loss to be computed per example, and denote by
`e an environment-dependent loss function. The empirical
risk minimization (ERM) solution is found by minimizing
the global risk, expressed as the expected loss over the
observational distribution:

CERM (Φ) = Epobs(x,y,e)[`
e(Φ(x), y)].

In Invariant Learning, we learn representation Φ(x) that
encodes some notion of invariance across the environments
e ∈ E , with the ultimate goal of generalizing to an unknown
test dataset p(x, y|etest). Arjovsky et al. (2019) proposed
IRM, an instantiation of the Invariant Learning principle:

E[Y |Φ(x) = h, e1] = E[Y |Φ(x) = h, e2]

∀h ∈ H ∀ e1, e2 ∈ E .
(1)

Intuitively, IRM aims to learn a predictor that is simultane-
ously Bayes optimal in all environments. As a practical in-

stantiation of this principle, Arjovsky et al. (2019) introduce
IRMv1, a gradient-penalty regularized objective enforcing
simultaneous optimality of the same classifier w ◦ Φ in all
environments.1 Denoting by Re = Epobs(x,y|e)[`

e] the
per-environment risk, the objective to be minimized is

CIRM (Φ) =
∑
e∈E

Re(Φ) + λ||∇w|w=1.0R
e(w ◦ Φ)||].

IRM assumes pre-defined environment indicators are given,
but we are interested in understanding whether hand-crafted
environments are necessary, and whether they could be im-
proved upon. We first make a simplifying assumption2

that Re = R ∀ e, i.e. `e = `∀ e. Then by introducing
ui(e

′) = pobs(e|xi, yi) = 1(ei = e′) as an indicator of the
hand-crafted environment assignment per-example, and not-
ing thatNe :=

∑
i ui(e) represents the number of examples

in environment e, we can re-express this objective to make
its dependence on environment labels explicit

CIRM (Φ,u) =
∑
e∈E

1

Ne

∑
i

ui(e)`(Φ(xi), yi)

+
∑
e∈E

λ||∇w|w=1.0
1

Ne

∑
i

ui(e)`(w ◦ Φ(xi), yi)||2.

Our general strategy is to replace the binary indicator ui(e),
with a probability distribution q(e|xi, yi), representing a soft
assignment of the i-th example to the e-th environment. We
would like q(e|xi, yi) to capture worst-case environments
w.r.t the invariant learning objective; rewriting q(e|xi, yi) as
qi(e) for consistency with the above expression, we arrive
at the following bi-level optimization:

min
Φ

max
q

CIRM (Φ,q). (EIIL)

We leave the full exploration of this bi-level optimization
to future work, but for now propose the following practical
sequential, which we call EIILv1 (cf. See Appendix A):

1. Input reference model Φ̃

2. Fix Φ← Φ̃ and fully optimize the inner loop of (EIIL)
to infer environments q̃i(e) = q̃(e|xi, yi)

3. Fix q← q̃ and fully optimize the outer loop to yield
the new model Φ.

Instead of requiring hand-crafted environments, we instead
require a trained reference model Φ̃, which is arguably eas-
ier to produce and could be found using ERM on pobs(x, y),

1w ◦ Φ yields a classification decicion via linear weighting on
the representation features

2This holds for all experiments carried out by Arjovsky et al.
(2019). Because we would like to handle the setting without pre-
specified environments, we accordingly assume that environment-
dependent risk functions are unknown so a global risk is used.
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for example. In our experiments we consider binary environ-
ments and explicitly parameterize the q(e|x, y) as a vector
of probabilities for each example in the training data.3

2.2. The inductive bias of the reference representation

To characterize the ability of EIILv1 to generalize to unseen
test data, we now examine the inductive bias for generaliza-
tion provided by the reference model Φ̃. For lack of space,
we state the main results here and defer the proofs to Ap-
pendix B. Consider a dataset with some feature(s) Z which
are spurious, and other(s) V which are valuable/causal w.r.t.
the label Y . Our proof considers binary features and labels,
but the same argument extends to other cases. The aim of
invariant learning is to form a model Φ whose representation
Φ(V,Z) is invariant w.r.t. Z and focuses solely on V . We
consider the case with two environments. We discuss how
satisfying the Invariance Principle (Equation 1) depends
jointly on the model Φ and choice of environments {e}.

Theorem 1 Consider environments that differ in the de-
gree to which the label Y agrees with the spurious features
Z: P(1(Y = Z)|e1) 6= P(1(Y = Z)|e2). Then a refer-
ence model Φ̃Spurious invariant to valuable features V and
solely focusing on spurious features Z maximally violates
the Invariance Principle (Equation 1). And vice versa, if
Φ focuses on the spurious features then a choice of envi-
ronments that maximally violates the Invariance Principle
is e1 = {V,Z, Y |1(Y = Z)} and e2 = {V,Z, Y |1(Y 6=
Z)}.

Corollary 1.1 The environment labels provided in the
CMNIST dataset (Arjovsky et al., 2019) do not maximally vi-
olate the Invariance Principle in Equation 1 for a reference
model invariant to V and solely focusing on Z, and are thus
not maximally informative for learning a model ignoring
color.

Remark 1 In practice we find that Φ̃ERM on CMNIST ap-
proximates Φ̃Color. Thus we can automatically find envi-
ronment partitions that provide a starker contrast w.r.t. the
relationship between the spurious feature and label, com-
pared with hand-crafted environments.

Remark 2 If environments are split according to agreement
of Y and Z, then the constraint from Equation 1 (the In-
variance Principle) is satisfied under a representation that
ignores Z: Φ(X) ⊥ Z.

Remark 3 On CMNIST, using EIIL to find environments
based on the ERM solution Φ̃ERM then running IRM (de-

3Note that under this parameterization, when optimizing the
inner loop with fixed Φ the number of parameters equals the num-
ber of data points (which is small relative to standard neural net
training). We leave amortization of q to future work.

Causal MSE Noncausal MSE

ERM 0.827 ± 0.185 0.824 ± 0.013
ICP(eHC) 1.000 ± 0.000 0.756 ± 0.378
IRM(eHC) 0.666 ± 0.073 0.644 ± 0.061
IRM(eEIIL) 0.148 ± 0.185 0.145 ± 0.177

Table 2. IRM using EIIL-discovered environments (eEIIL) outper-
forms IRM in a synthetic regression setting without the need for
hand-crafted environments (eHC). This is because the reference
representation Φ̃ = ΦERM uses the spurious feature for prediction.
MSE + standard deviation across 5 runs reported.

noted IRM(eEIIL)) leads to better test set generaliza-
tion than IRM on the hand-crafted environments (denoted
IRM(eHC)). See Table 1.

2.3. Connections to Fairness

Equation 1 involves an environment-specific conditional
label expectation given a data representation E[Y |Φ(X) =
h, e]. Objects of this type have been closely studied in the
fair machine learning literature, where the environment e is
replaced by a “sensitive” attribute a denoting membership
in a protected demographic group (age, race, gender, etc.),
and the vector representation Φ(X) is typically replaced
by a scalar score S(x) ∈ R. E[Y |S(X), a] can now be
interpreted as a calibration curve that must be regulated
according to some fairness constraint. Chouldechova (2017)
showed that equalizing this calibration curve across groups
is often incompatible with a common fairness constraint,
demographic parity, while Liu et al. (2018) studied “group
sufficiency” of classifiers with convex loss, concluding that
ERM naturally finds calibrated (and thus group sufficient)
solutions without fairness constraints4.

In this work we are interested in whether worst-case envi-
ronments can be automatically discovered. Closely related
to our approach, Hébert-Johnson et al. (2017) proposed Mul-
ticalibration as a way of ensuring a classifier’s calibration
curve is invariant to efficiently computable environment
splits. However we note that the proposed algorithm re-
quires brute force enumeration over all possible environ-
ments5; we consider a more practical approach based on
finding the worst-case environments.

4Because of the convexity assumption, these results do not
apply to the neural net representations considered by IRM.

5A more practical algorithm was considered in Kim et al. (2019)
by relaxing the calibration constraint to an accuracy constraint.
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3. Experiments
3.1. Synthetic Data

We begin with a regression setting originally used as a toy
dataset for evaluating IRM (Arjovsky et al., 2019). The
features x ∈ RN comprise a “causal” feature v ∈ RN/2
concatenated with a “non-causal” feature z ∈ RN/2: x =
[v, z]. Noise varies across hand-crafted environments e:

v = εv εv ∼ N (0, 25)

y = v + εy εy ∼ N (0, e2)

z = y + εz εz ∼ N (0, 1).

We evaluated the performance of the following methods.
ERM: A naive regressor that does not make use of environ-
ment labels e, but instead optimizes the average loss on the
aggregated environments. IRM(eHC): the method of Ar-
jovsky et al. (2019) using hand-crafted environment labels
{e}. ICP(eHC): the method of Peters et al. (2016) using
hand-crafted environment labels {e}. IRM(eEIIL): our
proposed method (which does use environment labels {e})
that infers useful environments based on the naive ERM,
then applies IRM to the inferred environments.

The regression methods fit a scalar target y = 1Ty via a
regression model ŷ ≈ wTx to minimize ||y − ŷ|| w.r.t. w,
plus an invariance penalty as needed. The optimal (causally
correct) solution is w∗ = [1,0] Given a solution [ŵv, ŵz]
from one of the methods, we report the mean squared error
for the causal and non-causal dimensions as ||ŵv−1||22 and
||ŵz − 0||22 (Table 2). Because v is marginally noisier than
z, ERM focuses on the spurious z. IRM using hand-crafted
environments, denoted IRM(eHC), exploits variability in
noise level in the non-causal feature (which depends on the
variability of σy) to achieve lower error. Using EIIL instead
of hand crafted environments yields an improvement on the
resulting IRM solution (denoted IRM(eEIIL)) by learning
worst-case environments for invariant training.

We show in a follow-up experiment that the EIIL solution
is indeed sensitive to the choice of reference representation,
and in fact, can only capture the correct causal solution
when the reference representation encodes the incorrect
inductive bias by focusing on the spurious feature. Simi-
larly, IRM will only improve over the ERM solution when
ERM does not successfully focus on the causal feature v,
while the environments vary in their dependence on the
non-causal feature z. We can explore this dependence of
EIIL on the mix of spurious and non-spurious features in
the reference model by constructing a Φ̃ that varies in the
degree it focuses on the spurious feature, according to con-
vex mixing parameter α ∈ [0, 1]. α = 0 indicates focusing
entirely on the correct causal feature , while α = 1 indi-
cates focusing on the spurious feature . We refer to this
variant as IRM(eEIIL|Φ̃ = Φα−SPURIOUS) , and measure its
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Figure 1. MSE of the causal feature v. IRM(eEIIL)applied to the
ERM solution (Black) out-performs IRM based on the hand-crafted
environment (Green vs. Blue). To examine the inductive bias of
the reference model Φ̃, we we hard code a model Φ̃α−SPURIOUS

where α controls the degree of spurious feature representation
in the reference classifier; IRM(eEIIL) outperforms IRM(eHC)
when the reference Φ̃ focuses on the spurious feature, e.g. with Φ̃
as ERM or α-SPURIOUS for high α.

performance as a function of α (Figure 1).

3.2. ColorMNIST

ColorMNIST (CMNIST) is a noisy digit recognition task6

where color is a spurious feature that correlates with the
label at train time but anti-correlates at test time, with the
correlation strength at train time varying across two pre-
specified environments (Arjovsky et al., 2019). Crucially,
label noise is applied by flipping y with probability θy; the
default setting (θy = .0.25) implies that shape (the correct
feature) is marginally less reliable than color in the train set,
so naive ERM ignores shape to focus on color and suffers
from below-chance performance at test time.

After noting that EIIL outperforms IRM without access to
environment labels in the default setting (See Tables 1 and
3), we examine how the various methods perform as a func-
tion of θy. This parameter influences the ERM solution
since low θy implies shape is more reliable than color in
the aggregated training data (thus ERM generalizes poorly),
while the opposite trend holds for high θy. Because EIIL
relies on a reference model Φ̃, its performance is also af-
fected when Φ̃ = ERM (see Figure 3 in Appendix D.2). We
find that IRM(eEIIL) generalizes better than IRM(eHC)
with sufficiently high label noise θy > .2, but generalizes
poorly under low label noise. This is precisely due to the
success of ERM in this setting, where shape is a more reli-
able feature in the training data than color. We verify this
conclusion by evaluating IRM(eEIIL) when Φ̃ = ΦColor,
which uses a hand-coded color-based predictor as reference
representation, which succeeds across all settings of θy .

6The standard MNIST digits are grouped into {0, 1, 2, 3, 4}
and {5, 6, 7, 8, 9} so the CMNIST target label y is binary.
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A. EIIL Psuedocode

Algorithm 1 Example applying EIIL to infer two environments that maximally violate the IRM objective.

Input: Reference model Φ̃, dataset D = {xi, yi} with xi, yi ∼ pobs iid, loss function `, duration Nsteps
Output: Worst case data splits D1, D2 for use with IRM.
Randomly initialize e ∈ R|D| as vectorized logit of posterior with σ(ei) := q(e|xi, yi). for n ∈ 1 . . . Nsteps do

R1 = 1∑
i′ σ(ei′ )

∑
i σ(ei)`(Φ̃(xi), yi) ; // D1 risk

G1 = ∇w|w=1|| 1∑
i′ σ(ei′ )

∑
i σ(ei)`(w ◦ Φ̃(xi), yi)||2 ; // D1 invariance regularizer

R2 = 1∑
i′ 1−σ(ei′ )

∑
i(1− σ(ei))`(Φ̃(xi), yi) ; // D2 risk

G2 = ∇w|w=1|| 1∑
i′ 1−σ(ei)

∑
i(1− σ(ei))`(w ◦ Φ̃(xi), yi)||2 ; // D2 invariance regularizer

L = 1
2

∑
e∈{1,2}R

e + λGe

e← OptimUpdate(e,∇eL)
end
ˆ

e ∼ Bernoulli(σ(e)) ; // sample splits

D1 ← {xi, yi|êi = 1}, D2 ← {xi, yi|êi = 0} ; // split data

B. Proof of Theorem 1
Consider a dataset with some feature(s) Z which are spurious, and other(s) V which are valuable/causal w.r.t. the label Y .
This includes data generated by models where V → Y → Z, such that

P (Y |V,Z) = P (Y |V ).

Assume further that the observations X are functions of both spurious and valuable features: X := f(V,Z). The aim of
invariant learning is to form a classifier that predicts Y from X that focuses solely on the causal features, i.e., is invariant to
Z and focuses solely on V .

Consider a classifier that produces a score S(X) for example X . In the binary classification setting S is analogous to the
model Φ, while the score S(X) is analogous to the representation Φ(X). To quantify the degree to which the constraint in
the Invariant Principle (Equation 1) holds, we introduce a measure called the group sufficiency gap7:

∆(S, e) = E[[E(Y |S(X), e1)− E(Y |S(X), e2)]]

Now consider the notion of an environment: some setting in which the X → Y relationship varies (based on spurious
features). Assume a single binary spurious feature Z. We restate Theorem 1 as follows:

Claim: If environments are defined based on the agreement of the spurious feature Z and the label Y , then a classifier
that predicts based on Z alone maximizes the group-sufficiency gap (and vice versa – if a classifier predicts Y directly by
predicting Z, then defining two environments based on agreement of label and spurious feature—e1 = {V,Z, Y |1(Y = Z)}
and e2 = {V,Z, Y |1(Y 6= Z)}—maximizes the gap).

We can show this by first noting that if the environment is based on spurious feature-label agreement, then with e ∈ {0, 1}
we have e = 1(Y = Z). If the classifier predicts Z, i.e. S(X) = Z, then we have

∆(S, e) = E[E[Y |Z(X),1(Y = Z)]− E[Y |Z(X),1(Y 6= Z)]]

For each instance of X either Z = 0 or Z = 1. Now we note that when Z = 1 we have E(Y |Z,1(Y = Z)) = 1 and
E(Y |Z,1(Y 6= Z)) = 0, while when Z = 0 E(Y |Z, I[Y == Z]) = 0 and E[Y |Z,1(Y 6= Z)] = 1. Therefore for each
example |E(Y |Z(X),1(Y = Z))− E(Y |Z(X),1(Y 6= Z)|= 1, contributing to an overall ∆(S,X, Y, e) = 1, which is
the maximum value for the sufficiency gap.

7This was previously used in a fairness setting by Liu et al. (2018) to measure differing calibration curves across groups.
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Train accs Test accs

ERM 86.3 ± 0.1 13.8 ± 0.6
IRM(eHC) 71.1 ± 0.8 65.5 ± 2.3
IRM(eEIIL|Φ̃ = ΦERM ) 73.7 ± 0.5 68.4 ± 2.7
IRM(eEIIL|Φ̃ = ΦColor) 75.9 ± 0.4 68.0 ± 1.2
ΦColor 85.0 ± 0.1 10.1 ± 0.2
GRAYSCALE 75.3 ± 0.1 72.6 ± 0.6

Table 3. Accuracy across ten runs with label noise θy = 0.25 GRAYSCALE hard codes out the color feature and thus represents an oracle
solution to CMNIST.

C. Training details
IRM is trained on these two environments and tested on a holdout environment constructed from 10.0000 test images in the
same way as there training environments, where colour is predictive of the noisy label 10% of the time. So using color as a
feature to predict the label will lead to an accuracy of roughly 10% on the test environment, while it yields 80% and 90%
accuracy respectively on the training environments.

To evaluate IRM(eEIIL) we remove the environment identifier from the training set and thus have one training set comprised
of 50, 000 images from both original training environments. We then train an MLP with binary cross-entropy loss on the
training environments, freeze its weights and use the obtained model to learn environment splits that maximally violate the
IRM penalty. The obtained environment partitions are then used to train a new model from scratch with IRM.

Krueger et al. (2020) already discussed the problems of this dataset when the test data can be used to tune hyperparameters.
Because our primary interest is in the properties of the inferred environment rather than the final test performance, we
sidestep this issue by using the default parameters of IRM without further tuning.

D. Additional Results
D.1. Synthetic data
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(a) Causal error
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Figure 2. Examining the EIIL solution as a function of hard-coded spuriousness parameter α in the reference classifier.
IRM(eEIIL)outperforms IRM(eHC)when the reference Φ̃ focuses on the spurious feature, e.g. with Φ̃ as ERMor α-SPURIOUS

for high α.

Table 2 shows complete version of the result from Table 1, including the MSE to the non-causal feature.

D.2. ColorMNIST

Figure 3 shows the full results from the label noise sweep experiment.

Table 3 expands on the results from Table 1 by adding additional methods discussed in Section 2.
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Figure 3. CMNIST results for varying label noise θy . Under high label noise (θy > .2), where the spurious feature color correlates
to label more than shape on the train data, IRM(eEIIL) matches or exceeds the performance of IRM(eHC) on the shifted (spurious
correlation reversed) test set without relying on hand-crafted environments. Under medium label noise (.1 < θy < .2), IRM(eEIIL)
under-performs relative to IRM(eHC), but outperforms ERM, the logical approach if environments are not available. Under low label
noise (θy < .1), where the spurious feature color correlates to label less than shape on the train data, ERM performs well and IRM(eEIIL)
fails. GRAYSCALE indicates an oracle classifier that predicts based on the causal feature (shape), while ΦColor represents an oracle
classifier that predicts based on the spurious feature (color).


