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Abstract
Gradient projection and gradient estimation have
been studied as two distinct topics. We aim to
bridge the gap between the two by investigat-
ing how gradient can be effectively estimated
from a projected low-dimensional space. We
provide lower and upper bounds for gradient es-
timation under both linear and non-linear pro-
jections. Moreover, we analyze the query com-
plexity for the projection-based gradient esti-
mation. Built upon our theoretic analysis, we
propose a novel query-efficient Nonlinear Gra-
dient Projection-based Boundary-based Black-
box Attack (NonLinear-BA). We show that the
boundary blackbox attack with projection-based
gradient estimation is able to achieve a much
smaller magnitude of perturbation with the same
number of queries and a 100% attack success rate.
We also evaluate NonLinear-BA against commer-
cial online API MEGVII Face++ and demonstrate
high attack performance.

1. Introduction
Gradient estimation and gradient projection have both been
extensively studied in machine learning, but largely for dif-
ferent purposes. Gradient estimation is used when gradient-
based optimization such as back-propagation is employed
but the exact gradients are not directly accessible, for ex-
ample, in the case of blackbox adversarial attack (Chen
et al., 2020; Li et al., 2020). Gradient projection (or sparsi-
fication), on the other hand, has also been used to speedup
training, for instance, by reducing the complexity of com-
munication and/or storage when performing model update
in distributed training (Wangni et al., 2018). In this paper,
we aim to bridge the gap between the two and ask the follow-
ing questions: Can we estimate gradients from a projected
low-dimensional subspace? How do different projections
affect the gradient estimation quality?

Our investigation is motivated in particular by the chal-
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lenging problem of blackbox adversarial attacks (Bhagoji
et al., 2017; Ilyas et al., 2018). While extensive progresses
have been made in white-box attacks (Carlini & Wagner,
2016; Xu et al., 2018; Evtimov et al., 2017), where attackers
have complete knowledge about the target model, the more
realistic scenario of blackbox attacks, where the attacker
only has query access to the target model, remains a chal-
lenging topic. One major challenge is the excessive query
complexity. For example, boundary-based blackbox attacks
(BA) (Brendel et al., 2017) have shown promising attack
effectiveness, but the required query number is too large
to be practically feasible (e.g., many approaches require
105 or more queries per attack, which could take hours or
even days given the rate limit of public APIs). This ineffi-
ciency stems partially from the high-dimensionality of the
gradient since the Monte Carlo gradient estimation relies on
sampling perturbations from the gradient space.

In this work, we study the properties of a general projection
f , which transforms vectors from low-dimensional subspace
Rn to the original gradient space Rm for gradient estima-
tion. We theoretically prove the general cosine similarity
lower and upper bounds between the estimated and true gra-
dients based on sampling distribution analysis and Taylor
expansion. We then propose NonLinear-BA, which applies
deep generative models such as AEs, VAEs, and GANs as
the nonlinear projections to perform blackbox attack and
therefore demonstrates the power of the projection-based
gradient estimator empirically. We experimentally evalu-
ate NonLinear-BA with three proposed nonlinear projec-
tions on four image datasets: ImageNet (Deng et al., 2009),
CelebA (Liu et al., 2015), CIFAR-10 (Krizhevsky et al.,
2009) and MNIST (LeCun et al., 1998). We show that
NonLinear-BA can achieve 100% attack success rate with
much smaller magnitude of perturbation efficiently. We also
evaluate the NonLinear-BA against a commercial online
API MEGVII Face++ (fac). Both quantitative and qualita-
tive results are shown to demonstrate its superiority in terms
of attack effectiveness.

Contributions: (1) We propose a novel nonlinear gradient
projection-based BA (NonLinear-BA) which exploits the
power of nonlinear-projection based gradient estimator and
achieves the state-of-the-art performance. (2) We provide
the first general theoretical analysis framework for analyz-
ing the cosine similarity between estimated and true gradi-
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ents via different projections. (3) We prove and compare the
lower bounds of gradient cosine similarity for linear and non-
linear projections. We also analyze the query complexity
of the projection based gradient estimators. (4) We conduct
extensive experiments on both offline ML models and com-
mercial online APIs with high dimensional image datasets
to demonstrate the high attack success of NonLinear-BA.
The empirical results verify our theoretical findings that
efficient projection-based gradient estimation via sampling
in low dimension is possible and some projections would be
more effective under certain conditions.

2. Problem Definition
In this section, we will first introduce the framework of
boundary-based blackbox attack, and then focus on tackling
the challenge of query-based gradient estimation.

Boundary-based blackbox Attack (BA). Given an in-
stance x drawn from certain distribution D: x ∼ D, where
x ∈ Rm, a C-way classification model G : Rm 7→
RC is trained to output the confidence score for each
class. The final prediction of the model is obtained by
selecting the class with the highest confidence score y =
argmaxi∈[C]G(x)i ([C] = {1, . . . , C}). The model G is
referred to as ‘target model’ throughout our discussion as it
is the target of the adversarial attack. In this work we focus
on the scenario where the adversaries do not have access to
the details of model G (i.e. blackbox attack), and can only
query the model to obtain the final prediction label y instead
of the confidence scores.
The general framework of a BA is as follows: given a target-
image xtgt ∈ Rm whose true label is yben ∈ [C], the at-
tacker’s goal is to craft an adversarial image xadv that is
predicted as a maliciously chosen label ymal ∈ [C], while
the distance D(xtgt, xadv) between the two images is as
small as possible. Here D is a Lp-norm based distance
function which aims to restrict the perturbation added to
the target-image in order to make it less noticeable. In this
paper we only consider targeted attack with an intentionally
chosen ymal since untargeted attack is a trivial extension of
the targeted case (by randomly sampling a ymal).

Definition 1 ((G, ymal))-Difference Function). Given a
model G, and malicious target ymal, the difference function
S : Rm → R is defined as S(x) = G(x)ymal

−G(x)yben ,
where yben denotes the ground truth label.
The difference function S is an important indicator of
whether the image is successfully perturbed from being
predicted as yben to ymal. A boundary-image is an image x
that lies on the decision boundary between yben and ymal ,
i.e., S(x) = 0.

Projected gradient estimation. There are three main steps
to perform the BA: (1) gradient estimation at G’s decision
boundary, (2) move the boundary-image along the estimated
gradient direction, and (3) map the image back to the deci-
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Figure 1. Algorithm overview for NonLinear-BA.

sion boundary. Typically, the first step requires to estimate
the gradient based on the sign of difference function given
multiple queries. It’s computationally expensive as the high-
dimensional gradient estimation requires a large number of
queries (Chen et al., 2020).

3. NonLinear-BA: Nonlinear Gradient
Projection-based Boundary Blackbox
Attack

In this section we introduce the proposed nonlinear gradient
projection-based boundary blackbox attack NonLinear-BA
as illustraed in Figure 1, followed by the detailed theoretical
analysis and guarantees in Section 4.

In standard BA, the way to estimate the gradient given
the query results is done by Monte Carlo sampling
method (Chen et al., 2020):

∇̃S(x(t)adv) =
1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + δub

))
ub, (1)

where x(t)adv is the boundary-image at iteration t obtained
by binary search. The ub’s are B normalized perturbation
vectors sampled from the whole gradient space. The size
of random perturbation δ is chosen as a function of image
size and the binary search threshold (Chen et al., 2020) to
control the error of gradient estimation due to the fact the
boundary-image never exactly lies on the decision boundary.
The function sgn (S(·)) denotes the sign of the difference-
function (Definition 1). Its value is acquired by querying
the victim model and compare the output label with ymal.
It is clear that the query cost is very high when the input
dimension m is large. (Li et al., 2020) propose to search
for a representative subspace with orthonormal mappings
W = [w1, . . . , wn] ∈ Rm×n, n � m and WᵀW = I .
The perturbation vectors are generated by first sampling n
dimensional unit vectors vb and project them with ub =
Wvb.

Nonlinear projection based gradient estimation. To
search for the gradient representative subspaces more ef-
ficiently, we propose to perform the nonlinear projection-
based gradient estimation. In particular, we propose to
leverage generative models given their expressive power.
Here we mainly consider AE, VAE and GAN as exam-
ples. There are two phases in NonLinear-BA: training and
attacking. The detailed model structure and the training
phase are described in Section H.1. We denote both the ‘de-
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coder’ of AE and VAE and the ‘generator’ part of GAN as
‘projection-based gradient estimator’ in our following discus-
sion. The gradient estimator is then used as the projection
f : Rn → Rm in the attacking phase. We randomly sam-
ple unit latent vectors vb’s. Then the perturbation vectors
generated as ub = f(vb) are used in the gradient estimation,
yielding our gradient estimator as

∇̃S(x(t)adv) =
1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + δf(vb)

))
f(vb). (2)

Move the image along estimated gradient direction and
map back to decision boundary. After getting the esti-
mated gradient ∇̃S, the boundary-image x(t)adv is moved
along that direction and mapped back to the decision bound-
ary similar to (Chen et al., 2020).

4. Projected Gradient Estimation Analysis
To study the effectiveness of our projection-based gradient
estimator in Equation (2) to improve the estimation accuracy
and reduce the number of queries, in this section, we theoret-
ically analyze the expected cosine similarity between the es-
timated gradient ∇̃S(x

(t)
adv) and the true gradient ∇S(x

(t)
adv)

for the boundary-image x(t)adv at step t.

4.1. Generalized Gradient Estimator
We first formally define the gradient projection function
f : Rn → Rm, which maps from the low-dimensional
representative space Rn to the original high-dimensional
space Rm, where n ≤ m.

Definition 2 (Generalized Projection-based Gradient Es-
timator). Suppose f(x0) is a boundary image, i.e.,
S (f(x0)) = 0, let u1, u2, . . . , uB be a subset of orthonor-
mal basis of space Rn sampled uniformly (B ≤ n), we
define

∇̃fT∇S :=
1

B

B∑
i=1

sgn (S (f(x0 + δui)))ui. (3)

Then, the generalized gradient estimator for ∇S (f(x0)) is
defined as

∇̃S (f(x0)) := ∇f(x0)∇̃fT∇S. (4)

We sometimes abbreviate ∇̃S (f(x0)) as ∇̃S for brevity.

All the aforementioned gradient estimators are concretiza-
tion of this generalized gradient estimator with different
projection f , including HSJA (Chen et al., 2020), QEBA (Li
et al., 2020) and our proposed NonLinear-BA. We defer the
instantiations to Appendix B.

We now impose local Lipschitz and local smoothness condi-
tions on the projection f and the difference function S.

Definition 3 (Local L-Lipschitz). A (scalar or vector) func-
tion f is called local L-Lipschitz around x0 with radius
r, if for any two inputs x, x′ ∈ {x0 + δ : ‖δ‖2 ≤ r},
‖f(x)−f(x′)‖2
‖x−x′‖2 ≤ L.

Definition 4 (Local β-moothness). A (scalar or vector)
function f is called local β-smooth around x0 with ra-
dius r, if (1) f is differentiable everywhere in region
{x0 + δ : ‖δ‖2 ≤ r}; and (2) for any two inputs x, x′ ∈
{x0 + δ : ‖δ‖2 ≤ r}, λmax(∇f(x)−∇f(x′))

‖x−x′‖2 ≤ β, where
λmax(M) denotes the maximum eigenvalue of the matrix
M. Specifically, if M is a vector, λmax(M) = ‖M‖2.

Throughout the section, we assume the projection f is Lf -
Lipschitz and βf -smooth around x0 with radius δ, and
the difference function S is LS-Lipschitz and βS-smooth
around f(x0) with radius Lf δ.

For the convenience of our analysis, we define the constant
ω as such:
Definition 5 (Gradient cosine similarity indicator ω).

ω := δ

(
1

2
βfLS +

1

2
βSL

2
f +

1

2
δβfβSLf +

1

8
δ2β2

f βS

)
. (5)

The Gradient cosine similarity indicator ω is an important
quantity appearing in the cosine similarity lower bound. δ
denotes the step size used in gradient estimation.

Theorem 1 (General Bound for Gradient Estimator). Let
f(x0) be a boundary image, i.e., S (f(x0)) = 0. The projec-
tion f and the difference function S satisfy the assumptions
in Section 4.1. Over the randomness of the sampling of
orthogonal basis subset u1, u2, . . . , uB in Rn space, the
expectation of cosine similarity between ∇̃S (f(x0)) (∇̃S
for short) and ∇S (f(x0)) (∇S for short) satisfies(

2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
‖∇f T∇S‖2
Lf‖∇S‖2

√
B

n
cn

≤ E cos 〈∇̃S, ∇S〉 ≤ ‖∇f
T∇S‖2

lf‖∇S‖2

√
B

n
cn,

(6)
where ω is defined in Definition 5, and we assume ω ≤
‖∇f T∇S‖2; cn ∈ (2/π, 1) is a constant depended on n;
lf := λmin(∇f(x0)).
We defer the detailed proof to Appendix C.
Remark. The theorem provides the cosine similarity bounds
between our generalized gradient estimator ∇̃S and the true
gradient of the difference function ∇S. We remark that
smaller ω implies larger cosine similarity lower bound. De-
tail discussions of the bound are presented in the following.

4.2. Gradient Estimation with Different Projections
We also show that for any linear projection f , there exists
a nonlinear projection f ′ which has the same local gradient
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Figure 2. The perturbation magnitude based on different queries for attacks on diverse datasets.

∇f ′(x0) as∇f(x0) but yields higher cosine similarity lower
bound. The formal statement (Theorem 2) and proof are
deferred to Appendix D.

Implications Based on the above results, we aim to fur-
ther analyze two research questions.

Can we estimate gradients from a projected low-
dimension subspace?
The answer is yes. According to Theorems 1 and 2, the
cosine similarity between true gradient and estimated gra-
dient depends on the ratio B/n, rather than only the sub-
space dimension n. Now we assume the number of queries
B is equal to the subspace dimensionality n. We can
observe a sufficient condition for good cosine similarity:
‖∇f T∇S‖2/‖∇S‖2 is large, i.e., the gradient ∇f aligns
with the gradient∇S well. We remark that the condition is
independent with subspace dimensionality n.

On the other hand, we inspect the relation between cosine
similarity bound and the number of queries B. As shown in
Equation (6), both the lower and upper bound are in Θ(

√
B)

with respect to number of queries — to achieve a cosine
similarity s, one need to perform Θ(s2) number of queries.
We formalize the query complexity analysis as below and
defer the proof and discussion to Appendix C.

Corollary 1 (Query Complexity). Given projection f and
difference function S, to achieve expected cosine similarity
E〈∇S(f(x0)), ∇̃S(f(x0))〉 = s, the required query num-
ber B is in Θ(s2).

How do different projections affect the gradient estima-
tion quality?
The above results allow us to compare projection-based gra-
dient estimators in different boundary attacks directly. We
instantiate the general bound in Theorem 1 for HSJA and
QEBA respectively, which shows that QEBA is significantly
better than HSJA as it achieves the same cosine similarity
with much fewer queries. For NonLinear-BA, Theorem 2
points out the possibility and a checkable sufficient condi-
tion where NonLinear-BA could be better than correspond-
ing linear projection including HSJA and QEBA, in terms
of providing higher lower bound of cosine similarity. In a
nutshell, the nonlinear projection which outperforms linear
projection is not rare, however, its efficient search algorithm
with theoretical guarantees is still unclear.

5. Experiments
Blackbox Attack Performance on Offline Models We de-
fer the discussion on experimental setup to Appendix F.
Figure 2 shows the attack performance of different ap-
proaches in terms of the perturbation magnitude (L2 dis-
tance). The attack success rates are shown in Figure 3
in appendix. The ‘NonLinear-BA’ is denoted as ‘NLBA’
in figures to save legend space. The NonLinear-BA with
the three projection methods exhibit different patterns for
the four datasets. NonLinear-BA-AE and NonLinear-BA-
VAE are the most consistent across various datasets. They
can achieve significantly better performance compared with
baseline HSJA method, and outperform QEBA in many
cases. The NonLinear-BA-GAN method, on the other hand,
is less stable. We defer the discussion in Appendix J We
show qualitative case studies of the attacks in Appendix K.1.

We also verify with quantitative results the theoretical find-
ings on cosine similarity between the estimated and ground
truth gradients as well as variable ω. The results and discus-
sion are in Appendix I.2.

Attack Performance against Commercial APIs To
demonstrate the practicality of the proposed NonLinear-
BA, we also perform the blackbox attack against real-world
online commercial APIs. Figure 6 in Appendix J shows the
L2 distance between the adv-image and the target-image
with different numbers of queries. The attack success rate
is always 100% during the whole process. From the figure
it is clear that all the 6 gradient projection-based methods
including both linear and non-linear projections are better
than the baseline HSJA in terms of the L2 distance under
the same number of queries, and the nonlinear projection
converges faster while observes slightly higher perturbation
magnitude. The qualitative results of case studies are shown
in Appendix K.2.

6. Conclusion
We propose NonLinear-BA, a projection-based gradient es-
timation approach for query-efficient boundary-based black-
box attack. We theoretically show nontrivial cosine simi-
larity bounds for a group of projection based gradient esti-
mation approaches and analyze the properties of different
projections. We evaluate the efficiency of NonLinear-BA
with extensive experiments against both offline ML models
on four image datasets and commercial online APIs.



Nonlinear Gradient Estimation for Query Efficient Blackbox Attack

References
Face++. https://www.faceplusplus.com/.

Pretrained dcgan weights. https://github.com/csinva/gan-
vae-pretrained-pytorch/.

Bhagoji, A. N., He, W., Li, B., and Song, D. Exploring
the space of black-box attacks on deep neural networks.
arXiv preprint arXiv:1712.09491, 2017.

Brendel, W., Rauber, J., and Bethge, M. Decision-based ad-
versarial attacks: Reliable attacks against black-box ma-
chine learning models. arXiv preprint arXiv:1712.04248,
2017.

Carlini, N. and Wagner, D. A. Towards evaluating the ro-
bustness of neural networks. corr abs/1608.04644 (2016).
arXiv preprint arXiv:1608.04644, 2016.

Chen, J., Jordan, M. I., and Wainwright, M. J. Hop-
skipjumpattack: A query-efficient decision-based attack.
In 2020 IEEE Symposium on Security and Privacy (SP),
pp. 668–685, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B.,
Prakash, A., Rahmati, A., and Song, D. Robust physical-
world attacks on deep learning models. arXiv preprint
arXiv:1707.08945, 2017.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box
adversarial attacks with limited queries and information.
In International Conference on Machine Learning, pp.
2137–2146, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, H., Xu, X., Zhang, X., Yang, S., and Li, B. Qeba: Query-
efficient boundary-based blackbox attack. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Marsaglia, G. et al. Choosing a point from the surface of
a sphere. The Annals of Mathematical Statistics, 43(2):
645–646, 1972.

MEGVII. Facial recognition ‘compare’ api.
https://console.faceplusplus.com/documents/5679308, a.

MEGVII. Facial recognition ‘compare’ api query url.
https://api-us.faceplusplus.com/facepp/v3/compare, b.

Muller, M. E. A note on a method for generating points
uniformly on n-dimensional spheres. Communications of
the ACM, 2(4):19–20, 1959.

Papernot, N., McDaniel, P., and Goodfellow, I. Transfer-
ability in machine learning: from phenomena to black-
box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

PyTorch. Torchvision.models.
https://pytorch.org/docs/stable/torchvision/models.html.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D., and Mc-
Daniel, P. The space of transferable adversarial examples.
arXiv preprint arXiv:1704.03453, 2017.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1299–1309, 2018.

Xu, X., Chen, X., Liu, C., Rohrbach, A., Darrell, T., and
Song, D. Fooling vision and language models despite
localization and attention mechanism. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), June 2018.



Nonlinear Gradient Estimation for Query Efficient Blackbox Attack

A. Related Work
The blackbox attack can be divided into two categories: transfer-based and query-based attacks. The transfer-based attacks
rely on adversarial transferability (Papernot et al., 2016; Tramèr et al., 2017), where the adversarial examples generated
against one ML model can also attack another model. The query-based attacks utilize the zero order information to estimate
the gradient of the blackbox model via queries. Boundary-based blackbox attack (BA) (Brendel et al., 2017) is another
type of query-based attack which only provides the final prediction instead of the prediction confidence scores for each
query. Several work have been conducted to improve the query efficiency for BA. For instance, (Chen et al., 2020) applies
the Monte-Carlo sampling strategy to perform gradient estimation for BA, and (Li et al., 2020) improves it by sampling
from representative low-dimensional orthonormal subspace. Our work, on the other hand, aims to explore more general
projection based gradient estimator with a unified theoretical analysis framework, as well as a more effective real-world
blackbox attack approach.

B. Concretization of Generalized Gradient Estimator
As discussed in Section 4.1, the generalized gradient estimator in Definition 2 unifies the boundary gradient estimator in
HSJA (Chen et al., 2020), QEBA (Li et al., 2020), and our NonLinear-BA. In this section we discuss the concretization of
them in detail.

In the generalized gradient estimator, the u1, u2, . . . , uB are a sampled subset of orthonormal basis, whereas in practice, all
these methods only sample normalized vectors for efficiency concern. As implied by Lemma 1, when n becomes large,
〈ui, v〉’s PDF is highly concentrated at x = 0, implying that with high probability the sampled normalized vectors are close
to orthogonal. Therefore, the orthonormal basis sampling can be approximated by normalized vector sampling. With this
mindset, we express each gradient estimator using generalized gradient estimator.

HSJA. At boundary image x(t)adv , the HSJA gradient estimator (Chen et al., 2020) is

˜∇S(x
(t)
adv) =

1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + δub

))
ub.

We define the projection f : Rm → Rm as an identical mapping. The gradient estimator reduces to

∇̃S(f(x0)) = I

(
1

B

B∑
i=1

sgn (S (x0 + δui))ui

)
=

1

B

B∑
i=1

sgn (S (x0 + δui))ui, (7)

which is exactly the HSJA gradient estimator.

QEBA. At boundary image x(t)adv , the QEBA gradient estimator (Li et al., 2020) is

˜∇S(x
(t)
adv) =

1

B

B∑
b=1

sgn
(
S
(
x
(t)
adv + Wδub

))
Wub.

The W ∈ Rm×n is an orthogonal matrix. We define the projection f : Rn → Rm by f(v) = Wv + x0. Notice that
f(0) = x0 is a boundary image of difference function S. The Equation (3) becomes

∇̃f T∇S =
1

B

B∑
i=1

sgn (S (f(δui)))ui =
1

B

B∑
i=1

sgn (S (x0 + δWui))ui,

and the gradient estimator becomes

∇̃S(f(0)) = W∇̃f T∇S =
1

B

B∑
i=1

sgn (S (x0 + δWui))Wui, (8)

which is the QEBA gradient estimator.
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NonLinear-BA. In NonLinear-BA, a nonlinear projection f is already trained. The gradient estimation uses Equation (2).
To bridge the gap between it with the generalized gradient estimator, we define a new projection g such that g(v) =
x0 + ‖v‖f (v/‖v‖). We assume that f is highly linear within the L2 ball {r : ‖r‖ ≤ 1}. Therefore,∇g(0) exists, and for
normalized vector ui, g(ui)− g(0) ≈ ∇g(0)ui. Notice that g(ui) = x0 + f(ui) and g(0) = x0, so f(ui) ≈ ∇g(0)ui.

We apply generalized gradient estimator with projection g at the boundary image g(0) = x0:

∇̃S(g(0)) = ∇g(0)

(
1

B

B∑
i=1

sgn (S (g(δui)))ui

)
=

1

B

B∑
i=1

sgn (S (x0 + δf(ui)))∇g(0)ui (9)

≈ 1

B

B∑
i=1

sgn (S (x0 + δf(ui))) f(ui), (10)

where the Equation (10) is the NonLinear-BA gradient estimator in Equation (2). We implement NonLinear-BA gradient
estimator by Equation (10) instead of the precise Equation (9) to avoid gradient computation and improve the efficiency.

Notice that in all these methods we perform boundary attack iterations in raw input space but in QEBA and NonLinear-BA
we perform boundary gradient estimation in low dimension space. To reflect the boundary point x0 found in raw input space,
in QEBA and NonLinear-BA, the projection is defined as the difference from the bounadry image x0, i.e., f(0) = x0 and the
gradient estimation is for f(0). In this way, we circumvent the possible sparsity of boundary image in low dimension space.

In summary, all these gradient estimators are instances of generalized gradient estimator in Definition 2. Moreover, we can
observe that HSJA and QEBA use linear projection, and NonLinear-BA permits nonlinear projection.

C. Proof of Cosine Similarity Bounds
In this section, we prove the universal cosine similarity bounds as shown in Theorem 1. The proof is derived from careful
analysis of the distribution of randomly sampled orthonormal basis, combining with Taylor expansion and breaking down
the cosine operator.

Lemma 1. Let u1, u2, . . . , uB be randomly chosen subset of orthonormal basis of Rn (B ≤ n). Let v be any fixed unit
vector in Rn. For any i ∈ [B], define ai := 〈ui, v〉. Then each ai follows the distribution pa with PDF

pa(x) :=
(1− x2)(n−3)/2

B
(
n−1
2 , 12

) , x ∈ [−1, 1], (11)

where B is the Beta function.

Remark. Lemma 1 shows the distribution of projection of orthonormal base vector on arbitrary normalized vector. Later we
will apply the lemma to any normalized vector.

Proof of Lemma 1. Since ui is the randomly chosen orthonormal base vector, the marginal distribution of each ui is the
uniform distribution sampled from (n− 1)-sphere. As the result, for any unit vector v, the distribution of 〈ui, v〉 should be
the same. Consider e1 = (1, 0, 0, . . . , 0)T,

ai = 〈ui, e1〉 = ui1. (12)

Now consider the distribution of ui1, i.e., the first component of ui. From (Muller, 1959; Marsaglia et al., 1972), we know
that ui1 = x1/

√
x21 + · · ·+ x2n where each xi ∼ N (0, 1) independently. Therefore, let X ∼ N (0, 1), and Y ∼ χ2(n− 1),

ui1 = X/
√
X2 + Y . Denote f(x) to the PDF of ui1, from calculus, we obtain

f(x) =

∫ ∞
0

y
n−1
2 −1 exp

(
−y2
)

2
n−1
2 Γ

(
n−1
2

) · 1√
2π

exp

(
− x2y

2(1− x2)

) √
y

(1− x2)−3/2
dy =

(1− x2)
n−3
2

B
(
n−1
2 , 1

2

) (13)

for x ∈ (−1, 1). Combining Equation (12) and Equation (13), we have

pa(x) =
(1− x2)(n−3)/2

B
(
n−1
2 , 12

) , x ∈ [−1, 1].
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Lemma 2. Define ω as in Definition 5. Let f(x0) be a boundary image. The projection f and the difference function S
satisfy the assumptions in Section 4.1. Let

J := ∇f(x0), ∇S := ∇S (f(x0)) , and v :=
JT∇S
‖JT∇S‖2

.

When 0 < δ � 1, for any unit vector u ∈ Rn,

〈u, v〉 > ω

‖JT∇S‖2
=⇒ sgn (S (f(x0 + δu))) = 1,

〈u, v〉 < − ω

‖JT∇S‖2
=⇒ sgn (S (f(x0 + δu))) = −1.

Remark. The Lemma 2 reveals that 〈u, v〉 in some degree aligns with the sign of S(f(x0 + δu)). Later, we will write the
cosine similarity as the sum of the product 〈u, v〉sgn (f(x0 + δu)). Such alignment, along with Lemma Lemma 1, provides
the bound for this sum of the product.

Proof of Lemma 2. We do Taylor expansion at point x0/f(x0) for both f and S to the second order, using Lagrange
remainder:

f(x0 + δu) = f(x0) + J · δu+
1

2

n∑
i=1

(θδu)TT(x0)i(θδu) = f(x0) + δJu+
1

2
βf δ

2ε, (14)

S (f(x0 + δu)) = S (f(x0)) +∇ST

(
δJu+

1

2
βf δ

2ε

)
+

1

2
βS

(
δLf +

1

2
βf δ

2

)2

θ1 (15)

= δ∇STJu+ δ2
(

1

2
βfLS +

1

2
βSL

2
f +

1

2
δβfβSLf +

1

8
δ2βSβ

2
f

)
θ2. (16)

In above expressions, θ ∈ [0, 1], θ1, θ2 ∈ [−1, 1], ε ∈ Rm is an error vector such that ‖ε‖2 ≤ 1.

In Equation (14), we use the smoothness condition of f , which leads to ‖∑n
i=1 v

TT(x0)iv‖2 ≤ βf‖v‖22, where T is the
second-order gradient tensor, i.e., T(x)ijk = ∂f(x)i/ (∂xj∂xk). In Equation (15), similarly, the smoothness condition
of S leads to vTHv ≤ βS‖v‖22 where H is the Hessian matrix of S and its spectral radius is bounded by βS . We
let v = δJu + 1

2βf δ
2ε and observe that ‖v‖2 ≤ ‖δJu‖2 + 1

2βf δ
2 ≤ δLf + 1

2βf δ
2. From Taylor expansion we get

Equation (15). In Equation (16), we use S(f(x0)) = 0 by the boundary condition and ∇STv ≤ LS‖v‖2 by the Lipschitz
condition.

Consider the expression in the parenthesis of Equation (16), we have

0 ≤ 1

2
βfLS +

1

2
βSL

2
f +

1

2
δβfβSLf +

1

8
δ2βSβ

2
f = ω/δ,

where ω is as defined in Definition 5. As the result, we rewrite Equation (16) as

S(f(x0 + δu)) = δ∇STJu+ δωθ2.

Given that θ2 ∈ [−1, 1], S (f(x0 + δu)) can be bounded:

δ∇STJu− δω ≤ S (f(x0 + δu)) ≤ δ∇STJu+ δω.

Since ∇STJu = (JT∇S)Tu = ‖JT∇S‖2〈u, v〉, we rewrite the bound as:

δ (‖JT∇S‖2〈u, v〉 − ω) ≤ S (f(x0 + δu)) ≤ δ (‖JT∇S‖2〈u, v〉+ ω) .

As the result, when ‖JT∇S‖2〈u, v〉−ω > 0, i.e., 〈u, v〉 > ω/‖JT∇S‖2, S (f(x0 + δu)) > 0; when ‖JT∇S‖2〈u, v〉+ω <
0, i.e., 〈u, v〉 < −ω/‖JT∇S‖2, S (f(x0 + δu)) < 0, which concludes the proof.
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Lemma 3. Let f(x0) be a boundary image, i.e., S (f(x0)) = 0. The projection f and the difference function S satisfy the
assumptions in Section 4.1. Over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space,
The expectation of cosine similarity between ∇̃f T∇S (defined as Equation (3)) and∇f(x0)T∇S (f(x0)) (∇f T∇S for short)
satisfies(

2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
· 2

√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

≤ E cos 〈∇̃f T∇S, ∇f T∇S〉 ≤ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

.

(17)
Here, ω is as defined in Definition 5, and we assume ω ≤ ‖∇f T∇S‖2.

Remark. This theorem directly relates the intermediate gradient estimation ∇̃f T∇S to the mapped true gradient ∇f T∇S by
providing general cosine similarity bounds between them. The assumption that ω ≤ ‖∇f T∇S‖2 can be easily achieved
since δ is typically small and limδ→0 ω/δ is a constant.

Proof of Lemma 3. According to Equation (3),

∇̃f T∇S =
1

B

B∑
i=1

sgn (S (f(x0 + δui)))ui.

Define J := ∇f(x0). Since u1, u2, . . . , uB is a subset of orthonormal basis,

〈∇̃f T∇S, ∇f T∇S〉 =
1

B

B∑
i=1

sgn (S (f(x0 + δui))) 〈JT∇S, ui〉

=
‖JT∇S‖2

B

B∑
i=1

sgn (S (f(x0 + δui)))
〈 JT∇S
‖JT∇S‖2

, ui

〉
.

Let v := JT∇S/‖JT∇S‖2. Note that
∥∥∇̃f T∇S

∥∥
2

=
√∑B

i=1(1/B)2 = 1/
√
B, we have

cos 〈∇̃f T∇S, ∇f T∇S〉 =
〈∇̃f T∇S, ∇f T∇S〉
‖∇̃f T∇S‖2‖∇f T∇S‖2

=
1√
B

B∑
i=1

sgn (S (f(x0 + δui))) 〈v, ui〉. (18)

According to Lemma 1, 〈v, ui〉 follows the distribution pa. Intuitively, we know that 〈v, ui〉 in some degree decides
sgn (S (f(x0 + δui))).

Consider each component sgn (S (f(x0 + δui))) 〈v, ui〉, in the worst case, only when ‖〈v, ui〉‖ > ω/‖JT∇S‖2, by
Lemma 2, the sgn (S (f(x0 + δui))) is aligned with 〈v, ui〉, otherwise their signs are always different. Since ω/‖JT∇S‖2 ≤
1,

Eui sgn (S (f(x0 + δui))) 〈v, ui〉

≥
∫ −ω/‖JT∇S‖2

−1
−xpa(x)dx+

∫ 0

−ω/‖JT∇S‖2
xpa(x)dx+

∫ ω/‖JT∇S‖2

0

−xpa(x)dx+

∫ 1

ω/‖JT∇S‖2
xpa(x)dx

=

∫ ω/‖JT∇S‖2

0

−2xpa(x)dx+

∫ 1

ω/‖JT∇S‖2
2xpa(x)dx

=
2

B
(
n−1
2 , 1

2

)
· (n− 1)

(
2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
.

Here we use the fact that pa is symmetric. Inject it into Equation (18):

E cos 〈∇̃f T∇S, ∇f T∇S〉 ≥ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

(
2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
. (19)
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On the other hand, the upper bound can be obtained by forcing 〈v, ui〉 and S (f(x0 + δui)) be of the same sign everywhere,
which means that

Eui
sgn (S (f(x0 + δui))) 〈v, ui〉 ≤

∫ 0

−1
−xpa(x)dx+

∫ 1

0

xpa(x)dx =

∫ 1

0

2xpa(x) =
2

B
(
n−1
2 , 1

2

)
· (n− 1)

.

Inject it into Equation (18):

E cos 〈∇̃f T∇S, ∇f T∇S〉 ≤ 2
√
B

B
(
n−1
2 , 1

2

)
· (n− 1)

. (20)

Lemma 4. For any positive integer n ≥ 2, define

cn :=
2
√
n

B
(
n−1
2 , 1

2

)
· (n− 1)

,

where B is the Beta function. We have cn ∈ (2/π, 1). Furthermore, cn+2 < cn.

Remark. Using Lemma 4, we can simplify the frequent term 2
√
B/
(
B(n−12 , 1

2 ) · (n− 1)
)

in Lemma 3 to cn
√
B/n.

Proof of Lemma 4. Let dn := Γ
(
n
2

)
/Γ
(
n−1
2

)
, where Γ(·) is the Gamma function. Notice that

cn =
2
√
n

B
(
n−1
2 , 1

2

)
· (n− 1)

=
2
√
nΓ(n2 )

Γ(n−12 )
√
π · (n− 1)

= dn
2
√
n

(n− 1)
√
π
.

(I.) For n ≥ 5, dn =
Γ
(
n
2

)
Γ
(
n−1
2

) =
n− 2

n− 3
· Γ
(
n−2
2

)
Γ
(
n−3
2

) =
n− 2

n− 3
dn−2. Notice that

dn√
n− 2

=

√
n− 2

n− 3
dn−2 =

√
(n− 2) · (n− 4)

n− 3
· dn−2√

n− 4
≤ dn−2√

n− 4
,

and
d3√

1
=

√
π

2
,
d4√

2
=

2√
π
,

we have
dn√
n− 2

≤
√
π

2
for n ≥ 3. Therefore,

cn = dn
2
√
n

(n− 1)
√
π
≤
√
π

2
· 2
√
n(n− 2)

(n− 1)
√
π

< 1

for n ≥ 3. When n = 2, cn =
2
√

2

π
< 1. So cn < 1 holds for any n ≥ 2.

(II.) Similarly, notice that

dn√
n− 1

=
n− 2

(n− 3)
√
n− 1

dn−2 =
n− 2√

(n− 3)(n− 1)
· dn−2√

n− 3
≥ dn−2√

n− 3
,

and
d3√

2
=

1

4

√
2π,

d2√
1

=
1√
π
,

we have
dn√
n− 1

≥ 1√
π

for n ≥ 2. Therefore,

cn = dn
2
√
n

(n− 1)
√
π
≥
√
n− 1

π
· 2

√
n

(n− 1)
√
π

=
2

π

√
n

n− 1
>

2

π
.
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(III.) Since dn+2 = dn · n/(n− 1) and cn = dn · (2
√
n) / ((n− 1)

√
π) , we have

cn+2

cn
=
dn+2

dn
·
√
n+ 2

n+ 1
· n− 1√

n
=

n

n− 1
·
√
n+ 2

n+ 1
· n− 1√

n
=

√
n(n+ 2)

n+ 1
< 1.

In summary, for any positive integer n ≥ 2, we have shown 2/π < cn < 1 and cn+2 < cn.

Now we are ready to proof the main theorem which provides the general cosine similarity bounds for our gradient estimator.

Theorem 1 (restated). Let f(x0) be a boundary image, i.e., S (f(x0)) = 0. The projection f and the difference function S
satisfy the assumptions in Section 4.1. Over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for
Rn space, the expectation of cosine similarity between ∇̃S (f(x0)) (∇̃S for short) and ∇S (f(x0)) (∇S for short) satisfies(

2

(
1− ω2

‖∇f T∇S‖22

)(n−1)/2

− 1

)
‖∇f T∇S‖2
Lf‖∇S‖2

√
B

n
cn ≤ E cos 〈∇̃S, ∇S〉 ≤ ‖∇f

T∇S‖2
lf‖∇S‖2

√
B

n
cn, (21)

where ω is as defined in Definition 5, and we assume ω ≤ ‖∇f T∇S‖2; cn ∈ (2/π, 1) is a constant depended on n; Lf is as
defined in assumptions in Section 4.1; and lf := λmin(∇f(x0)).

Proof of Theorem 1. According to Equation (4), we know ∇̃S = ∇f∇̃f T∇S, where∇f is the short of∇f(x0). Thus,

〈∇̃S, ∇S〉 = ∇̃ST∇S = ∇̃f T∇S
T

∇f T∇S = 〈∇̃f T∇S, ∇f T∇S〉 = cos 〈∇̃f T∇S, ∇f T∇S〉 ·
∥∥∇̃f T∇S

∥∥
2
‖∇f T∇S‖2.

Therefore,

cos 〈∇̃S, ∇S〉 = cos 〈∇̃f T∇S, ∇f T∇S〉
∥∥∇̃f T∇S

∥∥
2
‖∇f T∇S‖2∥∥∇̃S∥∥

2
‖∇S‖2

. (22)

According to the estimation formula of ∇̃f T∇S (Equation (3)),
∥∥∇̃f T∇S

∥∥
2

=
√
B. Furthermore,

∥∥∇̃S∥∥ ≤ λmax(∇f) ·∥∥∇̃f T∇S
∥∥
2
≤ Lf

√
B,
∥∥∇̃S∥∥ ≥ λmin(∇f) ·

∥∥∇̃f T∇S
∥∥
2

= lf
√
B, which means that

1

Lf
≤
∥∥∇̃f T∇S

∥∥
2∥∥∇̃S∥∥

2

≤ 1

lf
.

According to Equation (22), we have

cos 〈∇̃f T∇S, ∇f T∇S〉‖∇f
T∇S‖2

Lf‖∇S‖2
≤ cos 〈∇̃S, ∇S〉 ≤ cos 〈∇̃f T∇S, ∇f T∇S〉‖∇f

T∇S‖2
lf‖∇S‖2

. (23)

Inject the bound for E cos 〈∇̃f T∇S, ∇f T∇S〉 in Lemma 3 and the simplification from Lemma 4 to Equation (23) yields the
desired bound.

We discuss the implications of the bound in Section 4.2 and Appendix E.

Corollary 1 (restated). Let f(x0) be a boundary image, i.e., S (f(x0)) = 0. The projection f is locally linear around x0
with radius δ. Lf := λmax(∇f(x0)), lf := λmin(∇f(x0)). The difference function S satisfies the assumptions in Section 4.1.
Over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space, the expectation of cosine
similarity between ∇̃S (f(x0)) (∇̃S for short) and∇S (f(x0)) (∇S for short) satisfies Equation (6) with

ω :=
1

2
δβSL

2
f . (24)

We assume ω ≤ ‖∇f T∇S‖2. The cn ∈ (2/π, 1) is a constant depended on n.

Remark. This is a direct application of Theorem 1. Since f is locally linear, we have βf = 0, and the corollary follows. We
discuss its implication in Appendix D.
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Corollary 2 (restated). Given projection f and difference function S, to achieve expected cosine similarity
E〈∇S(f(x0)), ∇̃S(f(x0))〉 = s, the required query number B is in Θ(s2).

Proof of Corollary 1. From Theorem 1, we can observe that

Θ(
√
B) ≤ E cos〈∇̃S, ∇S〉 ≤ Θ(

√
B).

Therefore, when E cos〈∇̃S, ∇S〉 = s, the number of queries B is in Θ(s2).

Remark. The above corollary shows the relation between expected cosine similarity and required query number when the
projection f is fixed. Note that cosine similarity is bounded, i.e., even the totally aligned ∇̃S and ∇S only have cosine
similarity 1. The Θ(s2) order implies that to achieve moderate cosine similarity, a small number of queries is needed, while
high cosine similarity needs much more queries. Therefore, to achieve high cosine similarity, it is better to fix the number
of queries, and reduce the dimension of subspace, n, which is related with cosine similarity with order Θ(1/

√
n). The

reduction on subspace dimension is the shared technique in both QEBA and NonLinear-BA.

D. Proof of Existence of Better Nonlinear Projection
From Theorem 1, one may think that linear projection is better than nonlinear projection because when the∇f is the same,
linear projection implies βf = 0, which leads to smaller ω and higher lower bound. However, this lower bound is applied to
all models satisfying the Lipschitz and smoothness condition. In fact, there exists nonlinear projection f leading to higher
cosine similarity lower bound. (We will focus on the discussion of lower bound below, since the upper bound is irrelevant
with βf from Theorem 1, meaning linear and nonlinear projections would share the same upper bound.)

Linear Case Firstly, let us consider the linear projection f . Throughout the text, we use λmax(M) to denote the largest
eigenvalue of matrix M, and λmin(M) the smallest eigenvalue of matrix M.

Corollary 2 (Linear projection Bound, informal). Under the same setting of Theorem 1 with additional condition that
projection f is locally linear around x0 with radius δ and Lf := λmax(∇f(x0)), the expectation of cosine similarity satisfies
Equation (6) with

ω :=
1

2
δβSL

2
f . (25)

We assume ω ≤ ‖∇f T∇S‖2. cn ∈ (2/π, 1) is a constant depended on n.

Remark. We defer the formal statement to Appendix E.1. This is a direct application of Theorem 1 with βS = 0 due to
linearity. The main difference between the corollary and Theorem 1 is in ω, where the general ω in Equation (5) is altered
by Equation (25). Furthermore, if S is also locally linear, then βS = 0 and hence ω = 0, which closes the gap between
lower bound and upper bound and implies that the gradient estimation is pretty precise (with cosine similarity cn).

Non-Linear Case For non-linear projection, we have the following theorem.

Theorem 2 (Existence of Better Nonlinear Projection, informal). Under the same setting of Corollary 2, there exists a
nonlinear projection f ′ satisfying the assumptions in Section 4.1, with f ′(x0) = f(x0) and∇f ′(x0) = ∇f(x0), such that the
expectation of cosine similarity between ∇̃S (f ′(x0)) (∇̃S for short) and ∇S (f ′(x0)) (∇S for short) satisfies Equation (6)
with

ω :=
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf <
1

2
δβSL

2
f . (26)

We assume ω ≤ ‖∇f T∇S‖2. cn ∈ (2/π, 1) is a constant depended on n.

Proof Sketch. We construct the nonlinear projection f ′ explicitly from f(x0), ∇f(x0) and the difference function S. After
showing that f ′ satisfies the assumptions in Section 4.1, we derive its cosine similarity bound with corresponding ω.

Remark. The theorem shows that if the difference function S is nonlinear (i.e., βS > 0), for any linear projection f , we
can exploit the nonlinearity to define its corresponding nonlinear projection f ′, which reduces ω and improves the cosine
similarity.
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Proof of Theorem 2. For convenience, in the proof, we define J := ∇f(x0). According to the proof of Theorem 1 (especially
the usage of Lemma 2), we only need to show that for arbitrary S, there exists a projection f ′ such that f ′(x0) = J ,
f ′(x0) = f(x0) and f ′ satisfies the assumptions, so that for arbitrary vector u with ‖u‖2 = 1,〈

u,
JT∇S
‖JT∇S‖2

〉
>

ω

‖JT∇S‖2
=⇒ sgn(S(f(x0 + δu))) = 1,〈

u,
JT∇S
‖JT∇S‖2

〉
<

ω

‖JT∇S‖2
=⇒ sgn(S(f(x0 + δu))) = −1.

(27)

We prove this by construction: we define f ′ : Rn → Rm such that for arbitrary u ∈ Rn,

f ′(x0 + u) = f(x0) + J · u− 1

2
α‖u‖2Ju, (28)

where α ∈ [0, 0.8βf/Lf ] is an adjustable parameter (it is later fixed to 0.8βf/Lf , but for the generality of the proof, we
deem it as an adjustable parameter for now).

Fact 2.1. The f ′ defined as in Equation (28) (1) has gradient J at point x0, (2) is Lf -Lipschitz and (3) is βf -smooth around
x0 with radius δ.

Proof of Fact 2.1.

Gradient at x0. Since

lim
u→0

∥∥∥1

2
α‖u‖2Ju

∥∥∥
2

‖u‖2
=

1

2
α lim
u→0
‖Ju‖2 ≤

1

2
αLf‖u‖2 = 0,

we have f ′(x0 + u) = f ′(x0) + J · u+ o(u) so∇f ′ := ∇f ′(x0) = J .

Lipschitz. Firstly, let us derive the gradient of f ′ at arbitrary point. Because

∂f ′(x0 + u)i
∂uj

= Jij −
1

2
α
∂ (‖u‖2Ju)i

∂uj
= Jij −

1

2
α

(
uj
‖u‖2

n∑
k=1

Jikuk + ‖u‖2Jij
)

=

(
1− 1

2
α‖u‖2

)
Jij −

α

2‖u‖2
(JuuT)ij ,

we have

∇f ′(x0 + u) =

(
1− 1

2
α‖u‖2

)
J − α

2‖u‖2
JuuT. (29)

We bound its maximum eigenvalue:

λmax (∇f ′(x0 + u)) ≤
(

1− 1

2
α‖u‖2

)
λmax(J) +

α

2‖u‖2
λmax(J)‖u‖22 = λmax(J) = Lf .

Therefore, f ′ is Lf -Lipschitz.

Smoothness. The smoothness part is more involved.

To show f ′ is βf smooth, we need to consider arbitrary u1, u2 ∈ Rn, and prove that

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ βf

always holds. From Equation (29),

∇f ′(x0 + u1)−∇f ′(x0 + u2) =
α

2
(‖u2‖2 − ‖u1‖2)J − α

2
J

(
u1u

T
1

‖u1‖2
− u2u

T
2

‖u2‖2

)
.
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Thus,

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤
λmax

(α
2

(‖u2‖2 − ‖u1‖2)J
)

‖u1 − u2‖2
+
αLf

2
·
λmax

(
u1u

T
1

‖u1‖2
− u2u

T
2

‖u2‖2

)
‖u1 − u2‖2︸ ︷︷ ︸

(∗)

.

Consider the first term: from
∣∣‖u2‖2 − ‖u1‖2∣∣ ≤ ‖u1 − u2‖2,

λmax

(α
2

(‖u2‖2 − ‖u1‖2)J
)

‖u1 − u2‖2
≤ 1

2
αLf .

Fact 2.2. For arbitrary u, v ∈ Rn,

λmax

(
uuT

‖u‖2
− vvT

‖v‖2

)
≤ 1.5‖u− v‖2.

From Fact 2.2, the second term (∗) is bounded by 1.5. By summing them up, we have

λmax (∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ 1.25αLf ≤ βf/Lf · Lf = βf ,

i.e., f ′ is β-smooth.

Proof of Fact 2.2.

λmax

(
uuT

‖u‖2
− vvT

‖v‖2

)
= max
‖w‖2=1

wT

(
uuT

‖u‖2
− vvT

‖v‖2

)
w = max

‖w‖2=1

‖uTw‖22
‖u‖2

− ‖v
Tw‖22
‖v‖2

= max
‖w‖2=1

‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉.
(30)

From geometry, we know that the cos〈u, w〉 of a unit vector w lying outside the place Puv equals to ‖wuv‖2 cos〈wuv, u〉,
where wuv is its projection onto plane Puv , having length ‖wuv‖2 ≤ 1. Therefore, we only need to consider all vectors with
length smaller or equal to 1 lying on the plane Puv (i.e., the projection of any unit vector w onto the plane Puv), i.e.,

Equation (30) = max
‖w‖2≤1
w∈Puv

‖w‖2
(
‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉

)
= max
‖w‖2=1
w∈Puv

(
‖u‖ cos2〈u, w〉 − ‖v‖ cos2〈v, w〉

)
.

Let θ be the angle between u and v, β be the angle between u and w, then the angle between v and w is β − θ. Written as
the optimization over β, we have

Equation (30) = max
β
‖u‖ cos2 β − ‖v‖ cos2(β − θ)

= max
β

1

2
(‖u‖ − ‖v‖) +

1

2
(‖u‖ cos 2β − ‖v‖ cos 2(β − θ))

=
1

2
(‖u‖ − ‖v‖) +

1

2

(
max
β
‖u‖ cosβ − ‖v‖ cos(β − 2θ)

)
.

From geometry, we know for any β, ‖u‖ cosβ − ‖v‖ cos(β − 2θ) ≤ 2‖u− v‖. Furthermore, ‖u‖ − ‖v‖ ≤ ‖u− v‖. Thus,
Equation (30) ≤ 1.5‖u− v‖.

Given Fact 2.2, as shown before, f ′ is β-smooth.

To this point, we have proven the 3 arguments in Fact 2.1 respectively.
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Now we inject f into the Taylor expression for S(f ′(x0 + δu)), where u is a unit vector, i.e., ‖u‖2 = 1. Similar as
Equations (14) to (16):

S(f ′(x0 + δu))

=S

(
f(x0) + δJu− 1

2
αδ2Ju

)
=S(f(x0)) + δ∇STJu− 1

2
αδ2∇STJu+

1

2
θ2
(
δJu− 1

2
αδ2Ju

)T

H

(
δJu− 1

2
αδ2Ju

)
,

(31)

where θ ∈ [−1, 1] is depended on S, and H is the Hessian matrix of S at point x0. Because f(x0) is the boundary image,
we have S(f(x0)) = 0. We can also bound the last term from the smoothness assumption on S:∣∣∣1

2
θ2
(
δJu− 1

2
αδ2Ju

)T

H

(
δJu− 1

2
αδ2Ju

) ∣∣∣ ≤ 1

2
βSδ

2
∥∥∥Ju− 1

2
αδJu

∥∥∥2
2
≤ 1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f .

Define v := JT∇S(f(x0))/‖JT∇S(f(x0))‖2. From Equation (31), we get

S(f ′(x0 + δu)) ≥ δ
(

1− 1

2
αδ

)
〈u, v〉‖v‖2 −

1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f ,

S(f ′(x0 + δu)) ≤ δ
(

1− 1

2
αδ

)
〈u, v〉‖v‖2 +

1

2
βSδ

2

(
1− 1

2
αδ

)2

L2
f .

Therefore,

|〈u, v〉|‖v‖2 ≥
1

2
βSδ

(
1− 1

2
αδ

)
L2
f =⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉).

Note that α ∈ [0, 0.8βf/Lf ], and larger α induces smaller RHS. We let α = 0.8βf/Lf , and get

|〈u, v〉|‖v‖2 ≥
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf =⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉).

In other words,

ω :=
1

2
δβSL

2
f −

1

5
βfβSδ

2Lf

satisfies the condition Equation (27). Following the same proof as in Theorem 1 using ω, we get the desired cosine similarity
bound for the projection f ′.

E. Implications of Gradient Estimation Analysis
In this section we provide further discussions on the gradient estimation analysis omitted in Section 4.2 and the supporting
theorems.

E.1. Comparison of Different Gradient Estimators

We instantiate the cosine similarity bound for gradient estimators in HSJA (Chen et al., 2020) and QEBA (Li et al., 2020). For
our proposed NonLinear-BA, we use the general gradient estimator with nonlinear projection as the proxy. The definitions
of these estimators are presented in Appendix B.

HSJA. In HSJA, the projection is just the identical. Therefore, ‖∇f T∇S‖ = ‖∇f T∇S‖, and Lf = 1, βf = 0. We apply
Theorem 1 and yield the following cosine similarity bound.
Corollary 3 (Bound for HSJA Gradient Estimator). Let x0 be a boundary image, i.e., S (x0) = 0. The difference function
S satisfies the assumptions in Section 4.1. Using HSJA gradient estimator as in Equation (7), over the randomness of the
sampling of orthogonal basis subset u1, u2, . . . , uB for Rm space, the expectation of cosine similarity between ∇̃S (x0) (∇̃S
for short) and ∇S (x0) (∇S for short) satisfies(

2

(
1− ω2

‖∇S‖22

)m−1
2

− 1

)√
B

m
cm ≤ E cos 〈∇̃S, ∇S〉 ≤

√
B

m
cm,
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where ω = 1
2δβS , and the cm ∈ (2/π, 1) is a constant depended on m.

Remark. In the corollary, we can see that without subspace projection, all terms are directly related with the dimentionality
of the input space, m.

QEBA. In QEBA, the projection is a linear mapping with orthonormal coefficient matrix W. Similarly we yield the
following bound.

Corollary 4 (Bound for QEBA Gradient Estimator). Let x0 be a boundary image, i.e., S (x0) = 0. The difference function
S satisfies the assumptions in Section 4.1. Using QEBA gradient estimator as in Equation (8), over the randomness of the
sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space, the expectation of cosine similarity between ∇̃S (x0) (∇̃S
for short) and ∇S (x0) (∇S for short) satisfies(

2

(
1− ω2

‖WT∇S‖22

)n−1
2

− 1

)
‖WT∇S‖2
‖∇S‖2

√
B

n
cn ≤ E cos 〈∇̃S, ∇S〉 ≤ ‖W

T∇S‖2
‖∇S‖2

√
B

n
cn,

where ω = 1
2δβS , and the cn ∈ (2/π, 1) is a constant depended on m.

Li et al (Li et al., 2020) also present the same cosine similarity bound.

Comparison between HSJA and QEBA. In QEBA, when W contains a base vector which aligns well with ∇S, i.e.,
there exists i ∈ [n] such that | cos〈W:,i, ∇S〉| is close to 1, then ‖WT∇S‖2 ≈ ‖∇S‖2. Heuristics are used in QEBA to
increase the alignment between basis and the vector∇S. When the alignment is good, the bound in Corollary 4 differs from
that in Corollary 3 only in that m is replaced by n. Given that n is the dimension of subspace which is usually much smaller
than m, we know (

1− ω2

‖WT∇S‖22

)n−1
2

�
(

1− ω2

‖∇S‖22

)m−1
2

and

√
B

n
�
√
B

m
.

As the result, when B is the same, both the lower bound and upper bound in QEBA outperform those of HSJA significantly;
and to achieve the same cosine similarity, QEBA requires much fewer queries than HSJA.

NonLinear-BA. Our proposed NonLinear-BA enables the use of nonlinear projection f . As shown by Theorem 1, due to
the nonlinearity, the cosine similarity lower bound of nonlinear projection is worse than the linear counterpart (QEBA) due
to the additional terms in ω. However, Theorem 2, when compared with linear projection bound in Section 4.2, implies the
existence of better nonlinear projection. The existence is proved by a specific construction of a ‘good‘ nonlinear projection
which provides better cosine similarity. Here, we present another ‘good’ nonlinear projection, in order to show that such
nonlinear projection is not rare and not specific.

Theorem 3 (Existence of Better Nonlinear Projection, Part II). Let f(x0) be a boundary image, i.e., S (f(x0)) = 0. The
projection f is locally linear around x0 with radius δ. Lf := λmax(∇f(x0)), lf := λmin(∇f(x0)). The difference function
S satisfies the assumptions in Section 4.1.

There exists a nonlinear projection f ′ satisfying the assumptions in Section 4.1, with f ′(x0) = f(x0) and∇f ′(x0) = ∇f(x0),
such that over the randomness of the sampling of orthogonal basis subset u1, u2, . . . , uB for Rn space, the expectation of
cosine similarity between ∇̃S (f ′(x0)) (∇̃S for short) and∇S (f ′(x0)) (∇S for short) satisfies Equation (6) with

ω <
1

2
δβSL

2
f . (32)

We assume ω ≤ ‖∇f T∇S‖2, and δ < LS/(βSLf ). The cn ∈ (2/π, 1) is a constant depended on n.

Proof of Theorem 3. Let J := ∇f(x0), and v := JT∇S(f(x0))/‖JT∇S(f(x0))‖2. For arbitrary u ∈ Rn, we define
f ′(x0 + u) as such:

f ′(x0 + u) = f(x0) + J · u+
1

2
sgn(〈u, v〉)〈u, v〉2k∇S, (33)

where k ∈ [0, βf/LS ] is an adjustable parameter.

Fact 3.1. The f ′ defined as Equation (33) has gradient J at point x0 and is βf smooth.
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Proof of Fact 3.1. Since

lim
u→0

∥∥∥1

2
〈u, v〉2k∇S

∥∥∥
2

‖u‖2
≤ lim
u→0

1

2
|〈u, v〉|k‖∇S‖2 ≤ lim

u→0

1

2

βf
LS

LS‖u‖2 = 0,

we have f ′(x0 + u) = f(x0) + J · u+ o(u) so∇f ′(x0) := ∇f(x0) = J .

We compute∇f ′ for arbitrary point, since

∂f ′(x0 + u)i
∂uj

= Jij + sgn(〈u, v〉)〈u, v〉vjk∇Si,

we know∇f ′(x0 + u) = J + sgn(〈u, v〉)k〈u, v〉∇SvT. Consider arbitrary u1, u2:

• If 〈u1, v〉 · 〈u2, v〉 ≥ 0, ∇f ′(x0 + u1)−∇f ′(x0 + u2) = sgn(〈u1, v〉)k〈u1 − u2, v〉∇SvT. Therefore,

λmax(∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ |〈u1 − u2, v〉|‖u1 − u2‖2

kλmax(∇SvT) ≤ kLs ≤ βf .

• If 〈u1, v〉 · 〈u2, v〉 < 0, without loss of generality, let 〈u1, v〉 > 0 and 〈u2, v〉 < 0. Therefore

∇f ′(x0 + u1)−∇f ′(x0 + u2) = k〈u1 + u2, v〉∇SvT.

Since 〈u1, v〉 > 0 and 〈u2, v〉 < 0, |〈u1 + u2, v〉| ≤ |〈u1 − u2, v〉|. Thus,

λmax(∇f ′(x0 + u1)−∇f ′(x0 + u2))

‖u1 − u2‖2
≤ |〈u1 + u2, v〉|
‖u1 − u2‖2

kλmax(∇SvT) ≤ |〈u1 − u2, v〉|‖u1 − u2‖2
kλmax(∇SvT) ≤ βf .

According to the smoothness definition, f ′ is βf smooth.

Now let us inject f ′ into the Taylor expression for S (f ′(x0 + δu)) in a similar way as Equations (14) to (16), where u is a
unit vector, i.e., ‖u‖2 = 1:

S(f ′(x0 + δu))

=S

(
f(x0) + δJu+

1

2
sgn (〈u, v〉) 〈u, v〉2δ2k∇S

)
=S(f(x0)) + δ∇STJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k‖∇S‖2+

1

2
θ2
(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)T

H

(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)
,

(34)

where θ ∈ [−1, 1] is depended on S, and H is the Hessian matrix of S at point x0. Because x0 is the boundary point, we
have S(f(x0)) = 0.

We can bound the last term as such:∣∣∣1
2
θ2
(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

)T

H

(
δJu+

1

2
sgn(〈u, v〉)〈u, v〉2δ2k∇S

) ∣∣∣
≤1

2
βS

(
δLf +

1

2
〈u, v〉2δ2kLS

)2

=
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

When 〈u, v〉 > 0, from Equation (34), we get

S(f ′(x0 + δu)) ≥ δ∇STJu+
1

2
〈u, v〉2δ2kL2

S −
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

= δ〈u, v〉‖v‖2 +
1

2
〈u, v〉2δ2kL2

S −
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

,
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and similarly, when 〈u, v〉 < 0, we get

S(f ′(x0 + δu)) ≤ δ〈u, v〉‖v‖2 −
1

2
〈u, v〉2δ2kL2

S +
1

2
βSδ

2

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

Therefore,

|〈u, v〉|‖v‖2 ≥ −
1

2
〈u, v〉2δkL2

S +
1

2
βSδ

(
Lf +

1

2
〈u, v〉2δkLS

)2

=⇒ sgn(S(f(x0 + δu))) = sgn(〈u, v〉). (35)

Denote h (k; 〈u, v〉) to the RHS:

h (k; 〈u, v〉) := −1

2
〈u, v〉2δkL2

S +
1

2
βSδ

(
Lf +

1

2
〈u, v〉2δkLS

)2

.

When k = 0,

h(k; 〈u, v〉) =
1

2
βSδL

2
f ,

∂h(k; 〈u, v〉)
∂k

∣∣∣
k=0

= −1

2
〈u, v〉2δL2

S +
1

2
〈u, v〉2δ2LSLfβS =

1

2
〈u, v〉2δLS(δLfβS − LS).

Therefore, when |〈u, v〉| ≥ ε′ > 0,

∂h(k; 〈u, v〉)
∂k

∣∣∣
k=0
≤ 1

2
ε′2δLS(δLfβS − LS) < 0,

and thus there exists small ε > 0, η > 0, when k = ε and |〈u, v〉| ≥ ε′, h(k; 〈u, v〉) < 1

2
βSδL

2
f − η.

As the result, from Equation (35), we know that when |〈u, v〉| ≥ ε′, if |〈u, v〉|‖v‖2 ≥
1

2
βSδL

2
f − η, sgn(S(f(x0 + δu))) =

sgn(〈u, v〉). In other words, let

ω′ :=
1

2
βSδL

2
f − η,

then this ω′ satisfies the condition Equation (27).

Following the same proof as in Theorem 1 using ω′, we get the desired lower bound.

Theorems 2 and 3 present two constructions of nonlinear projection f ′ which is better than corresponding linear projection,
and they also provide checkable condition to examine whether the given nonlinear projection is “good” in terms of
outperforming corresponding linear projection. Since the two constructed projections are quite different from each other,
we conjecture that such nonlinear projection is not rare and not specific. Even though there is no theoretically guaranteed
approach for searching such “good” nonlinear projection, in experiments we show that AE, VAE, or GAN are possible
choices that usually work well in practice.

E.2. Improve The Gradient Estimation

In Theorems 1 and 2, we relate the cosine similarity bound to variables characterizing projection f such as∇f , Lf , βf . By
examining the change tendency of the bound to these variables, we learn ways for improving the gradient estimation in
terms of improving its cosine similarity with the true gradient.

• Increase the alignment between∇S and ∇f :
The term ‖∇f T∇S‖2/‖∇S‖2 reveals that, we should increase the alignment between ∇S and ∇f to improve the cosine
similarity. When LS and Lf is fixed, if they are more aligned, ‖∇ST∇f‖22 is larger so that the lower bound becomes
larger. It implies that the mapping f should reflect the main components of ∇S as mush as possible. Similar conclusion is
shown for QEBA in Appendix E.1.

• Reduce subspace dimension n, and increase number of queries B:
When ∇S and ∇f can be aligned, it is better to keep the subspace dimension of f , n, be small. The reason is analyzed
in Appendix E.1 when comparing HSJA and QEBA. At the same time, increasing number of queries B is also helpful,
according to the query complexity analysis in Section 4.2.
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• If we can find good nonlinear projection, decrease the smoothness; otherwise increase the smoothness and decrease step
size δ:
If the good nonlinear projection can be obtained, we consider the bound in Theorem 2, which shows the outcome of a
good nonlinear projection. Learn from its ω in Equation (26), increasing βf , i.e., decrease the smoothness, could reduce ω
and hence improve cosine similarity bound. If the good nonlienar projection may not be obtained, we consider the bound
in Theorem 1, which bounds general projection. To reduce ω in this case which is defined by Definition 5, we need to
reduce βf , i.e., increase the smoothness, and reduce the step size δ. We remark that the choice of step size δ needs to
consider many other factors as outlined in (Chen et al., 2020).

F. Experimental Setup
Target Models. We use both offline models and commercial online API as target models. For offline models, following (Li
et al., 2020), we use a pretrained ResNet-18 on ImageNet, CelebA, and we also evaluate on MNIST, and CIFAR-10
datasets. On CelebA, the target model is finetuned to perform classification on attributes. The most balanced attribute
(e.g., ‘Mouth_Slightly_Open’) is chosen to enhance benign model performance. On MNIST and CIFAR-10, we scale up
the input images to 224 × 224 with linear interpolation to demonstrate the query reduction for high-dimensional input
space. The benign target model performance is shown in Appendix G.2. For commercial online APIs, we use the ‘Compare’
API (MEGVII, a) from MEGVII Face++ which predicts whether two images are of the same person. The implementation
details are discussed in Appendix G.1.

Nonlinear Projection. To get the training data for the nonlinear projection, we first train five reference models on each of
the image dataset. The benign accuracy for the reference models are shown in Appendix H.3. The ground truth gradients are
generated using PyTorch’s (Paszke et al., 2019) automatic differentiation functions. The details including model architectures
and training parameters are described in Appendix H.1.

Evaluation Metrics. We mainly evaluate NonLinear-BA and compare with the baseline methods based on two standard
evaluation metrics: (1) the average magnitude of perturbation at each step, as indicated by the L2 distance between the
optimized adversarial example and target-image; (2) the attack success rate after reaching some predefined L2 distance
threshold.

G. Target Models
In this section we introduce the target models used in the experiments including the implementation details and the model
performance.

G.1. Implementation Details

Offline Models Following (Li et al., 2020), we use models based on a pretrained ResNet-18 model as the target
models. For models that are finetuned, cross entropy error is employed as the loss function and is implemented as
‘torch.nn.CrossEntropyLoss’ in PyTorch.

For ImageNet, no finetuning is performed as the pretrained target model is trained exactly on ImageNet. The model is
loaded with PyTorch command ‘torchvision.models.resnet18(pretrained=True)’ following the docu-
mentation (PyTorch).

For CelebA, the target model is finetuned to do binary classification on image attributes. Among the 40 binary attributes
associated with each image, we sort the attributes according to how balance the numbers of positive and negative samples are.
The more balanced the dataset is, it is better for the classification model training. The top-5 balanced attributes are ‘Attractive’,
‘Mouth_Slightly_Open’, ‘Smiling’, ‘Wearing_Lipstick’, ‘High_Cheekbones’. Though the ‘Attractive’ attribute is the most
balanced one, it is more objective than subjective, thus we instead use the second attribute ‘Mouth_Slightly_Open’.

For MNIST and Cifar10 datasets, we first do linear interpolation and get 224×224 images, then the target model is finetuned
to do 10-way classification. One reason for doing interpolation is that our proposed method reduces query complexity when
the original data dimension is high so it is more illustrative after upsampling. The linear interpolation step also makes image
sizes consistent among all the tasks and experiments.

We report the benign target model performance for the four datasets in Table 1.
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Table 1. The benign model accuracies of the target model (ResNet-18)
Dataset CelebA CIFAR10 MNIST

Benign Accuracy 0.9417 0.8796 0.9938

Commercial Online API Among all the APIs provided by the Face++ platform (fac), we use the ‘Compare’ API (MEGVII,
a) which takes two images as input and returns a confidence score of whether they are the same person if there are faces
in the two images. This is also consistent with the same experiment in (Li et al., 2020). In implementation during the
attack process, the two image arrays with floating number values are first converted to integers and stored as jpg images on
disk. Then they are encoded as base64 binary data and sent as POST request to the request URL (MEGVII, b). We set the
similarity threshold as 50% in the experiments following (Li et al., 2020): when the confidence score is larger than 50%, we
consider the two faces to belong to the ‘same person’, vice versa.

For source-target images that are from two different persons, the goal of the attack is to get an adv-image that looks like
the target-image (has low L2 distance between the adv-image and target-image), but is predicted as ‘same person’ with
the source-image. We randomly sample source-target image pairs from the CelebA dataset that are predicted as different
persons by the ‘Compare’ API. Then we apply the NonLinear-BA pipeline with various perturbation vector generators for
comparison.

G.2. Model Performance of Target Models

The benign accuracies of the target model ResNet-18 on the datasets are shown in Table 1.

H. Nonlinear Projection-based Gradient Estimator
In this section, we introduce the details of nonlinear projection models including the model structure, training procedure.
We also introduce how the projection models are used in the NonLinear-BA process including the gradient estimation and
attack implementation details.

H.1. Generative Model Structure

AE and VAE We borrow the idea from U-Net (Ronneberger et al., 2015) which has the structure of an information
contraction path and an expanding path, with a small latent representation in the middle.

Define 2D convolution layer Conv2d(in_channels, out_channels, kernel_size, padding_size).

Define the DoubleConv(in_channels, out_channels) layer as composed of 6 layers: a 2D convolution layer
Conv2d(in_channels, out_channels) with kernel size 3 and padding size 1; a 2D batch normalization layer Batch-
Norm2d(out_channels); a ReLU layer; another 2D convolution layer Conv2d(out_channels, out_channels) with kernel size 3
and padding size 1; a 2D batch normalization layer BatchNorm2d(out_channels); and a ReLU layer.

Define the Down(in_channels, out_channels) layer with two components: a max-pooling layer MaxPool2d with kernel size
2; a DoubleConv(in_channels, out_channels) as defined above.

Likewise, the Up(in_channels, out_channels) is defined with two components: a up-scaling layer and a Double-
Conv(in_channels, out_channels) as defined above.

The AE and VAE models have similar structure except for the fact that the encoder part of VAE has two output layers in
order to produce the mean and standard deviation vectors, and the AE only has one. The detailed network structures are
shown in Table 2. The n_channels is the number of image channels determined by the image dataset. For the grey-scale
images in MNIST, there is only 1 channel; for the other three colored datasets (ImageNet, CelebA and CIFAR10), there are
RGB channels so n_channels is 3. The latent dimension of the two models is 48× 14× 14 = 9408.

GAN Define ConvBlock(in_channels, out_channels, n_kernel, n_stride, n_pad, transpose, leaky) with three layers: a 2D
convolution layer; a batch normalization layer and a nonlinear ReLU layer.

For ImageNet and CelebA, the detailed model network structures for the generator and discriminator are listed in Table 3
and Table 4.



Nonlinear Gradient Estimation for Query Efficient Blackbox Attack

Table 2. The detailed network structure for AE and VAE models.
Layer Name AE Layer Name VAE

InConv DoubleConv(n_channels, 24) InConv DoubleConv(n_channels, 24)
Down1 Down(24, 24) Down1 Down(24, 24)
Down2 Down(24, 48) Down2 Down(24, 48)
Down3 Down(48, 48) Down3 Down(48, 48)
Down4 Down(48, 48) DownMu Down(48, 48)

- - DownStd Down(48, 48)
Up1 Up(48, 48) Up1 Up(48, 48)
Up2 Up(48, 48) Up2 Up(48, 48)
Up3 Up(48, 24) Up3 Up(48, 24)
Up4 Up(24, 24) Up4 Up(24, 24)

OutConv Conv2d(24, n_channels, 1, 0) OutConv Conv2d(24, n_channels, 1, 0)

Table 3. The detailed model structure for generator in GAN.
Generator

ConvBlock(z_latent, 128, 4, 1, 0, transpose=True, leaky=True)
ConvBlock(128, 64, 3, 2, 1, transpose=True, leaky=False)
ConvBlock(64, 64, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(64, 32, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(32, 32, 4, 2, 1, transpose=True, leaky=False)
ConvBlock(32, 16, 4, 2, 1, transpose=True, leaky=False)
nn.ConvTranspose2d(16, n_channels, 4, 2, 1, bias=False)

nn.Tanh()

For CIFAR10 and MNIST, we use DCGAN (Radford et al., 2015) structure with pretrained weights from (pre) and add a
linear interpolation layer to resize the generated images to size 224× 224.

H.2. Estimator Training Procedure

The attacker first train a set of reference models that are generally assumed to have different structures compared with
the blackbox target model. Nonetheless, attacker-trained reference models can generate accessible gradients and provide
valuable information on the distribution of the target model gradients.

In our case, there are five reference models with different backbones compared with the target model, while the implemen-
tation and training details are similar with the target model in Section G.1. The benign test accuracy results for CelebA,
Cifar10 and MNIST datasets are shown in Table 5, Table 6 and Table 7 respectively. After the reference models are trained,
their gradients with respect to the training data points are generated with PyTorch automatic differentiation function with
command ‘loss.backward()’. The loss is the cross entropy between the prediction scores and the ground truth labels.

For ImageNet and CelebA, since the number of images is large, the gradient dataset generated by reference models is also
too large to be handled in our GPU memory especially when we evaluate the baseline method QEBA-I (Li et al., 2020) since
it requires approximate PCA. Thus we randomly sample 500, 000 gradient images (100, 000 per reference model) for each
of ImageNet and CelebA and fix them throughout the experiments for fair comparison. For CIFAR10 and MNIST, there
are fewer images and the machine can handle them properly so we use the whole gradient dataset generated with 250, 000
gradient images for CIFAR10 (50, 000 per reference model) and 300, 000 (60, 000 per reference model) gradient images for
MNIST.

The generative models for each dataset are trained on the gradient images of the corresponding dataset generated as above.

H.3. Reference Model Performance

Intuitively, with well-trained reference models that perform comparatively with the target models, the attacker can get
gradient images that are in a more similar distribution with the target model’s gradients for training, thus increasing the
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Table 4. The detailed model structure for discriminator in GAN.
Discriminator

nn.Conv2d(n_channels, 16, 4, 2, 1, bias=False)
nn.LeakyReLU(0.2, inplace=True)

ConvBlock(16, 32, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(32, 32, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(32, 64, 4, 2, 1, transpose=False, leaky=True)
ConvBlock(64, 64, 4, 2, 1, transpose=False, leaky=True)

ConvBlock(64, 128, 3, 2, 1, transpose=False, leaky=True)
nn.Conv2d(128, 1, 4, 1, 0, transpose=False, leaky=True)

chance of an attack with higher quality. The reference model performances in terms of prediction accuracy for CelebA,
Cifar10 and MNIST datasets are shown in Table 5, Table 6 and Table 7. The model performances are comparable to those of
the target models.

Table 5. The benign model accuracies of the reference models for CelebA dataset (attribute: ‘mouth_slightly_open’).
CelebA DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet

Benign Accuracy 0.9415 0.9410 0.9417 0.9315 0.9416

Table 6. The benign model accuracies of the reference models for Cifar10 dataset (linearly interpolated to size 3× 224× 224).
Cifar10 DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet

Benign Accuracy 0.9079 0.8722 0.9230 0.9114 0.8568

Table 7. The benign model accuracies of the reference models for MNIST dataset (linearly interpolated to size 224× 224).
MNIST DenseNet-121 ResNet-50 VGG16 GoogleNet WideResNet

Benign Accuracy 0.9919 0.9916 0.9948 0.9943 0.9938

H.4. Nonlinear Projection-based Gradient Estimation

We provide the pseudo code for the gradient estimation process with the nonlinear projection functions in Algorithm 1.

H.5. Attack Implementation

The goal is to generate an attack image that looks similar as the target-image but is predicted as the label of the source-
image. We fix the random seed to 0 so that the samples are consistent across different runs and various methods to ensure
reproducibility and to facilitate fair comparison.

Offline Models. During the attack, we randomly sample source-target pairs of images from each of the corresponding
datasets. We query the offline models with the sampled images to make sure both source-image and target-image are
predicted as their ground truth labels and the labels are different so that the attack is nontrivial. For the same dataset, the
results of different attack methods are reported as the average of the same 50 randomly sampled pairs.

Online API. For the online API attacks, the source-target pairs are sampled from the face image dataset CelebA.

I. Quantitative Results
I.1. Attack Success Rate for Offline Models

The ‘successful attack’ is defined as the adv-image reaching some pre-defined L2 distance threshold. Note that because
the complexity of tasks and images varies between datasets, we set different L2 distance thresholds for the datasets. For
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Algorithm 1 Nonlinear Projection-based Gradient Estimation
Input: a data point on the decision boundary x ∈ Rm, nonlinear projection function f , number of random sampling B,

access to query the decision of target model φ(·) = sgn(S(·)).
Output: the approximated gradient ∇̃S(x

(t)
adv)

1: sample B random Gaussian vectors of the lower dimension: vb ∈ Rn.
2: use nonlinear projection function to project the random vectors to the gradient space: ub = f(vb) ∈ Rm.
3: get query points by adding perturbation vectors with the original point on the decision boundary x(t)adv + δfvb.

4: Monte Carlo approximation for the gradient: ∇̃S(x
(t)
adv) = 1

B

∑B
b=1 φ

(
x
(t)
adv + δf(vb)

)
f(vb) =

1
B

∑B
b=1 sgn

(
S
(
x
(t)
adv + δf(vb)

))
f(vb)

5: return ∇̃S(x
(t)
adv)

Table 8. The L2 distance thresholds used for four datasets that determine whether the attack is successful.
Dataset ImageNet CelebA MNSIT CIFAR10

L2 Threshold 1−3 1−4 5−3 1−4

example, ImageNet images are the most complicated so the task is most difficult, thus we set larger (looser) threshold for it.
Specifically, the thresholds are shown in Table 8. The attack success rates on the four datasets are shown in Table 3.

I.2. Cosine Similarity

The Theorems 1 and 2 state that smaller ω leads to higher cosine similarity between the estimated and ground truth gradients.
The proof of these theorems reveals that ω is intuitively an indicator of how much percentage of queries are ‘contributing
negatively’ to the gradient estimation, which is a complement of the cosine similarity values. To verify our theoretic findings,
we also plot the gradient cosine similarity values corresponding to different queries in Figure 4. It is clear that the attack
performance highly correlates with the cosine similarity positively: when the cosine similarity values are large, the attack
performance is better and can converge to a smaller L2 distance faster. We also use an alternative method to evaluate the
effects of ω approximately and observe similar trends as shown in Appendix I.3.

I.3. Proxy for the ω Value

According to the analysis in Section 4.1, smaller ω leads to better gradient estimation. We provide a proxy of the ω variable
during the training. When estimating the gradient at each boundary-image x(t)adv point with Equation (2), there are some
perturbations that contribute negatively in the Monte-Carlo estimation. More formally, a perturbation vector f(vb) has
negative contribution to the gradient estimation if

sgn
(
S
(
x
(t)
adv + δf(vb)

))
6= sgn

(
cos
〈
(∇̃S(x

(t)
adv), f(vb)

〉)
. (36)

Figure 3. The attack success rate vs query number for four different datasets.
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Figure 4. The cosine similarity between the estimated and truth gradients based on different queries for attacks on diverse datasets.

Figure 5. The ω value at different queries for attacks on diverse datasets.

In other words, the sign of target model prediction disagrees with the sign of the cosine similarity between the estimated
gradient and the perturbation direction. We deem the ratio of samples that satisfy Equation (36) as the proxy of ω. The
results are shown in Figure 5. The tendency is highly consistent with the cosine similarity between the estimated and truth
gradients - smaller ω leads to higher cosine similarity.

J. Quantitative Results
J.1. Discussion on NonLinear-BA-GAN

For attribute classification model on CelebA dataset where the model’s ground truth gradients have a simpler pattern, it
works significant better than the other methods with very few queries (Fig 2(b)); when the gradient patterns are more
complex, the NonLinear-BA-GAN method fails to keep reducing the L2 distance after some relatively small number of
queries and converges to a bad local optima. We conjecture this is because of the instability of GAN training, and it would
be interesting future work to develop in-depth understanding about the properties of nonlinear projection GAN.

J.2. Online API

The quantitative results of the API attack is shown in Figure 6. The results are averaged over 40 randomly sampled CelebA
face image pairs. The image pairs are the same for each of the 7 methods for fair comparison.

K. Qualitative Results
K.1. Offline Models

The goal of the attack is to generate an adv-image that looks like the target-image but has the same label with source-image.
We report qualitative results that show how the adv-image changes during the attack process in Figure 7, Figure 8, Figure 9
and Figure 10 for the four datasets respectively. In the figures, the left-most column has two images: the source-image and
the target-image. They are randomly sampled from the corresponding dataset. We make sure images in the sampled pairs
have different ground truth labels (otherwise the attack is trivial). The other five columns each represents the adv-image
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Figure 6. The perturbation magnitude based on different queries against Face++ ‘Compare’ API.

at certain number of queries as indicated by #q at the bottom line. In other words, all images in these five columns can
successfully attack the target model. Each row represents one method as shown on the right. The d value under each image
shows the L2 distance between the adv-image and the target-image. The smaller d can get, the better the attack is.

K.2. Commercial Online API Attack

As discussed in Section 5, the goal is to generate an adv-image that looks like the target-image but is predicted as ‘same
person’ with the source-image. In this case, we want to get images that looks like the man but is actually identified as the
woman. The qualitative results of attacking the online API Face++ ‘compare’ is shown in Figure 11. In the figure, the
source-image and target-image are shown on the left-most column.
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Figure 7. The qualitative case study of attacking ResNet-18 model on ImageNet dataset.
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Figure 8. The qualitative case study of attacking ResNet-18 model on CelebA dataset.
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Figure 9. The qualitative case study of attacking ResNet-18 model on CIFAR10 dataset.
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Figure 10. The qualitative case study of attacking ResNet-18 model on MNIST dataset.
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Figure 11. A case study of Face++ online API attack process. The source-target image pair is randomly sampled from CelebA dataset (ID:
163922 and 080037).


