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Abstract
Neural networks are highly effective tools for
pose estimation. However, robustness to out-
of-domain data remains a challenge, especially
for small training sets that are common for real-
world applications. Here, we probe the general-
ization ability with three architecture classes (Mo-
bileNetV2s, ResNets, and EfficientNets). We de-
veloped a novel dataset of 30 horses that allowed
for both “within-domain” and “out-of-domain”
(unseen horse) benchmarking - this is a crucial
test for robustness that current human pose estima-
tion benchmarks do not directly address. We show
that better ImageNet-performing architectures per-
form better on both within- and out-of-domain
data if they are first pretrained on ImageNet. Our
results demonstrate that transfer learning is bene-
ficial for out-of-domain robustness.

Pose estimation is an important tool for measuring behavior,
and thus widely used in technology, medicine and biol-
ogy (Ostrek et al., 2019; Maceira-Elvira et al., 2019; Mathis
& Mathis, 2020). Due to innovations in both deep learning
algorithms (Insafutdinov et al., 2017; Cao et al., 2017; He
et al., 2017; Kreiss et al., 2019; Ning et al., 2020; Cheng
et al., 2020) and large-scale datasets (Lin et al., 2014; An-
driluka et al., 2014; 2018) pose estimation on humans has
gotten very powerful. However, typical human pose estima-
tion benchmarks, such as MPII pose and COCO (Lin et al.,
2014; Andriluka et al., 2014; 2018), contain many different
individuals (> 10k) in different contexts, but only very few
example postures per individual. In real world application of
pose estimation, users want to estimate the location of user-
defined bodyparts by only labeling a few hundred frames on
a small subset of individuals, yet want this to generalize to
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Figure 1. Transfer Learning boosts performance, especially
on out-of-domain data. Normalized pose estimation error vs.
ImageNet Top 1% accuracy with different backbones. While train-
ing from scratch reaches the same task performance as fine-tuning,
the networks remain less robust as demonstrated by poor accuracy
on out-of-domain horses. Mean ± SEM, 3 shuffles.

new individuals (Ostrek et al., 2019; Maceira-Elvira et al.,
2019; Mathis & Mathis, 2020). Thus, one naturally asks the
following question: Assume you have trained an algorithm
that performs with high accuracy on a given (individual)
animal for the whole repertoire of movement - how well
will it generalize to different individuals that have slightly
or dramatically different appearances? Unlike in common
human pose estimation benchmarks, here the setting is that
datasets have many (annotated) poses per individual (>200)
but only a few individuals (≈ 10).

To allow the field to tackle this challenge, we devel-
oped a novel benchmark comprising 30 diverse Thorough-
bred horses, for which 22 body parts were labeled by an
expert in 8, 114 frames (Dataset available at horse10.
deeplabcut.org). Horses have various coat colors and
the “in-the-wild” aspect of the collected data at various
Thoroughbred farms added additional complexity (Figure 2).
With this dataset we could directly test the effect of pretrain-
ing on out-of-domain data. Here we report two key insights:
(1) ImageNet performance predicts generalization for both
within domain and on out-of-domain data for pose estima-
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Figure 2. Horse Dataset: Example frames for each Thoroughbred horse in the dataset. The videos vary in horse color, background,
lighting conditions, and relative horse size. The sunlight variation between each video added to the complexity of the learning challenge,
as well as the handlers often wearing horse-leg-colored clothing. Some horses were in direct sunlight while others had the light behind
them, and others were walking into and out of shadows, which was particularly problematic with a dataset dominated by dark colored
coats. To illustrate the horse-10 task we arranged the horses according to one split: the ten leftmost horses were used for train/test
within-domain, and the rest are the out-of-domain held out horses.

tion (Figure 1); (2) While we confirm that task-training can
catch up with fine-tuning pre-trained models given suffi-
ciently large training sets (He et al., 2018), we show this
is not the case for out-of-domain data (Figure 4). Thus,
transfer learning improves robustness and generalization.

1. Related Work
Transfer learning has become accepted wisdom: fine-tuning
pretrained weights of large scale models yields best re-
sults (Donahue et al., 2014; Yosinski et al., 2014; Kümmerer
et al., 2016; Mathis et al., 2018; Li et al., 2019; Zhuang et al.,
2019). He et al. nudged the field to rethink this accepted
wisdom. They demonstrated for various tasks that directly
training on the task-data can match performance (He et al.,
2018). We confirm this result, but show that on held-out
individuals (“out-of-domain”) this is not the case. Raghu et
al. showed that for target medical tasks (with little similar-
ity to ImageNet) transfer learning offers little benefit over
lightweight architectures (Raghu et al., 2019). Kornblith et
al. showed for many object recognition tasks, that better
ImageNet performance leads to better performance on these
other benchmarks (Kornblith et al., 2019). We show that this
is also true for pose-estimation both for within-domain and
out-of-domain data. Two more recent papers relate to our
work. Hendrycks et al. study robustness to out-of distribu-
tion data on CIFAR 10, CIFAR 100 and TinyImageNet (but
not pose estimation). The authors report that pretraining
is important for adversarial robustness (Hendrycks et al.,
2019). Shah et al. highlight that pose estimation algorithms
are highly robust against adversarial attacks, but do not di-

rectly test out-of-domain robustness nor performance on
smaller real-world sized datasets (Shah et al., 2019). This
work substantially expands our earlier preprint (Mathis et al.,
2019).

2. Methods
2.1. Horse Dataset and evaluation metrics

Here we developed a novel horse data set comprising 8, 114
frames across 30 different horses captured for 4 − 10 sec-
onds with a GoPro camera (Resolution: 1920×1080, Frame
Rate: 60 FPS), which we call Horse-30. We downsampled
the frames by a factor of 15% to speed-up the benchmark-
ing process (288× 162 pixels; one video was downsampled
to 30%). We annotated 22 previously established anatom-
ical landmarks (see Methods) for equines (Magnusson &
Thafvellin, 1990; Anderson & McIlwraith, 2004). We cre-
ated 3 splits that contain 10 randomly selected training
horses each (referred to as Horse-10). For each training set
we took a subset of 5% (≈ 160 frames), and 50% (≈ 1, 470
frames) of the frames for training, and then evaluated the
performance on the training, test, and unseen (defined as
“out-of-domain”) horses (i.e. the other horses that were not
in the given split of Horse-10). As the horses could vary
dramatically in size across frames, due to the “in-the-wild”
variation in distance from the camera, we normalized the
raw pixel errors by the eye-to-nose distance and report the
fraction of this distance (normalized error) as well as percent
correct keypoint metric (Andriluka et al., 2014); we used a
matching threshold of 30% of the nose to eye distance.
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Figure 3. Transfer Learning boosts performance, especially on out-of-domain data. A: Normalized Error vs. Network performance
as ranked by the Top 1% accuracy on ImageNet (order by increasing ImageNet performance: MobileNetV2-0.35, MobileNetV2-0.5,
MobileNetV2-0.75, MobileNetV2-1, ResNet-50, ResNet-101, EfficientNets B0 to B6). The faint lines indicate data for the three splits.
Test data is in red, train is blue, grey is out-of-domain data B: Same as A but with 50% training fraction. C: Example frames with human
annotated body parts vs. predicted body parts for MobileNetV2-0.35 and EfficientNet-B6 architectures with ImageNet pretraining on
out-of-domain horses.

2.2. Architectures and Training Parameters

For this study we adopted a pose estimation toolbox called
DeepLabCut (Mathis et al., 2018; Nath et al., 2019) by
adding MobileNetV2 (Sandler et al., 2018) and EfficientNet
backbones (Tan & Le, 2019) to the ResNets (He et al., 2016)
that were present (see Appendix). For training, a cosine
learning rate schedule, as in Kornblith et al., 2019 with
ADAM optimizer and batchsize 8 was used. Initial learn-
ing rates and decay target points were cross-validated for
MobileNetV2-0.35 and -1.0, ResNet-50, EfficientNet B0,
B3, and B5 for the pretrained and from scratch models (see
Appendix). For each model that was not cross validated
(MobileNetV2 0.5 and 0.75, ResNet-101, EfficientNet B1,
B2, B4, B6), the optimal training parameters from the most
similar cross validated model was used (i.e. the cross vali-
dated EfficientNet-B0 schedule was used for EfficientNet-
B1; see Methods). For MobileNetV2s, we trained the batch
normalization too (this had little effect on task performance
for MobileNetV2-0.35). Pretrained models were trained
for 30k iterations (as they converged), while models from
scratch were trained for 180k iterations.

3. Results
To test within and out-of-domain performance we created
a new dataset of 30 different Thoroughbreds that are led
by different humans, resulting in a dataset of 8, 114 images
with 22 labeled body parts each. These videos differ strongly
in horse appearance, context, and background (Figure 2).
Thus, this dataset is ideal for testing robustness and out-of-
sample generalization. We created 3 splits containing 10
random horses each, and then varied the amount of training
data from these 10 horses (referred to as Horse-10, see
Methods). As the horses could vary dramatically in size
across frames, due to the “in-the-wild” variation in distance

Table 1. average PCK@0.3 (%)

MODELS WITHIN DOMAIN OUT-OF-D.

MOBILENETV2-0.35 95.2 63.5
MOBILENETV2-0.5 97.1 70.4
MOBILENETV2-0.75 97.8 73.0
MOBILENETV2-1 98.8 77.6
RESNET-50 99.8 81.3
RESNET-101 99.9 84.3
EFFICIENTNET-B0 99.9 81.6
EFFICIENTNET-B1 99.9 84.5
EFFICIENTNET-B2 99.9 84.3
EFFICIENTNET-B3 99.9 86.6
EFFICIENTNET-B4 99.9 86.9
EFFICIENTNET-B5 99.9 87.7
EFFICIENTNET-B6 99.9 88.4

from the camera, we used a normalized pixel error; i.e. we
normalized the raw pixel errors by the eye-to-nose distance
and report the fraction within this distance (see Methods).

To probe the impact of ImageNet performance on pose es-
timation robustness, we selected modern architectures as
backbones with a wide range of ImageNet performance (see
Methods; 13 models spanning from 60% to 84% ImageNet
performance). To fairly compare the MobileNetV2, ResNets
and EfficientNet backbones, we cross validated the learning
schedules for each model (see Methods). In total, we found
that all ImageNet pretrained architectures exhibited strong
performance on Horse-10 within domain, i.e. low average
errors, and high average percent correct key points (aPCK;
Figure 3, Table 1). Next, we directly compared the Ima-
geNet performance to their respective performance on this
pose estimation task. We found Top-1% ImageNet accuracy
correlates with pose estimation test error (linear fit for test:
slope −0.33%, R2 = 0.93, p = 1.4e− 7; Figures 3B).

Next, we evaluated the performance of the networks on out-
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of-domain horses (Figures 3A-C). Most strikingly, on out-
of-domain horses, the relationship between ImageNet per-
formance and performance on Horse-10 was even stronger.
This can be quantified by comparing the linear regression
slope for out-of-domain test data: −0.93% pose-estimation
improvement per percentage point of ImageNet perfor-
mance, R2 = 0.93, p = 9e − 8 vs. within-domain test
data −0.33%, R2 = 0.93, p = 1.4e− 7 (for 50% training
data). In other words, less powerful models overfit more on
the training data. We mused that this improved generaliza-
tion could be a consequence of the ImageNet pretraining or
the architectures themselves.

To assess the impact of ImageNet pretraining we also trained
several architectures from scratch. Thereby we could di-
rectly test if the increased slope for out-of-domain perfor-
mance across networks was merely a result of more pow-
erful network architectures. He et al. recently showed that
training Mask R-CNN with ResNet backbones directly on
the COCO object detection, instance segmentation and key
point detection tasks, catches-up with the performance of
ImageNet-pretrained variants if training for substantially
more iterations than typical training schedules (He et al.,
2018). However, due to the nature of these tasks, they could
not test this relationship on out-of-domain data.

For fine-tuning from ImageNet pretrained models, we
trained for 30k iterations (as the loss had flattened; see
Figures 4, 5). First, we searched for optimal schedules
for training from scratch while substantially increasing the
training time (6X longer). We found that cosine decay with
restart was best for out-of-domain performance (see Meth-
ods; Figure 5A). Consistent with He et al., 2018, we found
that randomly initialized networks could closely match the
performance of pretrained networks, given enough data and
time (Figure 5A,B). As expected, for smaller training sets
(5% training data; 160 images), this was not the case (Fig-
ure 5A). While task-training could therefore match the per-
formance of pretrained networks given enough training data,
this was not the case for novel horses (out-of-domain data).
The trained from-scratch networks never caught up and in-
deed plateaued early (Figure 5A). Quantitatively, we also
found that for stronger networks (ResNets and EfficientNets)
generalization was worse if trained from scratch (Figure 5B).
Interestingly that was not the case for the lightweight mod-
els, i.e. MobileNetV2s (cf. Raghu et al., 2019).

In summary, transfer learning offers multiple advantages.
Not only does pretraining networks on ImageNet allow
for using smaller datasets and shorter training time, it also
strongly improves robustness and generalization, especially
for more powerful, over-parameterized models. In fact, we
found a strong correlation between generalization and Ima-
geNet accuracy (Figure 3).

Figure 4. Training randomly initialized networks longer can-
not rescue out-of-domain performance. Top Row: Normalized
error vs. training iterations for ResNet-50 using 50% of the train-
ing data. Test errors when training from scratch (solid lines) closely
match the transfer learning (dashed lines) performance after many
iterations (See also Figure 5 to compare to MobileNetV2s and Effi-
cientNets). Bottom Row Same as Top but using 5% of the training
data; note, however, for just 5% training data, the test errors do not
approach the test error of pre-trained models for larger models.

4. Discussion
We developed a novel pose estimation benchmark for out-
of-domain robustness (horse10.deeplabcut.org).
Furthermore, we report two key findings: (1) pretrained-
ImageNet networks offer known advantages: shorter train-
ing times, and less data requirements, as well as a novel ad-
vantage: robustness on out-of-domain data, & (2) networks
that have higher ImageNet performance lead to better gener-
alization, if pretrained. Collectively, this sheds a new light
on the inductive biases of “better ImageNet architectures”
for visual tasks to be particularly beneficial for robustness.

While we found a significant advantage of using pretrained
networks for out-of-domain robustness, there is still a gap
to close. However, we believe that our work demonstrates
that transfer learning approaches are powerful to build ro-
bust architectures. Furthermore, by sharing our animal pose
robustness benchmark dataset, we also believe that the com-
munity can work towards closing the gap.

horse10.deeplabcut.org
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5. Appendix
5.1. List of annotated horse bodyparts

The following 22 body parts were labeled by an expert in
Thoroughbred horses [BR] across 8, 114 frames: Nose, Eye,
Nearknee, Nearfrontfetlock, Nearfrontfoot, Offknee, Off-
frontfetlock, Offfrontfoot, Shoulder, Midshoulder, Elbow,
Girth, Wither, Nearhindhock, Nearhindfetlock, Nearhind-
foot, Hip, Stifle, Offhindhock, Offhindfetlock, Offhindfoot,
Ischium. We used the DeepLabCut2.0 toolbox (Nath et al.,
2019) for labeling.

5.2. Pose estimation Architecture and Training
Parameters

For this study we adopted a pose estimation toolbox called
DeepLabCut (Mathis et al., 2018; Nath et al., 2019). The
TensorFlow (Abadi et al., 2016)-based network architec-
tures was adapted while keeping data loading, training, and
evaluation consistent. The feature detectors in DeepLabCut
consist of a backbone followed by deconvolutional layers to
predict pose scoremaps and location refinement maps, which
can then be used for predicting the pose while also proving
a confidence score (Insafutdinov et al., 2016; Mathis et al.,
2018). For the backbone we utilized MobileNetV2 (Sandler
et al., 2018), residual networks (ResNets) (He et al., 2016)
and EfficientNet backbones (Tan & Le, 2019).

We utilize an output stride of 16 for the ResNets (achieved
by atrous convolution) and then upsample the filter banks
with deconvolutions by a factor of two to predict the
heatmaps and location-refinement at 1/8th of the original
image size scale. For MobileNetV2 (Sandler et al., 2018),
we configured the output-stride as 16 (by changing the (oth-
erwise) last stride 2 convolution to stride 1). We utilized
four variants of MobileNetV2 with different expansion ra-
tios (0.35, 0.5, 0.75 and 1) as this ratio modulates the Ima-
geNet accuracy from 60.3% to 71.8%, and pretrained mod-
els on ImageNet are available from TensorFlow (Abadi et al.,
2016). The base EfficientNet model was designed by Tan
& Le, 2019 through a neural architecture search to opti-
mize for accuracy and FLOPS. From B0 to B6, compound
scaling is used to increase the width, depth, and resolution
of the network, which directly corresponds to an increase
in ImageNet performance Tan & Le, 2019. We used the
AutoAugment pre-trained checkpoints as well as adapted
the EfficientNet implementation from Tensorflow1 and con-
figured the output-stride as 16 (by changing the (otherwise)
last stride 2 convolution to stride 1).

The training loss is defined as the cross entropy loss for the
scoremaps and the location refinement error via a Huber

1URL: https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet#
2-using-pretrained-efficientnet-checkpoints

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet##2-using-pretrained-efficientnet-checkpoints
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet##2-using-pretrained-efficientnet-checkpoints
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet##2-using-pretrained-efficientnet-checkpoints


ImageNet performance correlates with pose estimation robustness and generalization on out-of-domain data

loss with weight 0.05 (Mathis et al., 2018). For training, a
cosine learning rate schedule, as in (Kornblith et al., 2019)
with ADAM optimizer (Kingma & Ba, 2014) and batchsize
8 was used.

5.3. Cross Validation of Learning Schedules

To fairly compare the pose estimation networks with
different backbones, we cross-validated the learning
schedules. For models with pretraining and from scratch,
we cross validated the cosine learning rate schedules by
performing a grid search of potential initial learning rates
and decay targets to optimize their performance on out of
domain data. Given that our main result is that task-training
can catch up with fine-tuning pre-trained models given
sufficiently large training sets (He et al., 2018), we show
that this is not the case for out-of-domain data. Thus, in
order to give from scratch trained models the best shot, we
optimized the performance on out of domain data.

Because of the extensive resources required to cross
validate all models, we only underwent the search on
MobileNetsV2 0.35 and 1.0, ResNet 50, and EfficientNets
B0, B3, and B5 for the pretraining and from scratch
variants. For all other models, the parameters from
the most similar networks were used for training (i.e.
EfficientNet-B1 used the parameters for EfficientNet-B0).
The grid search started with the highest possible initial
learning rate that was numerically stable for each model;
lower initial learning rates were then tested to fine tune
the schedule. A zero and nonzero decay target point were
tested for each initial learning rate. In addition to the initial
learning rates and decay targets, we experimented with
shortening the cosine decay and incorporating restarts.
All cross validation experiments were performed on the
three splits with 50% of the data for training. The table
below lists the various initial learning rates explored
during cross validation for each model with pretraining.
For the learning schedules we use the following abbre-
viations: Initial Learning Rates (ILR) and decay target (DT).

The table below list the various initial learning rates ex-
plored during cross validation for each model with pretrain-
ing:

MODEL ILR

MOBILENETV2-0.35 1E-2 5E-3 1E-3 5E-4
MOBILENETV2-1 1E-2 5E-3 1E-3 5E-4
RESNET-50 1E-3 5E-4 1E-4 5E-5
EFFICIENTNET-B0 2.5E-3 1E-3 7.5E-4 5E-4
EFFICIENTNET-B3 1E-3 5E-4 1E-4 5E-5
EFFICIENTNET-B5 5E-4 1E-4

For the ImageNet pretrained case, the learning rate schedule
without restarts was optimal on out of domain data, and the
resulting optimal parameters are as follows:

MODELS ILR & DT

MOBILENETV2S 0.35, 0.5 1E-2 0
MOBILENETV2S 0.75, 1.0 1E-2 1E-4
RESNETS 50, 101 1E-4 1E-5
EFFICIENTNETS B0, B1 5E-4 1E-5
EFFICIENTNETS B2,B3,B4 5E-4 0
EFFICIENTNETS B5,B6 5E-4 1E-5

The initial learning rates explored for the from scratch mod-
els during cross validation are as follows:

MODEL ILR

MOBILENETV2-0.35 1E-2 5E-3 1E-3 5E-4
MOBILENETV2-1 1E-1 1E-2 1E-3 1E-4
RESNET-50 1E-3 5E-4 1E-4 5E-5
EFFICIENTNET-B0 1E-3 5E-4 1E-4 5E-5
EFFICIENTNET-B3 1E-3 5E-4 1E-4 5E-5

For models trained from scratch, we found that using restarts
lead to the best performance on out of domain data. The
optimal learning rates found during the search are as follows:

MODELS ILR & DT

MOBILENETV2S 0.35, 0.5 5E-2 5E-3
MOBILENETV2S 0.75, 1.0 1E-2 0
RESNET 50 5E-4 5E-5
EFFICIENTNETS B0, B3 1E-3 0

5.4. Task-learning vs. Transfer learning

Figure 5 below shows results for transfer learning vs. train-
ing from scratch forMobileNetV2s and EfficientNets. The
results for ResNet 50 are in the main text (Figure 4).
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Figure 5. Training randomly initialized networks longer cannot rescue out-of-domain performance. A: Top Row: Normalized
error vs. training iterations for MobileNetV2-0.35, ResNet-50 and EfficientNet-B0 using 50% of the training data. Test errors when
training from scratch (solid lines) closely match the transfer learning (dashed lines) performance after many iterations. Crucially,
out-of-domain testing does not approach performance for pretrained network (stars). A: Bottom Row Same as Top but using 5% of the
training data; note, however, for just 5% training data, the test errors do not approach the test error of pre-trained models for larger models.
B Normalized error vs. ImageNet Top 1% accuracy for all 14 models. From scratch training showed poor accuracy on out-of-domain
horses.


