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Abstract
Covariate shift has been shown to sharply degrade
both predictive accuracy and the calibration of
uncertainty estimates for deep learning models.
This is worrying, because covariate shift is preva-
lent in a wide range of real world deployment
settings. However, in this paper, we note that fre-
quently there exists the potential to access small
unlabeled batches of the shifted data just before
prediction time. This interesting observation en-
ables a simple but surprisingly effective method
which we call prediction-time batch normaliza-
tion, which significantly improves model accu-
racy and calibration under covariate shift. Using
this one line code change, we achieve state-of-the-
art on recent covariate shift benchmarks and an
mCE of 60.28% on the challenging ImageNet-C
dataset; to our knowledge, this is the best result
for any model that does not incorporate additional
data augmentation or modification of the training
pipeline. However, the method has mixed results
when used alongside pre-training, and does not
seem to perform as well under more natural types
of dataset shift, and is therefore worthy of ad-
ditional study. We include links to the data in
our figures to improve reproducibility, including a
Python notebooks that can be run to easily modify
our analysis at this url.

1. Introduction
Covariate shift is one of the key problems facing modern
machine learning. Informally defined as situations in which
training data differs from the data seen at final prediction
time, covariate shift breaks the traditional i.i.d. assump-
tions used to underpin supervised machine learning (Vapnik,
1995). For deep models in particular, covariate shift has
been shown to not only cause incorrect predictions, but
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to do so with disproportionately high levels of confidence
(Ovadia et al., 2019). This is potentially worrying, because
covariate shift often occurs in practical settings such as real-
world deployment of ML systems (McMahan et al., 2013),
for reasons that may include non-stationarity over time or
differences between local and global distributions. Further-
more, traditional training-time methods for covariate shift
correction may be impractical in such settings.

We propose one such method, which we call prediction-time
batch normalization, as an extension of the widely adopted
(training time) batch normalization method proposed by
(Ioffe & Szegedy, 2015). We also carefully analyze the
model performance, teasing apart several factors to help
understand why this method works well, identifying key
factors via ablation studies. Finally, we explore the lim-
its of the method under more natural types of dataset shift
and examine its potential failure modes, notably its lacklus-
ter performance when combined with pre-training, which
indicates that the method is worthy of additional study.. To-
gether the results in this paper lay out an interesting and
highly practical methodology which could be used, with
caveats, to correct for covariate shift in real-world deploy-
ment settings.

2. Setup
Here, we formalize our prediction setting. We observe
feature-label pairs {(i, yi)}Ni=1 drawn i.i.d. from some train-
ing distribution p(, y), and wish to predict the labels of
unlabeled test examples {j}Tj=1. We assume that the test ex-
amples are drawn i.i.d. from a potentially distinct, unknown
target distribution q(), with an accompanying conditional
label distribution q(y |).

Unlike the standard supervised learning setting, we assume
that predictions can be made in batches. Specifically, at pre-
diction time, we obtain batches of t < T examples, (b) =

(
(b)
i )ti=1, and make predictions for these examples simulta-

neously,ˆ(b) = (ŷ
(b)
1 , . . . , ŷ

(b)
t ) = f

(b)
( ). We express our

goal as minimizing a predictive risk that is evaluated batch-
wise. Specifically, let `((b), f (b)( )) :=

∑t
i=1 `(y

(b)
i , ŷ

(b)
i )

be a batch-wise loss function that decomposes additively
across the points in a test batch. Our goal is to minimize
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the expected loss, or risk, over i.i.d. test batches (, ) drawn
from the product distribution q(, y)t :=

∏t
i=1 q(i, yi):

min
E(,)∼q(,y)t [`(,f())].

(1)

Conveniently, because the loss function ` decomposes lin-
early, the empirical analogue of this risk can be computed in
the standard way, as the mean loss across examples `(yi, ŷi).
Thus, empirical evaluation in this setting can be done using
standard pipelines.1

2.1. Reliable Uncertainty Quantification Under
Covariate Shift

Formally, we quantify the quality of the uncertainty of a
predictive distribution using two measures, calibration error
and Brier score. Expected Calibration Error (ECE) (Guo
et al., 2017) is the difference between the confidence and
accuracy of a model, binned by confidence. We define con-
fidence as the max predicted class probability for a given ex-
ample. Let Bi be the elements in each confidence bin, then
ECE =

∑
i
Bi

N | acc (Bi)− conf (Bi) |, where acc (Bi) is
the accuracy of elements in Bi and conf (Bi) is the con-
fidence of elements in Bi. Brier Score (Brier, 1950) is
defined as the squared distance between a model output dis-
tribution and the one-hot target labels. It is a proper scoring
rule (Gneiting & Raftery, 2007), and as such decreases to
zero monotonically as the predictive distribution approaches
the true underlying distribution.

3. Related work
Wilson & Cook (2018) survey different methods in unsu-
pervised domain adaptation. These include methods that
learn mappings between domains (Fernando et al., 2013;
Sener et al., 2016), match means and covariances across
feature vectors (Sun et al., 2017), or match moments of the
distributions directly (Peng et al., 2019) or through kernel
embeddings (Long et al., 2015; Gong et al., 2012). Im-
portance weighting methods are also a common approach,
where training examples are reweighted to minimize an esti-
mate of the predictive risk in the target domain (Sugiyama
et al., 2007). A common theme in these approaches is that
they assume access to a set of unlabeled samples from the
test set at training time, whereas our focus is to apply an
intervention at test time, after a model has been trained. In
addition, these methods can become brittle when the train-
ing and test distributions are highly distinct (Johansson et al.,
2019).

1The within-batch dependence introduced by simultaneous
predictions f (b)

( ) will generally alter the concentration properties
of this empirical mean, but this effect is modest if the batch size is
small relative to the size of the test set. We conjecture that, in the
worst case, generalization bounds scale in the number of batches
rather than the number of examples.

There has been work in the domain adaptation literature that
specifically focuses on using batch normalization as a means
of mapping between domains, and Li et al. (2016) make
the claim that the batch norm statistics in deep networks
learn domain-specific knowledge. They propose AdaBN,
which calculates domain-specific batch norm statistics using
the entirety of the target domain at test-time (or an expo-
nential moving average (EMA) in practice). AutoDIAL
(Cariucci et al., 2017) mixes data from the source and target
domains during training time before passing them through
the batch norm layers, whereas TransNorm (Wang et al.,
2019) uses source and target domain batch norm statistics
during training in an end-to-end fashion to improve transfer-
ability across domains.

While Guo et al. (2017) observed that models using tradi-
tional batch norm typically have worse calibration on the
test set, to our knowledge no one has applied normalization
strategies for correcting miscalibration under covariate shift.

The prediction-time batch setting has also been explored for
deep generative models, particularly in the context of ad-
dressing their failure modes for OOD detection as reported
by Nalisnick et al. (2019a); Choi et al. (2019b). Nalisnick
et al. (2019b) propose a typicality test for generative models
that performs OOD detection using a batch of inputs. Song
et al. (2019) use prediction-time batch normalization in deep
generative models and show that it improves OOD detection.
This is perhaps the closest related work, but is complemen-
tary to our method, as we focus on discriminative models
and covariate shift rather than OOD detection.

4. Prediction-Time Batch Normalization
We propose a simple protocol to mitigate the effects of co-
variate shift at prediction time in a batch-prediction setting:
use batch normalization (BN) with statistics recalculated
on the batch at prediction time. In standard practice, the
batch normalization statistics are frozen to particular values
after training time that are used to compute predictions, an
approach we refer to as train BN. On the other hand, our
strategy, prediction-time BN, recomputes these statistics
for each test batch.

To move toward an understanding of when prediction-time
BN works, we offer two observations here. We then perform
a more thorough exploration of this method with ablation
studies in Section A.

Prediction-Time Batch Normalization Repairs Mis-
matched Supports As q () shifts, the internal activations
of a deep model fθ() can move outside the ranges encoun-
tered during training, as seen in the left column of Figure 1.
When this happens, the model layers receive inputs out-
side of the domain they were trained on, and we can no
longer expect well-defined model behavior such as accurate
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Layer 1 Layer 1

Layer 7 Layer 7

Layer 16 Layer 16

Layer 18 Layer 18

Data split
Training
Shfited, prediction batch norm
Shifted, train batch norm

Figure 1. Empirical distributions for the output of selected nor-
malization layers in Resnet-20 on CIFAR10 and CIFAR10-C.
Activations are averaged over spatial dimensions, resulting in one
distribution per output channel. The activations are recorded imme-
diately after the batch normalization layer, before the non-linearity
of each layer. The blue and red curves are aggregated across all
shifted examples, while the yellow is across all training examples.
We can clearly see that prediction-time BN is much more effective
at aligning the shifted activations with the training distribution
support and shape. These layers were picked as representative
examples of activations of all normalization layers in the model,
we encourage the reader to check Figures S18, S19 for all layers.

or well-calibrated predictions. The top left panel of Figure 2
demonstrates this behavior, with shifted examples inducing
worsening calibrations as measured using Brier Score. Over-
all there is a trend of decreasing calibration as the distance
between test and train activations increases (see Figure S13
for a similar trend in accuracy).

In Figure 2, we visualize the discrepancy between the sup-
ports of the empirical training and test activation distri-
butions for the penultimate hidden layer of Resnet-20 on
CIFAR10-C. We see that the prediction-time BN correction
is effective at bringing the activation distribution supports
into alignment (clustered around 0 on the horizontal axis)
relative to both train BN and other normalization schemes.

Prediction-Time Batch Normalization Maps Activa-
tions to Regions of Uncertainty Aligning the supports
of activation distributions is not sufficient to ensure well-
calibrated predictive distributions. For example, it would be
plausible that a normalization scheme could spuriously map
the activations of out-of-support test instances to regions in
the activation space that induce highly confident predictions.
We find that prediction-time BN avoids this potential failure
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Figure 2. Brier scores of predictions become higher when the
activations from the training and test sets occur in increas-
ingly distinct regions. Here, we summarize how the distributions
of penultimate hidden layer activations = g () on shifted test sets
compare to their distributions on the training set, under a number
of different normalization schemes. Each point represents a type of
shift, where the color indicates the intensity of the shift applied. On
the horizontal axis, we plot a measure of the discrepancy between
the training and test distributions of activations, p() and q(), re-
spectively by approximating KL(p()‖q()) ≈ T−1 ∑T

i=1 ln
q̂(i)
p̂(i)

,
where the summation is taken over test instances, and p̂ and q̂ are
multivariate normal densities whose means and variances match
p and q, respectively. On the vertical axes are the Brier scores for
each shifted example, averaged within each split. In addition to
the overall trend of increasing discrepancy leading to decreasing
performance, we also see that higher shift intensities tend to have
higher support mismatch.

mode. As Figure 2 suggests, prediction-time BN seems to
map out-of-support activations to regions in the training ac-
tivation support that induce uncertain predictions, resulting
in consistently lower Brier scores when the normalization is
applied. This pattern is confirmed in Figure S5.

5. Performance Under Covariate Shift
In our empirical analyses, we consider methods that are test-
time only modifications of neural networks. Our method
should be applicable to any model with batch normalization.
Many sophisticated Bayesian techniques, such as those ex-
plored in Ovadia et al. (2019), also require modifications
at training time, which is not the setting we consider. In ad-
dition to our vanilla baseline we also consider temperature
scaling (Guo et al., 2017; Platt, 1999) and ensembles (Lak-
shminarayanan et al., 2017) with 10 members.

5.1. Prediction Batch Dependence

One potential concern with prediction-time BN is that pre-
dictions now depend on other examples and the prediction
batch size. Figure 3 shows performance across a range of
prediction batch sizes and see we achieve strong perfor-
mance with a batch of just 100 examples, with larger batch
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Figure 3. CIFAR-10-C Brier Score at shift level 5 for different
prediction batch sizes. We see that relatively small batch sizes
are required to effectively correct for covariate shift, with only
marginal improvements after a 100 examples. See Figure S17 for
a similar trend on ImageNet-C.
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Figure 4. Calibration on CIFAR-10-C (top) and ImageNet-C
(bottom), both with a prediction batch size of 500. Here we
clearly see that just having access to a single batch from each split
(frozen Prediction BN) is sufficient to get substantial performance
improvements. Also, while prediction-time BN is sensitive to
multiple simultaneous types of covariate shift, it still outperforms
train BN.

sizes giving marginal improvements.

We also investigate whether the performance gains are from
having the statistics of the exact batch we are predicting
on, or just from having statistics that are relevant to the
prediction distribution’s shift. In Figure 4 the statistics from
the first batch of each split are stored and reused for all
subsequent batches of that split. We only see a marginal per-
formance decrease, meaning we can remove our prediction
batch dependence while retaining the performance improve-
ments. Additionally, we test calibration under multiple cor-
ruption types and levels at once, and see that even with up
to 19 different types of simultaneous shift, prediction-time
BN outperforms train BN.

5.2. Limitations

We see negative results when evaluating prediction-time
BN on a pre-trained Noisy Student model from (Xie et al.,
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Figure 5. Calibration under covariate shift for CIFAR-10-C
with a prediction batch size of 500 (lower Brier Score is bet-
ter). The box plots show the median, quartiles, minimum, and
maximum performance per method. Ensembles with prediction
batch norm appear minimally affected by the level of shift. See Fig-
ure S12 for other metrics. The data and notebook for this plot can
be found at https://tensorboard.dev/experiment/
IwvHAvuxTZK00Wp76rJwqw/.
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Figure 6. Calibration under covariate shift for ImageNet-C
with a prediction batch size of 100. The box plots show the
median, quartiles, minimum, and maximum performance per
method. See Figure S14 for other metrics. The data and note-
book for this plot can be found at https://tensorboard.
dev/experiment/FRbuxfG5SkaFPQQH4OcpYw/.

Valid
atio

n
Tes

t
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Shift intensity

0.15

0.16

0.17

0.18

0.19

0.20

Br
ie

r S
co

re

Method
Vanilla (Train BN)
Ensemble (Train BN)
Temp Scaling (Train BN)
Vanilla (Prediction BN)
Ensemble (Prediction BN)
Temp Scaling (Prediction BN)

Figure 7. Calibration under covariate shift for Criteo with
a prediction batch size of 500. See Figure S15 for AUC
performance. The data and notebook for this plot can
be found at https://tensorboard.dev/experiment/
dNxyMRncRgSzozlD1m94Og/.

2019). As seen in Figure S11, prediction-time BN actually
does worse than train BN. We believe this is because the
statistics used by train BN contain information from the
model pre-training. See Appendix F.2 for more details.

In Appendix F.3 we see mixed results on the ImageNet-v2
dataset, which corresponds to a different type of dataset
shift. We believe this is because the normalization statistics
from ImageNet-v1 are still representative of the v2 dataset,
because they are both sets of natural images, whereas the
types of shifts in ImageNet-C change the image statistics in
characteristic ways.

Exploring the activation distribution alignment in both of
these failure modes, as was done in Figures 1, 2, is an area
we are pursuing as future work.
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A. Ablation Studies
In addition to measuring the model calibration of prediction-
time BN, we also run several studies to explore hypotheses
about the cause of its performance improvements.

A.1. Sensitivity to ε

An often forgotten parameter in batch normalization is the
ε parameter used in the variance term in the denominator.
Originally introduced to avoid division by zero (Ioffe &
Szegedy, 2015), it is usually left at its default value2 of
10−3 except for some larger models (such as Resnet-50 on
ImageNet) where ε = 10−5 is common3.

In the context of model calibration, the denominator term
of batch norm can be viewed as temperature scaling that is
adaptable through the variance term added to a fixed tem-
perature

√
ε. The classic temperature scaling method (Guo

et al., 2017) selects a temperature that minimizes the nega-
tive log-likelihood of the model on the labelled validation
set. In contrast, the temperature scaling induced by the
batch norm variance is unsupervised and can be adapted per
batch. Given that classic temperature scaling with training
batch norm does not perform as well as prediction-time BN
in Figure 5.2, this adaptive temperature is clearly beneficial.
In addition to this, we can follow a similar recipe to Guo
et al. (2017) where we re-tune batch norm’s ε for calibra-
tion and accuracy on the in-distribution test set and evaluate
it on the shifted data. In Figure S1 we measure the ECE
and accuracy for several values of ε used at prediction time.
Given that deep models are typically overly confident under
covariate shift (Ovadia et al., 2019), our intuition is to make
ε as large as possible to compensate for this. However, for
both models we see ε can only be increased two orders of
magnitude from its default values before accuracy collapses.
Nonetheless, we can achieve noticeable calibration perfor-
mance improvements with these higher values. We did see
that ε does not have much of an effect for ensemble mod-
els; one reason for this could be because they are already
smoothing the individual models’ output distributions when
averaging them together. We use the default values of ε
for all experiments unless otherwise stated, which is 10−3

for CIFAR-10 and Criteo and 10−5 for ImageNet (these are
also the values used during training).

A.2. Comparing Normalization Methods

In Figure S2 we evaluate the calibration and accuracy of
several normalization methods on CIFAR-10-C: Instance

2TensorFlow uses a default of 10−3 and defines it as a "small
float added to variance to avoid dividing by zero"; https:
//tensorflow.org/versions/r1.15/api_docs/
python/tf/keras/layers/BatchNormalization.

3Based on the official TensorFlow model definitions, for exam-
ple https://git.io/JvsT4.
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Figure S1. ECE performance across different ε values on the in-
distribution test set. The value that performed the best here was
chosen to evaluate on the shifted splits.

Normalization (Ulyanov et al., 2016), a version of Batch
Norm which normalizes only along the spatial dimensions
per batch element; Layer Normalization (Ba et al., 2016),
which normalizes along all but the batch dimension; Group
Normalization (Wu & He, 2018), which is similar to layer
norm, but instead of normalizing over all channels at once
it splits them into subgroups to compute statistics (we use
two). As is commonly done, we use weight Standardiza-
tion (Qiao et al., 2019) in all experiments with Group Norm.
The results echo the distribution mismatch seen in Figure 2.
Specifically, using the prediction time batch norm signifi-
cantly improves both calibration and accuracy under shift.
Interestingly, Instance Normalization significantly improves
calibration but at the expense of accuracy.
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Figure S2. CIFAR-10-C vanilla model with different normal-
ization methods. Each method is the same vanilla model but
with the normalization layers changed, and all hyperparameters
re-tuned for each. Every method was run with ε ∈ {10−3, 10−1}
for batch norm at prediction time, and the best performing runs are
included here. While instance norm with ε = 10−1 has a lower
ECE than prediction-time BN, it is notably worse on accuracy. See
Figure S16 for more normalization methods.
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A.3. Batch Normalization Architectures

While the results in Figure 1 show that prediction-time BN
aligns the activation distributions of both the hidden and out-
put layers, we investigate whether or not aligning the layers
before the output is necessary to achieve the performance
improvements.

In Figure S3 we use the training statistics EMA for all batch
norm layers except the last, where we use prediction time
batch statistics. The model performance noticeably degrades
compared to train BN, implying that the final normaliza-
tion layer alone cannot compensate for the compounded
misalignment of all previous hidden layers. We go a step
further in Figure S4 where we remove all normalization
layers except for one immediately before the final linear
layer. We can recover most but not all of the performance
benefits, implying that using prediction-time BN on the
internal normalization layers actively helps improve perfor-
mance. However, normalizing the inputs to the last linear
layer of the model significantly improves performance under
covariate shift.

Test 1 2 3 4 5
Shift intensity

0.2

0.4

EC
E

Method
Vanilla (Prediction BN)
Vanilla (Train BN)

Vanilla (last layer only Prediction BN)

Figure S3. Calibration under covariate shift with the CIFAR-10-C
vanilla model where we compare to only using prediction batch
statistics on the last batch norm layer.
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Figure S4. Calibration under covariate shift with the CIFAR-10-C
vanilla model compared to an altered Resnet-20 model where we
have removed all Batch Norm layers and added one before the
final linear layer. We see that we can maintain most, but not all, of
the gain in calibration through re-normalizing just the last layer.

B. Understanding Confidence Distributions
Given that prediction-time BN is able to map the shifted
activations back into the support of the training distribution,
we could expect the model to make predictions with similar
accuracy and confidence as during training. However, we
still see lower confidence predictions with prediction-time
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Figure S5. Resnet-50 on ImageNet-C confidence distribution
and accuracies, grouped into 100 equal width confidence bins.
While the model produces lower confidence predictions on the
shifted data regardless of batch norm method, prediction-time BN
results in slightly lower confidences and higher per-bin accuracies
(but not too high as to be underconfident).

BN on ImageNet-C in Figure S5. One possible explanation
for this is that even though we are matching the support, we
are not precisely matching the distribution densities; while
Figure 1 shows that prediction-time BN more closely aligns
distribution densities, we see nontrivial misalignment of
the eigenspectra of the activation covariance matrices in
Figure S6.

C. Datasets
C.1. CIFAR-10

For CIFAR-10 training we applied data augmentation as fol-
lows: pad by 4 pixels on all sides with zeros, randomly crop
to 32x32 pixels, randomly flip the image, and then rescale
to be in [-1, 1]. This can be implemented in TensorFlow
with the following Python code:

[language=Python, basicstyle=] image = (
tf.image.resizeimagewithcroporpad(image, 32 + 4, 32 +

4))image = tf.randomcrop(image, [32, 32, 3])image =

tf.image.randomf lipleftright(image)image =

tf.image.convertimagedtype(image, tf.float32)image =

2.0 ∗ (image − 0.5) For CIFAR-10-C no pre-processing
was applied. In addition to the 15 standard corrup-
tion types, we also used the extra corruption defined
in Appendix B of (Hendrycks & Dietterich, 2019),
which are {gaussian_blur, saturate, spatter,
speckle_noise}. We used the versions of images as
provided by TensorFlow Datasets (TFD).
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Figure S6. The eigenvalues of the covariance matrices for the
penultimate layer embeddings (top) and logits (bottom) for
Resnet-20 on CIFAR-10. We analyze the eigenspectrum of these
covariance matrices to determine how closely the empirical train-
ing and test distributions match. While these covariance structures
do not indicate anything about aligning distribution supports, they
are a proxy for how close the distributions are in shape. We expect
there to be some change between the training and shifted activation
distribution alignments, because the examples are from similar but
not identical data distributions. We see prediction-time BN results
in a closer but not identical covariance, which could explain the
lower confidence compared to training. Additionally, not being too
far from the training covariance could also explain the improved
accuracy compared to train BN. Note we truncate the eigenspectra
after the top 12 eigenvalues for the embeddings because all values
after this index were very close to zero.

C.2. ImageNet

For ImageNet training we used images of size 224x224, and
applied standard Inception data augmentation as defined at
this url: https://git.io/JvG6T.

For ImageNet-C no pre-processing was applied. We used all
19 corruption types, the same as described for CIFAR-10-C.

To avoid tuning on the test set, we hold out 125114 train-
ing images as a validation set, and treat the standard
“validation” set as a test set.

C.3. Criteo

As done in (Ovadia et al., 2019) we simulate covariate shift
in Criteo by randomizing features with increasing probabil-
ity, ranging from 5% to 95% as seen in Figure S15.

D. Models
CIFAR-10 Our CIFAR-10 model is the standard Resnet-20
v1 (He et al., 2015) with ReLU activations.

ImageNet Our ImageNet model is the standard Resnet-50
v1 (He et al., 2015) with ReLU activations. For ImageNet-
A (Hendrycks et al., 2019) we used DenseNet-121 (Huang
et al., 2016) as defined in tf.keras.applications: https:
//www.tensorflow.org/api_docs/python/
tf/keras/applications/DenseNet121.

Criteo Our Criteo model is the same as in (Ovadia et al.,
2019). Summarizing, it encodes each categorical fea-
ture into a dense vector which are all then concatenated.
This feature vector is then fed into a batch normalization
layer followed by three fully connected layers of widths
[2572, 1454, 1596], each with a ReLU non-linearity.

E. Hyperparameter Tuning Ranges
Following the recommendations of Choi et al. (2019a), we
use random search within the ranges defined in Table E
to tune all available hyperparameters for each optimizer.
We used 100 random trials for all experiments to tune the
learning rate α, one minus the momentum 1−γ, and Adam’s
ε on a logarithmic scale.

For CIFAR-10, we trained for 100 epochs with a batch
size of 512. We used a learning rate schedule where
the learning rate was reduced at epochs 40, 60, 80, 90 by
0.1, 0.01, 0.001, 0.0005.

For ImageNet, we trained for 90 epochs with a batch size of
512. We used a learning rate schedule where the learn-
ing rate started at 0 and was linearly increased for the
first 5 epochs to α, then reduced at epochs 30, 60, 80 by
0.1, 0.01, 0.001.

For Criteo, we trained for 1 epoch with a batch size of 1024
and the same learning rate schedule used for CIFAR-10.

For ECE, we use 10 bins for CIFAR-10-C experiments and
30 bins for ImageNet-C, the same as (Ovadia et al., 2019).

F. Additional Experiments
F.1. Color Filtered ImageNet

In addition to the classic ImageNet dataset, we also ran
prediction-time BN on several variants to test its robustness.
In Figures S7, S8, S9, S10, we split the ImageNet train
and validation splits into two sets based on if the images
are dominated by a given color or shade. For example, for
ImageNet-Red, we train on images where the green and
blue color channels had the highest average pixel values,
and evaluate on those that had red as the dominant channel.
When we evaluate on red images we refer to this as "out-
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Experiment Optimizer α 1− γ ε
CIFAR-10 Resnet-20 Adam [10−3, 1] [10−2, 0.15] [10−8, 10−5]
ImageNet Resnet-50 Nesterov [5× 10−3, 5× 10−1] [10−3, 0.15] —

Criteo MLP Adam [10−4, 10−1] [10−2, 0.15] [10−8, 10−5]

Table S1. Tuning ranges for each hyperparameter.

domain", and when we evaluate on green and blue images
we call this "in-domain". For dark/light, we simply averaged
across all channels and classified dark images as having
mean(image) < 0.5. The sizes of these splits are shown
in Table S2.

Dataset Train Validaiton Test
ImageNet-Red 436103 76376 30832

ImageNet-Green 888422 30889 12186
ImageNet-Blue 987796 17735 6982
ImageNet-Dark 760039 36521 13715

Table S2. Dataset split sizes for our color-filtered ImageNet varia-
tions. Note that for our classic ImageNet experiments we hold our
125114 images as a validation set, and treat the standard “valida-
tion” set as a test set.

Below we see that prediction-time BN still outperforms train
BN on all our ImageNet variants.

F.2. Noisy Student

Using a pre-trained Noisy Student model from (Xie et al.,
2019), we evaluate prediction-time BN on ImageNet. As
seen in Figure S11, prediction-time BN actually does worse
than train BN. We believe this is because the statistics
used by train BN contain information from the model pre-
training; given that the model was pre-trained on the 300
million images in the JFT (Hinton et al., 2015) dataset, this
data likely contains many examples and patterns that resem-
ble the corrupted ImageNet-C data splits. Thus, having this
enormous amount of pre-existing information is likely to
perform better than using the relatively small amount of
shifted data at prediction time. We believe that exploring
the relationship between pre-training and model calibration
is an exciting area of future work.

F.3. ImageNet-v2 & ImageNet-A Results

While the ImageNet-C benchmark is a popular and challeng-
ing dataset, it does not encompass all types of shift typically
encountered by a machine learning model in practice. To
expand the varieties of covariate shift we evaluate on, we
also predict on the ImageNet-v2 test set (Recht et al., 2019)
and ImageNet-A (Hendrycks et al., 2019). ImageNet-v2 is
a newly curated test dataset drawn from the same test dis-
tribution as ImageNet, and we use the Matched Frequency
subet of Imagenet-v2, where the images are sampled to

match the same class frequency distributions as the origi-
nal ImageNet validation dataset. Imagenet-A is a dataset
of natural images that have been adversarially curated to
minimize classifier accuracy when trained on ImageNet. In
Table S3, we see that while prediction-time BN performs
worse on accuracy, it improves calibration as measured by
ECE. This accuracy decrease should be expected, because
the training EMA statistics used by train BN still accurately
represent the activation statistics for this type of change
in p (). However, despite using less accurate normalizing
statistics, prediction-time BN still performs competitively.
In Table S4 prediction-time BN actually outperforms train
BN on Imagenet-A, perhaps because the training statistics
EMA is not representative of the adversarially constructed
test set.

Vanilla
(Train/Pred BN)

Ensemble
(Train/Pred BN)

Temp Scaling
(Train/Pred BN)

Accuracy 62.02% / 58.32% 65.50% / 62.08 % 62.02% / 58.32%

Brier Score
0.000 514 /
0.000 547

0.000 464 /
0.000 502

0.000 513 /
0.000 546

ECE 0.085 / 0.065 0.020 / 0.026 0.080 / 0.060

Table S3. Resnet-50 results on ImageNet-v2 for train and
prediction-time BN. We see similar behavior of prediction-time
BN as on the in-distribution test split of ImageNet, where using
the prediction-time statistics instead of the training EMA actually
degrades accuracy and Brier Score by a small amount, but at the
same time improves ECE. See Figure S14 for comparisons to the
in-distribution test split of ImageNet.

Train BN Prediction BN
Accuracy 1.80% 1.87%

Brier Score 0.001 252 0.001 148
ECE 0.4070 0.2895

Table S4. DenseNet-121 results on the natural adversarial
ImageNet-A dataset for train and prediction-time BN. We see
that prediction-time BN outperforms train BN, which could poten-
tially be due to the training EMA statistics not being representative
of the adversarial nature of ImageNet-A. We do not use Resnet-50
for these results, as ImageNet-A is adversarially curated to obtain
0% accuracy with a Resnet-50 architecture. (Hendrycks et al.,
2019)

G. Additional Figures
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Figure S7. ImageNet-Red ResNet-50 model performance and calibration across increasing levels of dataset shift. Here we train on images
where the green and blue color channels have the highest average pixel values, and consider those that have red as the dominant channel to
be out-domain.
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Figure S8. ImageNet-Green ResNet-50 model performance and calibration across increasing levels of dataset shift. Here we train on
images where the red and blue color channels have the highest average pixel values, and consider those that have green as the dominant
channel to be out-domain.
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Figure S9. ImageNet-Blue ResNet-50 model performance and calibration across increasing levels of dataset shift. Here we train on images
where the red and green color channels have the highest average pixel values, and consider those that have blue as the dominant channel to
be out-domain.
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Figure S10. ImageNet-Dark ResNet-50 model performance and calibration across increasing levels of dataset shift. Here we train on
images where the average pixel value was greater than 0.5, and consider those whose average pixel value is less than 0.5 to be out-domain.
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Figure S11. Calibration and accuracy under covariate shift with the ImageNet-C EfficientNet model trained with the Noisy Student
technique.
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Figure S12. Calibration and accuracy under covariate shift on CIFAR-10-C for vanilla, ensemble, and temperature scaling methods, each
with a test batch size of 500 and ε = 10−3.
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Figure S13. As first described in Figure 2, we also see a linear trend of degrading performance as the train and test activation distributions
become further apart. Once again, higher shift intensities are plotted with higher color saturation, illustrating a clear relationship between
shift intensity and distance between activation supports.
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Figure S14. Calibration and accuracy under covariate shift on ImageNet-C for vanilla, ensemble, and temperature scaling methods, each
with a test batch size of 100 and ε = 10−5. Note that for ensembles using prediction-time BN actually degrades performance on ECE, but
achieves the best accuracy and Brier Score. This is likely due to an issue with the number of bins used to compute ECE, which was 30 for
all ImageNet experiments, because we still see improvements on Brier Score which, unlike ECE, is a proper scoring rule.
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Figure S15. Calibration and AUC under covariate shift on the Criteo dataset.
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Figure S16. Calibration and accuracy under covariate shift on CIFAR-10-C for the vanilla model using various normalization techniques,
each with a test batch size of 500. In addition to ε ∈ {10−3, 10−1} varieties of each normalization method, we also include FixUp
initialization (Zhang et al., 2019) as a no normalization baseline. FixUp performs well on the in-distribution set but quickly degrades in a
similar trend as the train BN method.
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Evaluating Prediction-time Batch Normalization for Robustness Under Covariate Shift
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Figure S17. ImageNet-C calibration and accuracy for the vanilla model for different test batch sizes. We see an almost identical trend as
in CIFAR-10-C, with performance plateauing after batch size 100 or 250. We do see a small increase in ECE after batch size 100, but
accuracy and Brier Score continue to slightly improve, so this could be an artifact of how ECE bins confidences.
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Evaluating Prediction-time Batch Normalization for Robustness Under Covariate Shift
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Figure S18. Empirical distributions of the outputs of each normalization layer in Resnet-20, for train BN.
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Evaluating Prediction-time Batch Normalization for Robustness Under Covariate Shift
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Figure S19. Empirical distributions of the outputs of each normalization layer in Resnet-20, for prediction-time BN.
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