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Abstract
Variational Auto-encoders (VAEs) are deep gener-
ative latent variable models that are widely used
for a number of downstream tasks. While it has
been demonstrated that VAEs training can suf-
fer from a number of pathologies, existing litera-
ture lacks characterizations of exactly when these
pathologies occur and how they impact down-
stream task performance. In this paper we con-
cretely characterize conditions under which VAE
training exhibits pathologies and connect these
failure modes to undesirable effects on specific
downstream tasks – learning compressed and dis-
entangled representations, adversarial robustness
and semi-supervised learning.

1. Introduction
Variational Auto-encoders (VAEs) are deep generative latent
variable models that transform simple distributions over a
latent space to model complex data distributions (Kingma
& Welling, 2013). Formally, a VAE has two components:
a generative model that transforms a distribution over la-
tent space p(z) into a distribution over data p(x), and an
amortized inference model that provides an approximate
posterior q(z|x) ≈ p(z|x). Due to the simplicity of their
training procedure, they have been used for a wide range of
downstream tasks, including: generating realistic looking
synthetic data (e.g Pu et al. (2016)), learning compressed
representations (e.g. Miao & Blunsom (2016); Gregor et al.
(2016); Alemi et al. (2017)), adversarial defense using de-
noising (Luo & Pfister, 2018; Ghosh et al., 2018), and, when
partial labels are available, generating counter-factual data
using weak or semi-supervision (e.g. Kingma et al. (2014);
Siddharth et al. (2017); Klys et al. (2018)).

The common choice of mean-field Gaussian (MFG) approx-
imate posteriors for VAEs (MFG-VAE) results an inference
procedure that is straight-forward to implement and stable in
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training. Unfortunately, a growing body of work has demon-
strated that MFG-VAEs suffer from a variety of pathologies,
including learning un-informative latent codes (posterior
collapse) (e.g.van den Oord et al. (2017); Kim et al. (2018))
and unrealistic data distributions (mismatch between aggre-
gate posterior and prior) (e.g. Makhzani et al. (2015); Tom-
czak & Welling (2017)). Recent work (Yacoby et al., 2020)
attributes a number of these pathologies to properties of the
training objective; in particular, the objective may compro-
mise learning a good generative model in order to learn a
good inference model. While this pathology has been noted
in literature (Burda et al., 2016; Zhao et al., 2017; Cremer
et al., 2018), no prior work has characterizes the conditions
under which it occurs; more worrisomely, no prior work
has related MFG-VAE pathologies with the performance of
MFG-VAEs on downstream tasks. Rather, existing litera-
ture focuses on mitigating the over-regularizing effect of the
VAE’s inference model on it’s generative model by using
richer variational families (e.g. Kingma et al. (2016); Cre-
mer et al. (2017); Nowozin (2018); Luo et al. (2020)). While
promising, these methods introduce potentially significant
additional computational costs to training, as well as new
training issues (e.g. noisy gradients (Roeder et al., 2017;
Tucker et al., 2018)). As such, it is important to understand
precisely when MFG-VAEs exhibit pathologies and when
alternative training methods are worth the computational
trade-off. In this paper, we characterize the conditions under
which MFG-VAEs perform poorly and link them directly to
their performance on a variety of downstream tasks.

Our contributions are theoretical and empirical: (1) We
characterize concrete conditions under which learning the
inference model will compromise learning the generative
model for MFG-VAEs. More problematically, we show
that these bad solutions are globally optimal for the train-
ing objective, the ELBO. (2) We demonstrate that using
the ELBO to select the output noise variance and the latent
dimension results in biased estimates. (3) Furthermore, we
demonstrate ways in which these pathologies affects key
downstream tasks, including learning compressed and dis-
entangled representations, adversarial robustness and semi-
supervised learning. (4) Lastly, we show that while the use
of richer variational families alleviate VAE pathologies on
unsupervised learning tasks, they introduce new ones in the
semi-supervised tasks.
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Background on Unsupervised VAEs In this paper, we as-
sume N observations of x ∈ RD. A VAE assumes the
following generative process (Kingma & Welling, 2013):
p(z) = N (0, I), pθ(x|z) = N (fθ(z), σ

2
ε I) where z ∈ RK

is a latent variable and fθ is a neural network parametrized
by θ. We learn θ while jointly approximating the posterior
pθ(z|x) with qφ(z|x), by maximizing a lower bound of the
marginal data likelihood:

ELBO(θ, φ) = max
θ,φ

E
p(x)

[
Eqφ(z|x)

[
log

pθ(x|z)p(z)
qφ(z|x)

]]
, (1)

where p(x) is the empirical data distribution, pθ(x) is the
learned data distribution, and qφ(z|x) is a MFG with mean
and variance µφ(x), σ2

φ(x) that are outputs of a neural net-
work with parameters φ.

The ELBO for can alternately be written as a sum of two ob-
jectives – the “MLE objective” (MLEO), which maximizes
the pθ(x), and the “posterior matching objective” (PMO),
which encourages variational posteriors to match posteriors
of the generative model. That is, we can write the minima
of the negative ELBO over (θ, φ) as:

argmin
θ,φ

(DKL[p(x)||pθ(x)]︸ ︷︷ ︸
MLEO

+ E
p(x)

[DKL[qφ(z|x)||pθ(z|x)]]︸ ︷︷ ︸
PMO

).
(2)

Background on Semi-Supervised VAEs We extend VAE
model and inference to incorporate partial labels, allowing
for some supervision of the latent space dimensions using
the semi-supervised model introduced in (Kingma et al.,
2014) as the “M2 model”:

z ∼ N (0, I), ε ∼ N (0, σ2
ε · I),

y ∼ p(y), x|y, z = fθ(y, z) + ε
(3)

where y is observed only a portion of the time. The objec-
tive for this model can be written as a sum of two objectives,
a lower bound for the likelihood of M labeled observations
and a lower bound for the likelihood for N unlabeled obser-
vations:

J α(θ, φ) =
N∑
n=1

U(xn; θ, φ) + γ ·
M∑
m=1

L(xm, ym; θ, φ)

+ α ·
M∑
m=1

log qφ(ym|xm)

(4)

where U and L lower bound the pθ(x) and pθ(x, y), re-
spectively (Appendix D), and where the last term in J α
explicitly increase discriminative power of the approximate
posteriors qφ(ym|xm). Following (Kingma et al., 2014),
we assume MFG variational families for all approximate
posteriors.

2. Pathologies of the VAE Training Objective
In Section 2.1 we identify two pathological properties of
the VAE training objective. In Section 2.2 we provide em-
pirical demonstrations where these pathologies manifest on

datasets and in Section 3 we unpack how these pathologies
affect a variety of downstream tasks.

2.1. Pathologies of the VAE Objective

We fix a set of feasible likelihood functions F and a varia-
tional familyQ, implied by our choice of the generative and
inference model network architectures. We assume that F
is expressive enough to contain any smooth function, includ-
ing the ground truth generating function, and we assume Q
contains all qφ∗(z|x) corresponding to any fθ ∈ F , where
φ∗ = argminφ − ELBO(θ, φ).

Pathology I: The ELBO trades off generative model
quality for simple posteriors
Theorem 1. The global optima of the VAE objective corre-
spond to incorrect generative models under the following
two conditions: (1) the true posterior is difficult to approx-
imate by a MFG for a large portion of x’s, and (2) there
does not exist a likelihood function fθ in F with a simpler
posterior that approximates p(x) well.

The formal statement and proof of Theorem 1 is in Appendix
B. This theorem tells us that, under conditions (1) and (2),
the ELBO can prefer learning likelihood functions fθ that
reconstruct p(x) poorly, even when learning the ground
truth likelihood fθGT is possible!

Pathology II: The ELBO biases learning of the observa-
tion noise variance In practice, the noise variance of the
dataset is unknown and it is common to estimate the vari-
ance as a hyper-parameter. Here, we show that learning the
variance of ε either via hyper-parameter search or via direct
optimization of the ELBO can be biased.

Theorem 2. For fixed (θ, φ), the negative ELBO is mini-
mized by setting σ(d)2

ε for each dimension d equal to:

1

N

N∑
n=1

Eqφ(z|xn)
[
(x(d)n − fθ(z)(d))2

]
. (5)

Proof in Appendix C. This theorem shows that the variance
σ2
ε that minimizes the negative ELBO depends on the ap-

proximate posterior qφ(z|x), and thus, even when θ is set
to θGT, the learned σ2

ε may not equal ground truth σ2
ε if

qφ(z|xn) is not the true posterior.

2.2. Empirical Demonstrations of VAE Pathologies

We empirically verify that learning σ2
ε using the ELBO

yields biased estimate as shown in Theorem 2. We also give
examples wherein global optima of the VAE training objec-
tive correspond to poor generative models. To show that
this failure is due to pathologies identified in Theorem 1, we
verify that: (A) the learned models have simple posteriors
for high mass regions where the ground truth models do
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(a) Figure-8. Left: true, Mid: IWAE, Right: VAE.

(b) Clusters. Left: true, Mid: IWAE, Right: VAE.

Figure 1. Comparison of true data distributions versus the corre-
sponding learned distributions of VAE and IWAE. For these exam-
ples, since all conditions of Theorem 1 are satisfied, VAE training
approximates p(x) poorly and IWAE performs better.

not, (B) training with IWAE (complex variational families)
results in generally superior generative models and (C) VAE
training cannot be improved meaningfully by methods de-
signed to escape bad local optima, ex. Lagging Inference
Networks (LIN) (He et al., 2019). While examples here are
synthetic in order to provide intuition for general failures
on down-stream tasks, in Section 4 we describe how each
example typifies a class of real datasets on which VAEs
can exhibit training pathologies. On all synthetic data, we
compare models found as close as possible at the global
optima of the ELBO as described in Appendix J.

Theorem 2 implies that the ELBO biases noise variance
estimates. Consider the “Spiral Dots" Example in Appendix
H.5. We perform two experiments. In the first, we initialize
VAE training at ground-truth noise variance (σ2

ε = 0.01),
generative and inference models (θGT, φGT), as well at ran-
dom values. We then select the learned model (θ, φ) with
the highest ELBO and compute the noise variance that maxi-
mizes the ELBO fixing (θ, φ). The noise variance estimated
by the best model (θ, φ) is 0.014± 0.001 across 5 trials. In
the second experiment, we maximize the ELBO jointly over
σ2
ε , θ and φ (initialized at the ground truth as well as ran-

domly). The σ2
ε corresponding to the restart with the highest

ELBO is 0.020±0.003. The ELBO therefore over-estimates
the noise variance by 50% and 100%, respectively.

Approximation of p(x) is poor when Conditions (1) and
(2) of Theorem 1 both hold. Consider the “Figure-8” Ex-
ample visualized in Figure 1a (details in Appendix H.1).
Here, the posterior matching objective (PMO) is high for
many x’s, since in the neighborhood of x ≈ 0 (where p(x)
is high), values of z in [−∞,−3.0] ∪ [3.0,∞] all map to
similar values of x. As such, near x = 0, the posteriors
pθGT(z|x) are multi-modal (Appendix Figure 8d), satisfying
condition (1) . We verify condition (2) is satisfied by con-

sidering all continuous parametrizations of the “Figure-8"
curve: any such parametrization will result in a function
fθ for which distant values of z map to similar values near
x = 0 and thus the PMO will be high in a neighborhood of
x = 0. As predicted by Theorem 1, the learned generative
model approximates p(x) poorly (Appendix Figure 8a) in
order to learn posteriors that are simpler than those of the
ground truth model (Appendix Figures 8e vs. 8d)).

To show that these issues occur because the MFG variational
family over-regularizes the generative model, we compare
VAE with LIN and IWAE. As expected, IWAE learns p(x)
better than LIN, which outperforms the VAE (Figure 1a,
Appendix Table 1). Like the VAE, LIN compromises learn-
ing the data distribution in order to learn simpler posteriors,
since it also uses a MFG variational family (Appendix Fig-
ure 9). In contrast, IWAE is able to learn more complex
posteriors and thus approximates p(x) far better (Appendix
Figure 10). See Appendix E for a more nuanced discussion
of Theorem 1’s conditions.

3. Impact on Downstream Tasks
Using real and synthetic datasets, we demonstrate concrete
ways in which VAE training pathologies described in Theo-
rems 1 & 2 negatively impact performance on downstream
tasks. On unsupervised tasks, we show that IWAE does not
suffer from the over-regularization of the generative model
caused by the inference model, while LIN does. But sur-
prisingly, IWAE does not always outperform the VAE on
our semi-supervised tasks as its complex variational family
allows the generative model to overfit.

Effects on Unsupervised Downstream Tasks. In disentan-
gled representation learning, we suppose that each dimen-
sion of the latent space corresponds to a task-meaningful
concept (Ridgeway, 2016; Chen et al., 2018). Our goal is to
infer these meaningful ground truth latent dimensions. In
Appendix F, we show that, when the ground truth likelihood
function has complex posteriors, the VAE objective prefers
likelihoods that have simple posteriors with representations
that entangle ground truth dimensions. This can render the
learned representations uninterpretable.

In practice, if the task does not require a specific latent
space dimensionality, K, one choosesK that maximizes the
log pθ(x). Note that using a higherK and a lower σ2

ε means
we can capture the data distribution with a simpler function
fθ(z) and hence get simpler posteriors. That is, increasing
K alleviates the need to compromise the generative model
in order to improve the inference model and leads to better
approximation of p(x). Thus, the ELBO will favor model
mismatch (K larger than the ground truth) and prevent us
from learning highly compressed representations when they
are available. Experiment results in Appendix F.
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(a) True p(x) (b) True vs. Learned fθ(y, z). Left: true, Mid: IWAE, Right: VAE.

Figure 2. Discrete Semi-Circle. Comparison of VAE and IWAE on a semi-supervised example. The ground truth likelihood shows two
distinct functions, one for each y = 0, 1. The VAE likelihood is over-regularized by an inflexible variational family and learns two nearly
identical functions. The IWAE likelihood function is unregularized and learns two distinct but overfitted functions.

Lastly, we show how bias in VAE noise estimation impacts
a task requiring data de-noising: manifold-based defense
against adversarial attacks. In this task, classifiers makes
predictions values projected onto the data manifold so as to
be robust to adversarial perturbations (see Appendix F).

Effects on Semi-Supervised Downstream Tasks. In real
datasets, we often have samples from multiple cohorts of
the population. General characteristics of the population
hold for all cohorts, but each cohort may have different
distributions of these characteristics. We formalize this in
our model by requiring the cohorts to lie on a shared fixed
manifold, while each p(x|y) has a different density on that
manifold (Klys et al., 2018).

In our model, the ground truth posterior pθGT(z|x) =∫
y
pθGT(z, y|x)dy will be multi-modal, since for each value

of y there are a number of different likely z’s, each from
a different cohort. As such, using a MFG variational fam-
ily in the semi-supervised objective (Equation 28) will en-
courage inference to either compromise learning the data-
distribution in order to better approximate the posterior, or
to learn the data distribution well and poorly approximate
the posterior, depending on our prioritization of the two ob-
jectives (indicated by our the choice of the hyperparameter
γ). In the first case, data generation will be compromised
but the model will be able to generate realistic counterfactu-
als. That is, fixing y will allow us to generate realistic data
from different cohorts p(x|y). In the latter case, the learned
model will be able to generate realistic data but not realis-
tic counterfactuals since the model will have collapse the
conditional distributions pθ(x|y) ≈ p(x). That is, p(x|y)
will generates identical looking cohort regardless of our
choice of y. In short, VAEs trades-off between generating
realistic data and realistic counterfactuals.

In Appendix G, we show that when y is discrete, VAEs
struggle with balancing generating realistic data and real-
istic counterfactuals as expected. Surprisingly because the
likelihood of IWAE is not regularized by an inflexible varia-
tional family and overfits - while IWAE generates realistic
counterfactuals, it approximates p(x) poorly. We also show
(in Appendix G) that when y is continuous, IWAE surpris-

ingly struggle with generating realistic counterfactuals when
the discriminator qφ(y|x) is a MFG.

4. Discussion and Conclusion
VAE training pathologies negatively impact down
stream tasks. In Section 3 we showed that due to the train-
ing pathology we identified in Theorems 1 & 2, VAEs may
struggle with approximating p(x), learning compressed and
disentangled representations, and VAEs struggle with tasks
requiring de-noising. In semi-supervised settings, VAEs
trade-off generating realistic data with generating realis-
tic counterfactual data. Moreover, these problems occur at
global optima of the VAE training objective. While we show
that on unsupervised tasks these issues are mitigated when
we train with IWAE, the under-regularized generative mod-
els of IWAE can overfit and perform no better than VAEs
on semi-supervised tasks.

VAE training pathologies can happen for many real
datasets. We describe how the conditions of Theorem 1
manifests in real datasets. The “Figure-8” Example in Fig-
ure 1a generalizes to any data manifold where the Euclidean
distance between two points in a high density region on
manifold is (A) less than the length of the geodesic connect-
ing and (B) within 2 standard deviation of observation noise.
The “Clusters" Example in Figure 1b generalizes to data dis-
tributions that have distinct areas of high density connected
by areas of low density. On these datasets, the VAE training
objective prefers compromising the quality of the generative
model for posteriors that are easy to approximate. As for
the pathology noted in Theorem 2, we expect that the ELBO
yields biased estimates of the observation noise whenever
the learned model approximates p(x) poorly.

Conclusion We concretely characterized conditions under
which VAE training exhibits pathologies and connected
these pathologies to undesirable effects on specific down-
stream tasks. We find that while inference with richer varia-
tional families (at a computational cost) can alleviate these
issues on unsupervised tasks, they can introduce unexpected
new pathologies in semi-supervised settings.
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A. Related Work
Existing work that characterize MFG-VAEs pathologies
primarily focus on relating local optima of the training ob-
jective to a single pathology: the un-informativeness of the
learned latent codes (posterior collapse) (He et al., 2019;
Lucas et al., 2019; Dai et al., 2019). In contrast, there has
been little work to characterize pathologies at the global
optima of the MFG-VAEs training objective. (Yacoby et al.,
2020) shows that, when the decoder’s capacity is restricted,
posterior collapse and the mismatch between aggregated
posterior and prior can occur as global optima of the train-
ing objective. In contrast to existing work, we focus on
global optima of the MFG-VAE objective in fully general
settings: with fully flexible generative and inference models,
as well as with and without learned observation noise.

While works focused on improving VAEs have noted the
over-regularizing effect of the variational family on the gen-
erative model (e.g. (Burda et al., 2016; Zhao et al., 2017;
Cremer et al., 2018)), none have given a full characterization
of the conditions under which the learned generative model
is meaningfully compromised. Nor have they related the re-
sulting bias in VAE training to potentially impactful effects
on down-stream tasks. In particular, these works have shown
that their proposed methods have higher test log-likelihood
relative to a MFG-VAEs, but as we show in this paper, high
test log-likelihood is not the only property needed for good
performance on downstream tasks. Lastly, these works all
propose fixes that require a potentially significant compu-
tational overhead. For instance, works that use complex
variational families, such as normalizing flows (Kingma
et al., 2016), require a significant number of parameters to
scale (Kingma & Dhariwal, 2018). As in the case of the Im-
portance Weighted Autoencoder (IWAE) objective (Burda
et al., 2016), which can be interpreted as having a more
complex variational family (Cremer et al., 2017), the com-
plexity of the posterior scales with the number of importance
samples used. Lastly, works that de-bias or reduce the vari-
ance of existing bounds (Nowozin, 2018; Luo et al., 2020;
Tucker et al., 2018; Roeder et al., 2017) all require several
evaluations of the objective.

Given that MFG-VAEs remain popular today due to the
ease of their implementation, speed of training, and their
theoretical connections to other dimensionality reduction
approaches like probabilistic PCA (Rolinek et al., 2019; Dai
et al.; Lucas et al., 2019), we believe such a characterization
of MFG-VAE training pathologies is valuable and that con-
crete connections from these pathologies to down-stream
effects are needed. More importantly, we believe this char-
acterization will help clarify for which tasks / datasets a
MFG-VAE suffices and for which the computational trade-
offs are worth it.

B. Theorem 1
We formalize these conditions in the following. Recall the
decomposition the negative ELBO in Equation 2. In the
following discussion, we alway set φ to be optimal for our
choice of θ. Assuming that p(x) is continuous, then for any
α ∈ R, we can further decompose the PMO:

E
p(x)

[DKL[qφ(z|x)||pθ(z|x)]]

=Pr[XLo(θ)]Ep(x)|XLo
[DKL[qφ(z|x)||pθ(z|x)]]

+ Pr[XHi(θ)]Ep(x)|XHi
[DKL[qφ(z|x)||pθ(z|x)]]

(6)

where DKL[qφ(z|x)||pθ(z|x)] ≤ α on XLo(θ),
DKL[qφ(z|x)||pθ(z|x)] > α on XHi(θ), with Xi(θ) ⊆ X ;
where Ep(x)|Xi is the expectation over p(x) restricted to
Xi(θ) and renormalized, and Pr[Xi] is the probability of
Xi(θ) under p(x). Let us denote the expectation in first
term on the right hand side of Equation 6 as DLo(θ) and
the expectation in the second term as DHi(θ).

Let fθGT ∈ F be the ground truth likelihood function, for
which we may assume that the MLE objective (MLEO) term
is zero. We can now state our claim:

Theorem 1. Suppose that there exist an α ∈ R such
that such that Pr[XHi(θGT)]DHi(θGT) is greater than
Pr[XLo(θGT)]DLo(θGT). Suppose that (1) there exist an
fθ ∈ F such that DLo(θGT) ≥ DLo(θ) and

Pr[XHi(θGT)] (DHi(θGT)−DLo(θGT))

is greater than

Pr[XHi(θ)]DHi(θ) +DKL[p(x)||pθ(x)];

suppose also that (2) that for no such fθ ∈ F is the MLEO
DKL[p(x)||pθ(x)] equal to zero. Then at the global minima
(θ∗, φ∗) of the negative ELBO, the MLEO will be non-zero.

Proof. The proof is straightforward. Condition (1) of the
theorem implies that the negative ELBO of fθ will be lower
than that of fθGT . That is, we can write:

−ELBO(θGT, φGT) (7)
= Pr[XHi(θGT)]DHi(θGT) + Pr[XLo(θGT)]DLo(θGT)

(8)

= Pr[XHi(θGT)]DHi(θGT) + (1− Pr[XHi(θGT)])DLo(θGT)
(9)

= Pr[XHi(θGT)] (DHi(θGT)−DLo(θGT)) +DLo(θGT)
(10)

> Pr[XHi(θ)]DHi(θ) + Pr[XLo(θ)]DLo(θ) +DKL[p(x)||pθ(x)︸ ︷︷ ︸
−ELBO(θ,φ)

]

(11)
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So we have that −ELBO(θGT, φGT) > −ELBO(θ, φ).
Note again that by construction φGT and φ are both op-
timal for θGT and θ, respectively.

Furthermore, if there is an fθ′ ∈ F such that
−ELBO(θ′, φ′) < −ELBO(θ, φ), then it must also sat-
isfy the conditions in assumption (1) and, hence, the global
minima of the negative ELBO satisfy the conditions in as-
sumption (1). By assumption (2), at the global minima of
the negative ELBO, the MLEO DKL[p(x)||pθ(x)] cannot be
equal to zero.

C. Proof of Theorem 2
In practice, the noise variance of the dataset is unknown and
it is common to estimate the variance as a hyper-parameter.
Here, we show that learning the variance of ε either via
hyper-parameter search or via direct optimization of the
ELBO can be biased.

Theorem 2. For an observation set of size N , we have that

argmin
σ(d)2

ε

−ELBO(θ, φ, σ(d)2

ε)

=
1

N

N∑
n=1

Eqφ(z|xn)
[
(x(d)n − fθ(z)(d))2

]
.

(12)

Proof. We rewrite the argmin of the negative ELBO as
follows: as follows:

argmin
σ(d)2

ε

−ELBO(θ, φ, σ2
ε ) (13)

= argmin
σ(d)2

ε

D∑
d=1

log
(
σ(d)

ε

)
+

1

2σ(d)2
ε

· C(θ, φ, d)

(14)

where

C(θ, φ, d) = Ep(x)
[
Eqφ(z|x)

[
(x(d) − fθ(z)(d))2

]]
(15)

(see Figure 3 for details). Setting the gradient of the above
with respect to σ2

ε equal to zero yields the following:

0 = − ∂

∂σ
(d)
ε

ELBO(θ, φ, σ(d)
ε ) (16)

=
σ(d)2

ε − C(θ, φ, d)

σ(d)3
ε

. (17)

Thus, we can write,

σ(d)2

ε = C(θ, φ, d) = Ep(x)
[
Eqφ(z|x)

[
(x(d) − fθ(z)(d))2

]]
(18)

≈ 1

N

N∑
n=1

Eqφ(z|xn)
[
(x(d)n − fθ(z)(d))2

]
(19)

D. The Semi-supervised VAE Training
Objective

We extend VAE model and inference to incorporate partial
labels, allowing for some supervision of the latent space
dimensions. For this, we use the semi-supervised model
first introduced in (Kingma et al., 2014) as the “M2 model”.
We assume the following generative process:

z ∼ N (0, I), ε ∼ N (0, σ2
ε · I), y ∼ p(y),

x|y, z = fθ(y, z) + ε
(27)

where y is observed only a portion of the time. Inference
objective for this model can be written as a sum of two
objectives, a lower bound for the likelihood of M labeled
observations and a lower bound for the likelihood for N
unlabeled observations:

J (θ, φ) =

N∑
n=1

U(xn; θ, φ) + γ ·
M∑
m=1

L(xm, ym; θ, φ)

(28)

where U and L lower bound pθ(x) and pθ(x, y), respec-
tively, and γ controls their relative weight (as done in (Sid-
dharth et al., 2017)). See Figures 4a and 4b for the definition
of U ,L for a VAE and for IWAE, respectively.

E. Empirical Demonstrations of VAE
Training Pathologies

Experiment setup We train each model to approximately
reach the global optima as follows: we train 10 restarts for
each method and hyper-parameter settings – 5 random where
we initialize randomly, and 5 random where the decoder and
encoder are initialized to ground truth values. We select the
restart with the lowest value of the objective function. We fix
a sufficiently flexible architecture (one that is significantly
more expressive than needed to capture fθGT ) so that our
feasible set F is diverse enough to include likelihoods with
simpler posteriors. Details in Appendix J.

Approximation of p(x) may be fine when only condition
(2) holds. What happens if the observations with highly
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argmin
σ(d)2

ε

−ELBO(θ, φ, σ2
ε ) (20)

= argmin
σ(d)2

ε

Ep(x)
[
Eqφ(z|x) [− log pθ(x|z)] +DKL [qφ(z|x)||p(z)]

]
(21)

= argmin
σ(d)2

ε

Ep(x)
[
Eqφ(z|x) [− log pθ(x|z)]

]
(22)

= argmin
σ(d)2

ε

Ep(x)

Eqφ(z|x)
− D∑

d=1

log

 1√
2πσ(d)2

ε

· exp

(
−(x(d) − fθ(z)(d))2

2σ(d)2
ε

) (23)

= argmin
σ(d)2

ε

D∑
d=1

Ep(x)

[
Eqφ(z|x)

[
log

(√
2πσ(d)2

ε

)
+

(x(d) − fθ(z)(d))2

2σ(d)2
ε

]]
(24)

= argmin
σ(d)2

ε

D∑
d=1

Ep(x)

[
Eqφ(z|x)

[
log
(
σ(d)

ε

)
+

(x(d) − fθ(z)(d))2

2σ(d)2
ε

]]
(25)

= argmin
σ(d)2

ε

D∑
d=1

log
(
σ(d)

ε

)
+

1

2σ(d)2
ε

· Ep(x)
[
Eqφ(z|x)

[
(x(d) − fθ(z)(d))2

]]
︸ ︷︷ ︸

C(θ,φ,d)

(26)

Figure 3. Derivation in Theorem 2

log pθ(x, y) ≥ Eqφ(z|x,y) [− log pθ(x|y, z)]− log p(y) +DKL [qφ(z|x, y)||p(z)]︸ ︷︷ ︸
L(x,y;θ,φ)

(29)

log pθ(x) ≥ Eqφ(y|x)qφ(z|x) [− log pθ(x|y, z)] +DKL [qφ(y|x)||p(y)] +DKL [qφ(z|x)||p(z)]︸ ︷︷ ︸
U(x;θ,φ)

(30)

(a) VAE Semi-Supervised Bounds

log pθ(x, y) ≥ Ez1,...,zS∼qφ(z|x,y)
[
log

1

S

pθ(x, y, zs)

qφ(zs|x, y)

]
︸ ︷︷ ︸

L(x,y;θ,φ)

(31)

log pθ(x) ≥ E(y1,z1),...,(yS ,zS)∼qφ(y|x)qφ(z|x)

[
log

1

S

S∑
s=1

pθ(x, ys, zs)

qφ(ys|x)qφ(zs|x)

]
︸ ︷︷ ︸

U(x;θ,φ)

(32)

(b) IWAE Semi-Supervised Bounds

Figure 4.

non-Gaussian posterior were few in number? For instance,
consider the “Circle” Example visualized in Figure 6 (de-
tails in Appendix H.2). In this example, the regions of
the data-space that have a non-Gaussian posterior are near
x ≈ (1.0, 0.0), since z ∈ [−∞,−3.0] ∪ [3.0,∞] map to
points near (1.0, 0.0). However, since overall number of
such points is small, the VAE objective does not need to

trade-off capturing p(x) for easy posterior approximation.
Indeed, we see that VAE training is capable of recovering
p(x), regardless of whether training was initialized ran-
domly or at the ground truth (Appendix Figure 6).

Approximation of p(x) may be fine when only condition
(1) holds. We now study the case where the true posterior
has a high PMO for a large portion of x’s, but there exist a
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fθ in our feasible set F that approximates p(x) well and has
simple posteriors. Consider the “Absolute-Value” Example
visualized in Figure 7 (details in Appendix H.3). That the
true posteriors are complex (Appendix Figure 7d). However,
there is an alternative likelihood fθ(z) that explains p(x)
equally well and has simpler posteriors (Appendix Figure
7e) and this is the model selected by the VAE objective,
regardless of whether training was initialized randomly or
at the ground truth.

Approximation of p(x) is poor when Conditions (1) and
(2) of Theorem 1 both hold. Table 1 shows that on syn-
thetic data-sets for which Theorem 1 hold, the VAE objec-
tive (even with a better training algorithm, LIN) approxi-
mates p(x) poorly, while methods with a more complex vari-
ational family (IWAE) do not. Visualization of the posterior
(in Appendix M) confirm that the VAE objective underfits
the generative model in order to learn a simpler posterior,
whereas the IWAE objective does not: for the “Figure-8
Example”, see Figures 8, 9 and 10 and for the “Clusters Ex-
ample”, see Figures 11, 12 and 13). In these two examples,
we further see the ELBO’s regularizing effect on the learned
fθ. On the “Figure-8 Example”, the learned fθ ensures that
x’s generated from z ∈ [−∞,−3] ∪ [3,∞] are sufficiently
different from x’s generated from z ≈ 0: fθ(z) curls away
from the center z ≈ 0 and thus simplifies the posterior. On
the “Clusters Examples”, the learned fθ has less pronounced
changes in slope, and thus a simpler posterior.

F. Effects of Pathologies on Unsupervised
Learning Downstream Tasks

VAE training pathologies prevent learning disentangled
representations In disentangled representation learning, we
suppose that each dimension of the latent space corresponds
to a task-meaningful concept (Ridgeway, 2016; Chen et al.,
2018). Our goal is to infer these meaningful ground truth
latent dimensions. It’s been noted in literature that this
inference problem is ill-posed - that is, there are an infinite
number of likelihood functions (and hence latent codes)
that can capture p(x) equally well (Locatello et al., 2018).
Here we show that, more problematically, the VAE objective
may prefer learning the representations that entangles the
ground-truth latent dimensions.

Consider data generated by fθGT(z) = Az + b. If A is
non-diagonal, then the posteriors of this model are corre-
lated Gaussians. Let A′ = AR, where we define R =
(ΣV >)−1(Λ− σ2I)1/2 with an arbitrary diagonal matrix Λ
and matrices Σ, V taken from the SVD of A, A = UΣV >.
In this case, fθ = A′z + b has the same marginal likelihood
as fθGT , that is, pθ(x) = pθGT(x) = N (b, σ2

ε · I + AAᵀ).
However, since the posteriors of fθ are uncorrelated, the
ELBO will prefer fθ over fθGT ! In the latent space corre-
sponding to fθ , the original interpretations of the latent

dimensions are now entangled. Similarly, for more compli-
cated likelihood functions, we should expect the ELBO to
prefer learning models with simpler posteriors which are
not necessarily ones that are useful for constructing disen-
tangled representations. This bias is reduced in the IWAE
training objective.

VAE training pathologies prevent learning compressed
representations In practice, if the task does not require a
specific latent space dimensionality, K, one chooses K that
maximizes the log pθ(x). As we demonstrate here, using
a higher K and a lower σ2

ε means we can capture the data
distribution with a simpler function fθ(z) and hence get
simpler posteriors. That is, increasing K alleviates the need
to compromise the generative model in order to improve
the inference model and leads to better approximation of
p(x). Thus, the ELBO will favor model mismatch (K larger
than the ground truth) and prevent us from learning highly
compressed representations when they are available.

We demonstrate this empirically by embedding the “Figure-
8” and “Clusters” Examples into a 5D space using a lin-
ear embedding A =

(
1.0 0.0 0.5 0.2 −0.8
0.0 1.0 −0.5 0.3 −0.1

)
, and then train-

ing a VAE with latent dimensionality K ∈ {1, 2, 3}, with
K = 1 corresponding to the ground-truth model. Training
for K = 1 is initialized at the ground truth model, and for
K > 2 we initialize randomly; in each case we optimize
σ2
ε per-dimension to minimize the negative ELBO. The

ELBO prefers models with larger K over the ground truth
model (K = 1), and that as K increases, the average infor-
mativeness of each latent code decreases (Appendix Table
2), since the latent space learns to generate the observation
noise ε. We confirm that the posteriors become simpler as
K increases, lessening the incentive for the VAE to compro-
mise on approximating p(x) (Appendix Figures 22 and 21).
We confirm that while LIN also shows preference for higher
K’s, IWAE does not (Appendix Table 2).

VAE training pathologies compromises defense against
adversarial perturbations We’ve shown that VAEs prefer
increasing the dimensionality of the latent space K and de-
creasing σ2

ε . While these models have better approximate
p(x), they explain variance due to ε using variance due to
z, and therefore do not correctly de-noise the data. Further-
more, even when K is fixed at the ground truth, Theorem
2 shows that the ELBO is unable to identify the correct σ2

ε .
Unfortunately, bias in the noise variance estimate will de-
grade the performance on tasks requiring correct estimation
of the noise. An example of such task is manifold-based de-
fense against adversarial attacks, in which classifiers makes
predictions values projected onto the data manifold so as
to be robust to adversarial perturbations (Jalal et al., 2017;
Meng & Chen, 2017; Samangouei et al., 2018; Hwang et al.,
2019; Jang et al., 2020). See Appendix K for full analysis.
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G. Effect on Semi-Supervised Downstream
Tasks

Trade-offs when labels are discrete The trade-off between
realistic data and realistic counterfactuals generation is
demonstrated in the “Discrete Semi-Circle” Example, visu-
alized in Figure 2a (details in Appendix I.1). the VAE is
able to learn the data manifold and distribution well (Ap-
pendix Figure 15a). However, the learned model has a
simple posterior in comparison to the true posterior (Ap-
pendix Figure 15f). In fact, the learned fθ(z, y) is collapsed
to the same function for all values of y (Figure 2b). As a
result, pθ(x|y) ≈ pθ(x) under the learned model (Appendix
Figure 15c). As expected, the same phenomenon occurs
when training with LIN (Appendix Figure 16). In contrast,
IWAE is able to learn two distinct data conditionals pθ(x|y),
but it does so at a cost. Since the IWAE does not regularize
the generative model, this leads to overfitting (Figure 2b).
Appendix Table 3 shows that IWAE learns p(x) consider-
ably worse than the VAE, while Appendix Table 4 shows
that it learns the p(x|y) significantly better. On real data
we see similar patterns: Table 5 shows that while IWAE
generally approximates p(x) better than a VAE (and thus
does not overfit in this case), both are unable to to learn
p(x|y) well (see Tables 6).

Trade-offs when labels are continuous When y is discrete,
we can lower-bound the number of modes of pθ(z|x) by the
number of distinct values of y, and choose a variational fam-
ily that is sufficiently expressive. But when y is continuous,
we cannot easily bound the complexity of pθ(z|x). In this
case, we show that the same trade-off between realistic data
and realistic counterfactuals exists, and that there is an ad-
ditional pathology introduced by the discriminator qφ(y|x)
(Equation 4). Consider the “Continuous Semi-Circle” Exam-
ple, visualized in Appendix Figure 18b (details in Appendix
I.2). Here, since the posterior pθ(y|x) is bimodal, encour-
aging the MFG discriminator qφ(y|x) to be predictive will
collapse fθ(y, z) to the same function for all y (Appendix
Figure 18b). So as we increase α (the priority placed on
prediction), our predictive accuracy increases at the cost
of collapsing pθ(x|y) towards pθ(x). The latter will result
in low quality counterfactuals (see Figure 18c). Like in
the discrete case, γ still controls the tradeoff between re-
alistic data and realistic counterfactuals; in the continuous
case, α additionally controls the tradeoff between realis-
tic counterfactuals and predictive accuracy. Table 4 shows
that IWAE is able to learn p(x) better than VAE and LIN,
as expected, but the naive addition of the discriminator to
IWAE means that it learns p(x|y) no better than the other
two models.

H. Unsupervised Pedagogical Examples
In this section we describe in detail the unsupervised peda-
gogical examples used in the paper and the properties that
cause them to trigger the VAE pathologies. For each one
of these example decoder functions, we fit a surrogate neu-
ral network fθ using full supervision (ensuring that the
MSE < 1e− 4 and use that fθ to generate the actual data
used in the experiments.

H.1. Figure-8 Example

Generative Process:

z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) = (0.6 + 1.8 · Φ(z))π

x|z =

[ √
2
2 ·

cos(u(z))
sin(u(z))2+1√

2 · cos(u(z)) sin(u(z))sin(u(z))2+1

]
︸ ︷︷ ︸

fθGT (z)

+ε

(33)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.02 (see Figure

8).

Properties: In this example, values of z on [−∞,−3.0],
[3.0,∞] and in small neighborhoods of z = 0 all produce
similar values of x, namely x ≈ 0; as such, the true posterior
pθGT(z|x) is multi-modal in the neighborhood of x = 0
(see Figure 8d), leading to high PMO. Additionally, in the
neighborhood of x ≈ 0, p(x) is high. Thus, condition (1)
of Theorem 1 is satisfied. One can verify condition (2) is
satisfied by considering all continuous parametrizations of
a figure-8 curve. Any such parametrization will result in a
fθ for which far-away values of z lead to nearby values of
x and thus in high PMO value for points near x = 0.

H.2. Circle Example

Generative Process:

z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

x|z =

[
cos(2π · Φ(z))
sin(2π · Φ(z))

]
︸ ︷︷ ︸

fθGT (z)

+ε
(34)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.01 (see Figure

6).

Properties: In this example, the regions of the data-space
that have a non-Gaussian posterior are near x ≈ [1.0, 0.0],
since in that neighborhood, z ∈ [−∞,−3.0] and z ∈
[3.0,∞] both generate nearby values of x. Thus, this model
only satisfies condition 2 of Theorem 1. However, since
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overall the number of x’s for which the posterior is non-
Gaussian are few, the VAE objective does not need to trade-
off capturing p(x) for easy posterior approximation. We
see that traditional training is capable of recovering p(x),
regardless of whether training was initialized randomly or
at the ground truth (see Figure 6).

H.3. Absolute-Value Example

Generative Process:

z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

x|z =

[
|Φ(z)|
|Φ(z)|

]
︸ ︷︷ ︸
fθGT (z)

+ε
(35)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.01 (see Figure

7).

Properties: In this example, the posterior under fθGT can-
not be well approximated using a MFG variational family
(see Figure 7d). However, there does exist an alternative
likelihood function fθ(z) (see 7b) that explains p(x) equally
well and has simpler posterior 7e. As such, this model only
satisfies condition 1 of Theorem 1.

H.4. Clusters Example

Generative Process:

z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) =
2π

1 + e−
1
2πz

t(u) = 2 · tanh (10 · u− 20 · bu/2c − 10) + 4 · bu/2c+ 2

x|z =

[
cos(t(u(z)))
sin(t(u(z)))

]
︸ ︷︷ ︸

fθGT (z)

+ε

(36)

where σ2
ε = 0.2.

Properties: In this example, fθGT a step function embed-

ded on a circle. Regions in which
df−1
θGT
dx is high (i.e. the

steps) correspond to regions in which p(x) is high. The
interleaving of high density and low density regions on the
manifold yield a multi-modal posterior (see Figure 11d).
For this model, both conditions of Theorem 1 hold. In
this example, we again see that the VAE objective learns a
model with a simpler posterior (see Figure 11e) at the cost
of approximating p(x) well (see Figure 11a).

H.5. Spiral Dots Example

Generative Model:

z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) =
4π

1 + e−
1
2πz

t(u) = tanh (10 · u− 20 · bu/2c − 10) + 2 · bu/2c+ 1

x|z =

[
t(u(z)) · cos(t(u(z)))
t(u(z)) · sin(t(u(z)))

]
︸ ︷︷ ︸

fθGT (z)

+ε

(37)

where σ2
ε = 0.01.

Properties: In this example, fθGT a step function embed-

ded on a spiral. Regions in which
df−1
θGT
dx is high (i.e. the

steps) correspond to regions in which p(x) is high. The
interleaving of high density and low density regions on the
manifold yield a multi-modal posterior (see Figure 14d). In
this example, we again see that the VAE objective learns a
model with a simpler posterior (see Figure 14e) at the cost
of approximating p(x) well (see Figure 14a). Furthermore,
for this model the VAE objective highly misestimates the
observation noise.

I. Semi-Supervised Pedagogical Examples
In this section we describe in detail the semi-supervised
pedagogical examples used in the paper and the properties
that cause them to trigger the VAE pathologies. For each
one of these example decoder functions, we fit a surrogate
neural network fθ using full supervision (ensuring that the
MSE < 1e− 4 and use that fθ to generate the actual data
used in the experiments.

I.1. Discrete Semi-Circle Example

Generative Process:

z ∼ N (0, 1)

y ∼ Bern
(

1

2

)
ε ∼ N (0, σ2

ε · I)

x|y, z =

cos
(
I(y = 0) · π ·

√
Φ(z) + I(y = 1) · π · Φ(z)3

)
sin
(
I(y = 0) · π ·

√
Φ(z) + I(y = 1) · π · Φ(z)3

)
︸ ︷︷ ︸

fθGT (y,z)

+ε

(38)

where Φ is the CDF of a standard normal and σ2
ε = 0.01.
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Properties: We designed this data-set to specifically show-
case issues with the semi-supervised VAE objective. As
such, we made sure that the data marginal p(x) of this ex-
ample will be learned well using unsupervised VAE (trained
on the x’s only) This way we can focus on the new issues
introduced by the semi-supervised objective.

For this ground-truth model, the posterior of the un-labeled
data pθGT(z|x) is bimodal, since there are two functions that
could have generated eeach x: fθGT(y = 0, z) and fθGT(y =
1, z). As such, approximating this posterior with a MFG
will encourage the semi-supervised objective to find a model
for which fθGT(y = 0, z) = fθGT(y = 1, z) (see Figure
15b). When both functions collapse to the same function,
pθ(x|y) ≈ pθ(x) (see Figure 15c). This will prevent the
learned model from generating realistic counterfactuals.

I.2. Continuous Semi-Circle Example

Generative Process:

z ∼ N (0, 1)

y ∼ N (0, 1)

h(y) = B−1(Φ(y); 0.2, 0.2)

ε ∼ N (0, σ2
ε · I)

x|y, z =

cos
(
h(y) · π ·

√
Φ(z) + (1− h(y)) · π · Φ(z)3

)
sin
(
h(y) · π ·

√
Φ(z) + (1− h(y)) · π · Φ(z)3

)
︸ ︷︷ ︸

fθGT (y,z)

+ε

(39)

where Φ is the CDF of a standard normal and B−1(.;α, β)
is the inverse CDF of the beta distribution.

Properties: As in the “Discrete Semi-Circle Example”, we
designed this data-set to have a p(x) that the VAE objec-
tive would learn well so we can focus on the new issues
introduced by the semi-supervised objective. The dataset
demonstrates the same pathologies in the semi-supervised
objective as shown by “Discrete Semi-Circle Example” with
the addition of yet another pathology: when since the poste-
rior pθ(y|x) is bimodal in this example, encouraging a MFG
qφ(y|x) discriminator to be predictive will collapse fθ(y, z)
to the same function for all values of y (see Figure 18b) As
such, as we increase α, the better our predictive accuracy
will be but the more pθ(x|y)→ pθ(x), causing the learned
model to generate poor quality counterfactuals (see Figure
18c).

J. Experimental Details
Initialization at Global Optima of the VAE Objective
On all synthetic data, we initialize the model at the ground
truth θGT, φGT. The decoder function fθ is initialized to

the ground-truth using full supervision given the ground-
truth z’s and fθGT . The encoder is initialized to φGT by
fixing the decoder at the ground-truth and maximizing the
ELBO (with the 10 random restarts). We fix the observation
error σ2

ε to that of the ground truth model, and we fix a
sufficiently flexible architecture – one that is significantly
more expressive than needed to capture fθGT – to ensure
that, if there exists a fθ with simpler posteriors, it would be
included in our feasible set F . Lastly, we select the restart
that yields the lowest value of the objective function.

Synthetic Datasets We use 4 synthetic data-sets for un-
supervised VAEs (described in Appendix H), and 2 syn-
thetic data-sets for semi-supervised VAEs (described in Ap-
pendix I), and generate 5 versions of each data-set (each
with 5000/2000/2000 train/validation/test points). We use
3 real semi-supervised data-sets: Diabetic Retinopathy
Debrecen (Antal & Hajdu, 2014), Contraceptive Method
Choice (Alcala-Fdez et al., 2010; Dua & Graff, 2017)
and the Titanic (Alcala-Fdez et al., 2010; Simonoff, 1997)
datasets, each with 10% observed labels, split in 5 different
ways equally into train/validation/test.

Real Datasets Since existing work shows that on real data
IWAE learns generative models with higher log data like-
lihood (Kingma et al., 2016; Cremer et al., 2017), we
only considered synthetic data for the unsupervised tasks.
For our semi-supervised tasks, we consider both synthetic
data as well as 3 UCI data-sets: Diabetic Retinopathy
Debrecen (Antal & Hajdu, 2014), Contraceptive Method
Choice (Alcala-Fdez et al., 2010; Dua & Graff, 2017)
and the Titanic (Alcala-Fdez et al., 2010; Simonoff, 1997)
datasets. In these, we treat the outcome as a partially ob-
served label (observed 10% of the time). These datasets are
selected because their classification is hard, and this is the
regime in which we expect semi-supervised VAE training to
struggle. For the UCI data-sets, we split the data 5 different
ways into equally sized train/validation/test. On each split
of the data, we run 5 random restarts and select the run that
yielded the best value on the training objective, computed
on the validation set.

Evaluation To evaluate the quality of the generative model
the smooth kNN test statistic (Djolonga & Krause, 2017)
on samples from the learned model vs. samples from the
training set / ground truth model as an alternative to log-
likelihood, since log-likelihood has been shown to be prob-
lematic for evaluation (Theis et al., 2016; Wu et al., 2017).
In the semi-supervised case, we also use the smooth kNN
test statistic to compare p(x|y) with the learned pθ(x|y).
Finally, in cases where we may have model mismatch, we
also evaluate the mutual information between x and each di-
mension of the latent space z, using the estimator presented
in (Kraskov et al., 2004).

Architectures On the synthetic data-sets, we use a leaky-
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ReLU encoder/decoder with 3 hidden layers, each 50 nodes.
On the UCI data-sets, we use a leaky-ReLU encoder/decoder
with 3 hidden layers, each 100 nodes.

Optimization For optimization, we use the Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 0.001 and a
mini-batch size of 100. We train for 100 epochs on synthetic
data and for 20000 on real data (and verified convergence).
We trained 5 random restarts on each of the split of the
data. For semi-supervised data-sets with discrete labels, we
used continuous relaxations of the categorical distribution
with temperature 2.2 (Jang et al., 2016) as the variational
family in order to use the reparametarization trick (Kingma
& Welling, 2013).

Baselines For our baselines, we compare the performance
of a vanilla MFG-VAE with that of a VAE trained with the
Lagging Inference Networks (LIN) algorithm (still with a
MFG variational family), since the algorithm claims to be
able to escape local optima in training. Since the pathologies
we describe are global optima, we do not expect LIN to miti-
gate the issues. We use Importance Weighted Autoencoders
(IWAE) as an example of a inference algorithm that uses a
more complex variational family. Since the pathologies de-
scribed are exacerbated by a limited variational family, we
expect IWAE to out-perform the other two approaches. For
each method, we select the hyper-parameters for which the
best restart yields the best log-likelihood (using the smooth
kNN test-statistic, described below).

Hyper-parameters When using IWAE, let S be the num-
ber of importance samples used. When using the Lagging
Inference Networks, let T be the threshold for determin-
ing whether the inference network objective has converged,
and let R be the number of training iterations for which
the loss is averaged before comparing with the threshold.
When using semi-supervision, α determines the weight of
the discriminator, and γ determines the weight of the labeled
objective, L. We grid-searched over all combination of the
following sets of parameters:

Unsupervised datasets:

• IWAE: S ∈ {3, 10, 20}

• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈
{5, 10}

Semi-supervised synthetic datasets:

• IWAE: S ∈ {3, 10, 20}

• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈
{5, 10}

• All methods: α ∈ {0.0, 0.1, 1.0}, γ ∈
{0.5, 1.0, 2.0, 5.0}

Semi-supervised real datasets:

• IWAE: S ∈ {3, 10, 20}

• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈
{5, 10}

• All methods: α ∈ {0.0, 0.1, 1.0}, γ ∈
{0.5, 1.0, 2.0, 5.0}, σ2

ε ∈ {0.01, 0.5}. On Titanic di-
mensionality of z is ∈ {1, 2}, on Contraceptive and
Diabetic Retinopathy ∈ {2, 5}.

Hyper-parameters Selection For each method, we se-
lected the hyper-parameters that yielded the smallest value
of the smooth kNN test statistic (indicating that they learned
the p(x) best).

K. Defense Against Adversarial
Perturbations Requires Learning the True
Observation Noise

As a defense against adversarial attacks, manifold-based
approaches de-noise the data before feeding to a classifier
with the hope that the de-noising will remove the adversarial
perturbation from the data (Jalal et al., 2017; Meng &
Chen, 2017; Samangouei et al., 2018; Hwang et al., 2019;
Jang et al., 2020). In this section we argue that a correct
decomposition of the data into fθ(z) and ε (or “signal” and
“noise”) is necessary to prevent against certain perturbation-
based adversarial attacks.

Assume that our data was generated as follows:

z ∼ p(z)
ε ∼ N (0, σ2

ε · I)

x|z ∼ fθGT(z) + ε

y|z ∼ Cat (gψ ◦ fθGT(z))

(40)

Let µφ(x) denote the mean of encoder and let Mθ,φ(x) =
fθ ◦ µφ(x) denote a projection onto the manifold. Our goal
is to prevent adversarial attacks on a given discriminative
classifier that predicts y|x – that is, we want to ensure that
there does not exist any η such that xn + η is classified with
a different label than yn by the learned classifier and not by
the ground truth classifier. Since the labels y are computed
as a function of the de-noised data, fθGT(z), the true classi-
fier is only defined on the manifold M (marked in blue in
Figure 5). As such, any learned classifier (in orange) will
intersect the true classifier on M , but may otherwise diverge
from it away from the manifold. This presents a vulnerabil-
ity against adversarial perturbations, since now any x can
be perturbed to cross the learned classifier’s boundary (in or-
ange) to flip its label, while its true label remains the same,
as determined by the true classifier (in blue). To protect
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(a) Projection of adversarial example onto true manifold. (b) Projection of adversarial example onto manifold learned given
model mismatch (higher dimensional latent space and smaller ob-
servation noise).

Figure 5. Comparison of projection of adversarial example onto ground truth vs. learned manifold. The star represents the original point,
perturbed by the red arrow, and then projected onto the manifold by the black arrow.

against this vulnerability, existing methods de-noise the data
by projecting it onto the manifold before classifying. Since
the true and learned classifiers intersect on the manifold, in
order to flip an x’s label, the x must be perturbed to cross
the true classifier’s boundary (and not just the learned clas-
sifier’s boundary). This is illustrated in Figure 5a: the black
star represents some data point, perturbed (by the red arrow)
by an adversary to cross the learned classifier’s boundary
but not the true classifier’s boundary. When projected onto
the manifold (by the black arrow), the adversarial attack still
falls on the same side of the true classifier and the learned
classifier, rendering the attack unsuccessful and this method
successful.

However, if the manifold is not estimated correctly from
the data, this defense may fail. Consider, for example, the
case in which fθ(z) is modeled with a VAE with a larger
dimensional latent space and a smaller observation noise
than the ground truth model. Figure 5b shows a uniform
grid in x’s space projected onto the manifold learned by
this mismatched model. The figure shows that the learned
manifold barely differs from the original space, since the
latent space of the VAE compensates for the observation
noise ε and thus does not de-noise the observation. When the
adversarial attack is projected onto the manifold, it barely
moves and is thus left as noisy. As the figure shows, the
attack crosses the learned classifier’s boundary but not the
true boundary and is therefore successful.
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L. Quantitative Results

Data IWAE LIN VAE
Clusters 0.057± 0.028 0.347± 0.057 0.361± 0.083
Fig-8 0.036± 0.013 0.040± 0.081 0.066± 0.014

Table 1. Comparison unsupervised learned vs. true data distributions via the smooth kNN test (lower is better). Hyper-parameters selected
via smaller value of the loss function on the validation set.

VAE Figure-8 Example Clusters Example

K = 1 (ground-truth) K = 2 K = 3 K = 1 (ground-truth) K = 2 K = 3

Test−ELBO −0.127± 0.057 −0.260± 0.040 −0.234 ± 0.050 4.433± 0.049 4.385± 0.034 4.377 ± 0.024
Test avgiI(x; zi) 2.419 ± 0.027 1.816± 0.037 1.296± 0.064 1.530 ± 0.011 1.425± 0.019 1.077± 0.105

IWAE Figure-8 Example Clusters Example

K = 1 (ground-truth) K = 2 K = 3 K = 1 (ground-truth) K = 2 K = 3

Test−ELBO −0.388 ± 0.044 −0.364± 0.051 −0.351± 0.045 4.287 ± 0.047 4.298± 0.054 4.295± 0.049
Test avgiI(x; zi) 2.159 ± 0.088 1.910± 0.035 1.605± 0.087 1.269± 0.052 1.321 ± 0.033 1.135± 0.110

Table 2. The VAE training objective prefers learning models with more latent dimensions (and smaller σ2
ε ) over the ground truth model

(k = 1). Although the models preferred by the ELBO have a higher mutual information between the data and learned z’s, the mutual
information between dimension of z and the data decreases since with more latent dimensions, the latent space learns ε. In contrast, IWAE
does not suffer from this pathology. LIN was not included here because it was not able to minimize the negative ELBO as well as the VAE
on these data-sets.

Data IWAE LIN VAE
Discrete Semi-Circle 0.694± 0.096 0.703± 0.315 0.196± 0.078
Continuous Semi-Circle 0.015± 0.011 0.128± 0.094 0.024± 0.014

Table 3. Comparison of semi-supervised learned vs. true data distributions via the smooth kNN test (lower is better). Hyper-parameters
selected via the smooth kNN test-statistic computed on the data marginals.

IWAE LIN VAE
Data Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2

Discrete Semi-Circle 1.426 ± 1.261 1.698 ± 0.636 18.420± 1.220 10.118± 0.996 15.206± 1.200 11.501± 1.300
Continuous Semi-Circle 15.951± 3.566 14.416 ± 1.402 15.321± 1.507 17.530± 1.509 13.128 ± 0.825 16.046± 1.019

Table 4. Comparison of semi-supervised learned pθ(x|y) with ground truth p(x|y) via the smooth kNN test statistic (smaller is better).
Hyper-parameters selected via smallest smooth kNN test statistic computed on the data marginals. For the discrete data, the cohorts are
p(x|y = 0) and p(x|y = 1), and for the continuous data, the cohorts are p(x|y = −3.5) and p(x|y = 3.5).

IWAE VAE
Diabetic Retinopathy 3.571± 2.543 6.206± 1.035
Contraceptive 1.740± 0.290 2.147± 0.225
Titanic 2.794± 1.280 1.758± 0.193

Table 5. Comparison of semi-supervised learned vs. true data distributions via the smooth kNN test (lower is better). Hyper-parameters
selected via the smooth kNN test-statistic computed on the data marginals.
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IWAE VAE
Cohort 1 Cohort 2 Cohort 3 Cohort 1 Cohort 2 Cohort 3

Diabetic Retinopathy 4.240± 1.219 4.357± 3.417 N/A 5.601± 0.843 8.008± 1.096 N/A
Contraceptive 7.838± 1.138 5.521± 3.519 6.626± 2.571 5.388± 0.788 4.994± 0.932 3.722± 0.488
Titanic 3.416± 0.965 6.923± 1.924 N/A 3.730± 0.866 8.572± 1.766 N/A

Table 6. Comparison of semi-supervised learned vs. true conditional distributions p(x|y) via the smooth kNN test (lower is better).
Hyper-parameters selected via the smooth kNN test-statistic computed on the data marginals.

M. Qualitative examples to support necessity of both conditions of Theorem 1
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 6. Vanilla VAE trained on the Circle Example. In this toy data, condition (2) holds of Theorem 1 holds and condition (1) does not.
To see this, notice that most examples of the posteriors are Gaussian-like, with the exception of the posteriors near x = [1.0, 0.0], which
are bimodal since in that neighborhood, x could have been generated using either z > 3.0 or using z < −3.0. Since only a few training
points have a high posterior matching objective, a VAE is able to learn the data distribution well.
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(a) True vs. learned pθ(x)

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 7. Vanilla VAE trained on the Absolute-Value Example. In this toy data, condition (1) holds of Theorem 1 holds and condition
(2) does not. To see this, notice that the function fθ learned with a VAE is completely different than the ground-truth fθ , and unlike the
ground truth fθ which has bimodal posteriors, the learned fθ has unimodal posteriors (which are easier to approximate with a MFG). As
such, a VAE is able to learn the data distribution well.



Failures of Variational Autoencoders and their Effects on Downstream Tasks

N. Qualitative Demonstration of Unsupervised VAE Pathologies
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 8. Vanilla VAE trained on the Figure-8 Example. In this toy data, both conditions of Theorem 1 hold. The VAE learns a generative
model with simpler posterior than that of the ground-truth, though it is unable to completely simplify the posterior as in the Absolute-Value
Example. To learn a generative model with a simpler posterior, it curves the learned function fθ at z = −3.0 and z = 3.0 away from the
region where z = 0. This is because under the true generative model, the true posterior pθ(z|x) in the neighborhood of x ≈ 0 has modes
around either z = 0 and z = 3.0, or around z = 0 and z = −3.0, leading to a high posterior matching objective.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 9. VAE with Lagging Inference Networks (LIN) trained on the Figure-8 Example. While LIN may help escape local optima, on
this data, the training objective is still biased away from learning the true data distribution. As such, LIN fails in the same way a Vanilla
VAE does (see Figure 8).
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x)

(c) Posteriors under true fθ

(d) Posteriors under learned fθ

Figure 10. IWAE trained on the Figure-8 Example. In this toy data, both conditions of Theorem 1 hold. The IWAE learns a generative
model with a slightly simpler posterior than that of the ground-truth. This is because even with the number of importance samples as large
as S = 20, the variational family implied by the IWAE objective is not sufficiently expressive. The objective therefore prefers to learn a
model with a lower data marginal likelihood. While increasing S →∞ will resolve this issue, it is not clear how large a S is necessary
and whether the additional computational overhead is worth it.



Failures of Variational Autoencoders and their Effects on Downstream Tasks

(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 11. Vanilla VAE trained on the Clusters Example. In this toy data, both conditions of Theorem 1 hold. The VAE learns a generative
model with simpler posterior than that of the ground-truth, though it is unable to completely simplify the posterior as in the Absolute-Value
Example. To learn a generative model with a simpler posterior, it learns a model with a function fθ(z) that, unlike the ground truth
function, does not have steep areas interleaved between flat areas. As such, the learned model is generally more flat, causing the learned
density to be “smeared” between the modes.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 12. VAE with Lagging Inference Networks (LIN) trained on the Clusters Example. While LIN may help escape local optima, on
this data, the training objective is still biased away from learning the true data distribsution. As such, LIN fails in the same way a Vanilla
VAE does (see Figure 11).
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x)

(c) Posteriors under true fθ

(d) Posteriors under learned fθ

Figure 13. IWAE trained on the Clusters Example. In this toy data, both conditions of Theorem 1 hold. IWAE is able to learn the ground
truth data distribution while finding a generative model with a simpler posterior than that of the ground-truth model.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 14. Vanilla VAE trained on the Spiral-Dots Example jointly over θ, φ, ε2ε . In this toy data, as Theorem 2 predicts, the ELBO
drastically misestimates the observation noise. The VAE learns a generative model with simpler posterior than that of the ground-truth,
though it is unable to completely simplify the posterior as in the Absolute-Value Example. To learn a generative model with a simpler
posterior, it learns a model with a function fθ(z) that, unlike the ground truth function, does not have steep areas interleaved between flat
areas. As such, the learned model is generally more flat, causing the learned density to be “smeared” between the modes. Moreover due to
the error in approximating the true posterior with a MFG variational family, the ELBO misestimates σ2

ε .
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O. Qualitative Demonstration of Semi-Supervised VAE Pathologies
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y). (d) Aggregated posterior vs. prior.

(e) Posteriors under true fθ

(f) Posteriors under learned fθ

Figure 15. Vanilla Semi-Supervised VAE trained on the Discrete Semi-Circle Example. While using semi-supervision, a VAE is still able
to learn the p(x) relatively well. However, in this example, given x there is uncertainty as to whether it was generated from fθ(y = 0, z)
or from fθ(y = 1, z), the posterior pθ(z|x) is bimodal and will cause a high posterior matching objective. Since semi-supervised VAE
objective prefers models with simpler posteriors, the VAE learns a unimodal posterior by collapsing fθ(y = 0, z) = fθ(y = 1, z),
causing p(x|y = 0) ≈ p(x|y = 1) ≈ p(x). The learned model will therefore generate poor sample quality counterfactuals.
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 16. Semi-Supervised VAE trained with Lagging Inference Networks (LIN) trained on the Discrete Semi-Circle Example. While
LIN may help escape local optima, on this data, the training objective is still biased away from learning the true data distribution. As such,
LIN fails in the same way a Vanilla VAE does (see Figure 15).
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 17. Semi-Supervised IWAE trained on the Discrete Semi-Circle Example. While using semi-supervision, a IWAE is still able to
learn the p(x) and p(x|y) better than a VAE. This is because it allows for more complicated posteriors and therefore does not collapse
fθ(y = 0, z) = fθ(y = 1, z). However, since IWAE has a more complex variational family, the variational family no longer regularizes
the function fθ . As such, in order to put enough mass on the left-side of the semi-circle, fθ jumps sharply from the right to the left, as
opposed to preferring a simpler function such as the ground truth function.
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 18. Vanilla Semi-Supervised VAE trained on the Continuous Semi-Circle Example. In this example, the VAE exhibits the same
problems as in the Discrete Semi-Circle Example (Figure 18). However, with since y is continuous, this poses an additional issue. Since
qφ(y|x) (the discriminator) in the objective is a Gaussian, and the ground truth pθ(y|x) is multi-modal, the objective will select a function
fθ under which pθ(y|x) is a MFG. This, again, leads to learning a model in which fθ(y = ·, z) are the same for all values of y, causing
p(x|y = 0) ≈ p(x|y = 1) ≈ p(x). The learned model will therefore generate poor sample quality counterfactuals.
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 19. Semi-Supervised VAE trained with Lagging Inference Networks (LIN) trained on the Continuous Semi-Circle Example. While
LIN may help escape local optima, on this data, the training objective is still biased away from learning the true data distribution. As such,
LIN fails in the same way a Vanilla VAE does (see Figure 18).
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 20. Semi-Supervised IWAE trained on the Continuous Semi-Circle Example. While using semi-supervision, a IWAE is still able to
learn the p(x) and p(x|y) better than a VAE. However, since qφ(y|x) (the discriminator) in the objective is a Gaussian, and the ground
truth pθ(y|x) is multi-modal, the objective will select a function fθ under which pθ(y|x) is a MFG. This, again, leads to learning a model
in which fθ(y = ·, z) are the same for all values of y, causing p(x|y = 0) ≈ p(x|y = 1) ≈ p(x). The learned model will therefore
generate poor sample quality counterfactuals.
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P. Posterior Is Simper Under Model Mismatch

(a) True Posterior K = 1

(b) Learned Posterior K = 1

(c) Learned Posterior K = 2

Figure 21. VAEs learn simpler posteriors as latent dimensionality K increases and as the observation noise σ2
ε decreases on “Clusters

Example” (projected into 5D space).
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(a) True Posterior K = 1

(b) Learned Posterior K = 1

(c) Learned Posterior K = 2

Figure 22. VAEs learn simpler posteriors as latent dimensionality K increases and as the observation noise σ2
ε decreases on “Figure-8

Example” (projected into 5D space).


