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Abstract
Uncertainty quantification in medical imaging is
critical for clinical translation of deep learning-
based methods. Modality propagation within the
context of medical imaging is a problem of inter-
est, both across as well as within modalities. For
magnetic resonance imaging (MRI), often, multi-
contrast MRI images are acquired for improved
diagnosis and prognosis. In this work, we focus
on the synthesis of T2w MRI images from T1w
MRI images. Prior works used generative adver-
sarial networks (GANs), but lack (i) uncertainty
quantification, (ii) evaluating the robustness of
the network to out-of-distribution data (common
in medical imaging). We propose a robust GAN
framework that incorporates uncertainty quantifi-
cation using quasi-norm based penalties, and also
show the efficacy of the method on unseen sys-
temic and physiological perturbations on a large
publicly available multimodal MRI dataset.

1. Introduction
Medical image synthesis refers to the task of mapping a
given source modality to a target modality. The task of auto-
mated generation of target modality from a source, greatly
benefits applications such as super-resolution (Jog et al.,
2014) and quality enhancement and reconstruction (Ye et al.,
2013; Ralph & Matthias, 2015; Upadhyay & Awate, 2019;
Sudarshan et al., 2020), with the aim to improve patient
throughput (lesser number of scans). Magnetic resonance
imaging (MRI) is a widely used non-ionizing, non-invasive,
in vivo medical imaging modality which provides both struc-
tural and functional images at resolutions of < 1 mm. De-
pending on the acquisition protocol, it is possible to gen-
erate multiple contrasts in MRI. Routine clinical protocols
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acquire multiple contrasts of MR images, e.g. T1 and T2
weighted (T1w and T2w respectively) images, for improved
diagnostics. However, multicontrast acquisitions increase
scan times and reduce patient throughput. We can consider
the multicontrast images as random variables that are not
entirely independent of each other as they originate from the
same underlying anatomy. Hence, it is desirable to reduce
the number of scans required per patient by exploiting such
statistical dependencies.

Related Work. Prior works using conditional generative
adversarial networks (GANs) and its variants have shown
synthesis of realistic medical images in the general context
of cross-modality medical image synthesis (Nie et al., 2018)
and multicontrast image synthesis in MRI (Dar et al., 2019).
The work (Lee & Fujita, 2020) provides a detailed review
of deep learning (DL) based medical image synthesis.

However, these prior works do not discuss the performance
of their networks to perturbations in the test data. In the
context of medical imaging, perturbations could be systemic
(scanner-related) and/or physiological. Hence, beyond re-
liable image synthesis during inference, quantification of
uncertainty in the predicted images is crucial for clinical
translation of synthesis frameworks (Wang et al., 2019; Nair
et al., 2020). Quasi-norm based loss functions for DL make
the network robust to anomalies (Shah et al., 2018; Upad-
hyay & Awate, 2019). However, these networks choose the
quasi-norm (q in lq norm) based on empirical analysis. This
work proposes to automatically learn the parameter q.

We propose a novel quasi-norm based formulation for quan-
tification of uncertainty to make our network robust to per-
turbations in test data. Results on image-noise related per-
turbations to input data at test time show that our model
produces realistic images even at a reduced signal to noise
ratio (SNR) compared to state-of-the-art methods. Addition-
ally, we demonstrate that our network provides a reliable
uncertainty map that can potentially act as a proxy for resid-
ual maps during inference. We analyze the uncertainty maps
in an out-of-distribution scenario, where a synthetic lesion
was simulated in the input test data. Our results show that
such uncertainty maps can indicate potential risks in the
predicted image for an incoming test data, given a fixed
model and training data (Kendall & Gal, 2017).
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Figure 1. (A) Schematic of the framework. (B) Performance of all methods at high SNR (NL0, same as training set) and low SNR
(NL4, highest unseen noise-level) for two slices: (i) and (ii). (a1)–(b1) and (c1)–(d1) T2w and T1w MRI images at high and low SNR
respectively. (a2)–(a4) and (c2)–(c4) Predicted images using all methods (Ours, B1, and B2) at high and low SNR respectively. (b2)–(b4)
and (d2)–(d4) Residual images for all methods at high and low SNR respectively. (a1, c1) are repeated for readers’ convenience.

2. Methods
Let the image pair (XT1, XT2) model the pair of a randomly
selected T1w MRI (XT1) and its corresponding T2w MRI
image (XT2). Let xT1 and xT2 represent an instance of the
T1w (source) and T2w (target) MRI image respectively. We
learn the mapping from source to target modality using T
pairs of co-registered training data: X := {(xT1

t , x
T2
t )}Tt=1.

2.1. Datasets and Models

We use the set of T1w and T2w MRI images available as
part of IXI dataset (https://brain-development.
org/ixi-dataset/), that consists of multicontrast MR
images from several healthy subjects, collected across three
different scanners. In this work, we use T1w and T2w
contrast images which were co-registered for every subject
using ANTS (Klein et al., 2009). The resolution of the MR
images is ∼ 1mm3 isotropic. We use training, validation,
and test split of 250, 50, and 100 non-overlapping subjects
respectively. In this work, we use axial slices from the
mid-brain region (∼ 70 slices per subject). This work, in-
spired by conditional GANs, proposes a novel GAN-based
framework which (i) employs a learned quasi-norm loss,
and (ii) estimates uncertainty maps, as described below.
Early works on image synthesis, modeled as a regression
problem, do not account for heteroscedastic uncertainty in
their modeling. Recent works model the heteroscedastic
uncertainty by assuming that the variance is data-dependent
and the residual (between the predicted and reference im-

ages) follows an isotropic Gaussian probability distribution
function (PDF). However, the isotropic Gaussian PDF does
not account for anomalies in data (outliers) that may be
captured by heavy-tailed PDFs.

Let G(·; θG) and D(·; θD) represent our generator and the
discriminator respectively. The input to the generator is
xT1 ∼ XT1, the predicted image is x̂T2 := G(xT1; θG), and
the ground-truth is xT2 ∼ XT2. Each image consists of K
pixels. We denote jth pixel in ith image, say y, as yij .

We improve upon the assumptions made by prior works by
modeling the residuals to follow a Generalized Gaussian dis-

tribution (GGD) with 0 mean, which is, β
2αΓ( 1

β )
e−( |ε−0|

α )
β

Therefore, for the ith image, the residual at pixel location
j, εij (between the predicted value x̂T2

ij and ground-truth
value xT2

ij ), follows GGD. In other words, x̂T2
ij := xT2

ij + εij ,

that is, x̂T2
ij ∼

βij
2αijΓ( 1

βij
)
e
−
(
|G(xT1;θG)ij−x

T2
ij |

αij

)βij
, which is

capable of modelling heavy-tailed distributions including
the Gaussian and Laplace PDFs (β = 2 and β = 1, respec-
tively). Here αj > 0 is the scale parameter, βj > 0 denotes
the shape parameter, and Γ(·) is the standard gamma func-
tion. In our formulation all the εj’s are independent but not
necessarily identically distributed as αj and βj may vary
spatially. Hence, the likelihood is,

P (X|Θ) :=

i=T,j=K∏
i=1,j=1

βij

2αijΓ( 1
βij

)
e

(
−|G(xT1;θG)ji−x

T2
ij |

αij

)βij

(1)

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
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Figure 2. SSIM and RRMSE values for all methods at all noise
levels (NL0 to NL4). At each NL, 70 mid brain slices from each
subject (total 100) were evaluated (i.e., 7000 slices).

Therefore, log-likelihood is,

logP (X|Θ) =

i=T,j=K∑
i=1,j=1

−

(
|x̂T2
ij − xT2

ij |
αij

)βij
+ log

βij
2αij

− log Γ(
1

βij
) (2)

where Θ represents the collection of network parameters. In
this way, to improve robustness of the network, we predict
(i) x̂T2, (ii) α̂, and (iii) β̂. Hence, the proposed robust quasi-
norm based loss is

LU (X̂T2, {α̂i}i=Ti=1 , {β̂i}i=Ti=1 , X
T2) := − logP (X|Θ) (3)

The adversarial term depending upon D(·; θD) is defined
in terms of binary cross-entropy (for true and predicted
probability vectors, say Y , and Ŷ respectively) as,

LCE(Ŷ , Y ) = −
∑
i

[Yi log(Ŷi) + (1− Yi) log(1− Ŷi)] (4)

Hence, G(·; θG) minimizes the following loss:

LQuest(X̂T2, {α̂i}i=Ti=1 , {β̂i}i=Ti=1 , X
T2) :=

LU (X̂T2, {α̂i}i=Ti=1 , {β̂i}i=Ti=1 , X
T2) + λLCE(D(X̂T2; θD), 1)

(5)
On the other hand, D(·; θD) minimizes,

LD(X̂T2, XT2) := LCE(D(XT2; θD), 1)+

LCE(D(X̂T2; θD), 0) (6)

The proposed network is trained using the strategy in (Nie
et al., 2018; Goodfellow, 2016).

2.2. Training and Testing Scheme

All the networks used in this work were trained using Adam
optimizer (Kingma & Ba, 2014) by sampling mini-batches

of size 16. The initial learning rate was set to 2e−4 and
cosine annealing was used to decay the learning rate with
epochs. We used a U-net (Ronneberger et al., 2015) based
generator for which λ (Equation 5) was set to 7e−4. For nu-
merical stability, the proposed network produces 1

α̂ instead
of α̂. The positivity constraint on the output is enforced by
applying the ReLU activation function at the end of the three
output layers in the network (Figure 1-(A)). The aleatoric
uncertainty is defined as σ2

aleatoric = α̂2Γ(3/β̂)

Γ(1/β̂)
and the epis-

temic (σepistemic) uncertainty is obtained by multiple (50)
forward passes (Gal & Ghahramani, 2016).

2.3. Comparison and Evaluation Metrics

We evaluate our method against two other baselines:
(i) GAN-based framework proposed in (Nie et al., 2018)
(current state of the art; say B1), and (ii) the correspond-
ing generator network without the discriminator (say B2).
We use relative root mean squared errors (RRMSE) and
structural similarity index (SSIM) to compare the per-
formance of different networks. RRMSE is defined as
RRMSE(a, b) = ‖a− b‖F /‖a‖F , where ‖ · ‖F indicates
Frobenius norm. We use the standard SSIM as in (Wang
et al., 2004). We evaluated the robustness of all the net-
works to perturbations in the input T1w MRI images by
(i) adding multiple levels of i.i.d Gaussian perturbations
in a particular region of interest (of the input image), and
(ii) simulating synthetic lesions (described in Section 3). For
(i), apart from the original test set, a total of four additional
noise-levels(NLs) were simulated. The simulated images
at different NLs (NL0 to NL4) show a deviation of (0, 4, 6,
8, and 10) % respectively in terms of RRMSE with respect
to the reference image. Both (i) and (ii) cater to medically
relevant out-of-distribution scenarios.

3. Results and Discussion
Figure 1 shows the predicted and residual images using the
proposed method and two other baselines (B1 and B2) at
high SNR (same as the training set) and low SNR (NL4,
highest unseen noisy test data), for two representative slices
((i) and (ii)). The RRMSE between the source image at NL0
and NL4 (Figure 1 (b1) and (d1)) is 10%.

At NL0 (high SNR), the predicted image using our method
(Figure 1 (a2)) is closer in structure and contrast to the
reference image (Figure 1 (a1)) and shows residuals with
least magnitude (Figure 1 (b2)) compared to that of B1 and
B2 (Figure 1 (b3) and (b4)). For B1, the predicted image
(Figure 1 (a3)) as well as the residual image (Figure 1 (b3))
are comparable to the proposed method. The predicted
image using B2 (Figure 1 (a4)) is blurred than that of B1
and the proposed method.

At NL4 (low SNR), the output of our method (Figure 1 (c2))
is still very close to the reference image (Figure 1 (a1)) with-
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(i) (ii)
Figure 3. Uncertainty quantification on out-of-distribution data (synthetic lesion added to test data). Subfigures (i) and (ii) show
results from two representative slices. (a3)-(a4) Predicted image (x̂T2) and absolute error map. (b1)-(b2) The learned scaling (α̂) and
shape (β̂) parameter maps. (b3)-(b4) Aleatoric (σaleatoric) and epistemic (σepistemic) uncertainty maps.

out significant loss of contrast and other textural features.
On the other hand, both B1 and B2 (Figure 1 (c3) and (c4))
suffer from severe blurring and loss of textural features. Our
method shows residual images (Figure 1 (d2)) that are signif-
icantly better (lower magnitude) than the residual images of
B1 and B2 (Figure 1 (d3) and (d4)). However, between B1
and B2, the residual images of B1 exhibit lower magnitudes
than that of B2. Our method shows significantly higher
SSIM scores (0.89 and 0.95 for the two slices) compared to
B1 (0.81 and 0.88) and B2 (0.75 and 0.85) at NL4.

Figure 2 shows box-plots of RRMSE and SSIM values for
the predicted images from all the models, at different noise-
levels (NL0 to NL4). At each NL, we evaluated 70 mid-
brain slices of each of the 100 subjects (i.e., 7000 slices). As
noise increases, the proposed method shows substantially
improved SSIM and RRMSE values compared to B1 and B2.
At NL0, B1 is comparable (slightly better) to our model both
in terms of SSIM and RRMSE. Nevertheless, our model
demonstrates robustness to the simulated perturbations even
at high noise levels (SSIM > 90%). In all the noise-levels
B2 shows sub-optimal performance compared to both the
GAN-based models. Moreover, our method shows very little
variation in terms of RRMSE at all noise-levels compared
to the other two methods.

Uncertainty quantification. We study the importance of
providing uncertainty maps under scenarios where the test
image has a lesion. Having trained the network on scans
from healthy individuals, we evaluated the performance of
our model, that predicts the mean, and uncertainty maps
( ˆσaleatoric and ˆσepistemic), on the test set with simulated
lesions (unseen or out-of-distribution data). We simulated
synthetic lesion in the images by using segmentation masks

available from the BRATS Challenge 2020 (https://
www.med.upenn.edu/cbica/brats2020/).

Figure 3 (a1) and (a2) correspond to input and the reference
slice with synthetically added lesions. The outputs from
our proposed network are: the mean, x̂T2(Figure 3 (a3)),
the scale of generalized Gaussian distribution parameter, α̂
(Figure 3 (b1)), and the corresponding shape parameter, β̂.
(Figure 3 (b2)). Figure 3 (b3) and (b4) shows the aleatoric
(σaleatoric) and epistemic (σepistemic) uncertainty maps as
defined in 2.2. Figure 3 (a4) shows the absolute error be-
tween the prediction and the ground-truth image. We see
that our σaleatoric map agrees with the error map (Figure 3
(a4)). The uncertainty map shows peak values that are local-
ized around the lesion. This is along the expected direction
as the model was not trained on pathological cases. which
are not available due to the absence of ground-truth images.
Moreover, several textural features are evident in our uncer-
tainty maps. Hence, during inference, our uncertainty maps
provide a close approximation of the error maps.

4. Conclusion
In this work, we have proposed a Bayesian deep learning
framework that estimates uncertainty using learned quasi-
norms. In addition to substantial improvements in synthe-
sized images over the state-of-the-art networks (which do
not quantify uncertainty), we demonstrate the utility of our
network by evaluating performance on two experiments
with out-of-distribution test-data: (i) perturbations in the
noise-level, and (ii) providing uncertainty maps that act as a
surrogate for residual maps (not available during inference).

https://www.med.upenn.edu/cbica/brats2020/
https://www.med.upenn.edu/cbica/brats2020/
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