
Practical Bayesian Neural Networks via Adaptive Optimization Methods

Samuel Kessler * 1 Arnold Salas * 1 Vincent W. C. Tan 1 Stefan Zohren 1 Stephen J. Roberts 1

Abstract
We introduce a novel framework for the estima-
tion of the posterior distribution over the weights
of a neural network, based on a new probabilistic
interpretation of adaptive optimisation algorithms
such as ADAGRAD and ADAM. We demon-
strate the effectiveness of our Bayesian ADAM
method, BADAM, by experimentally showing that
the learnt uncertainties correctly relate to the
weights’ predictive capabilities by weight pruning.
We also demonstrate the quality of the derived un-
certainty measures by comparing the performance
of BADAM to standard methods in a Thompson
sampling setting for multi-armed bandits, where
good uncertainty measures are required for an
agent to balance exploration and exploitation.

1. Introduction
Exact Bayesian inference over the weights of a neural net-
work is intractable as the number of parameters is very large
and the functional form of a neural network does not lend
itself to exact integration. For this reason, much of the
research in this area has been focused on approximation
techniques. Approximate inference methods that scale to
large models include the Laplace approximation together
with various different approximations to the Hessian of the
log posterior. For instance a diagonal approximation is re-
markably effective for Continual Learning (CL) (Kirkpatrick
et al., 2017), the Kronecker factored Laplace approximation
introduces covariances between weights of the same layer
of a Neural Network (NN) (Ritter et al., 2018). Variational
inference (VI) methods have also been able to scale (Graves,
2011; Blundell et al., 2015). Recent advances in reparam-
eterisation gradients (Kingma & Welling, 2014; Figurnov
et al., 2018) and automatic differentiation libraries have
seen enormous advances in VI approximate inference tech-
niques. However, VI methods require longer training times,
have twice the number of parameters and are difficult to
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implement in comparison to Maximum a Posteriori (MAP)
estimation of NNs. Natural gradient variational inference
methods of (Zhang et al., 2018; Khan et al., 2018) help
overcome the problem of slow convergence and difficulty
in implementation by utilising the information geometry of
the underlying parameter manifold which results in simple
update equations. Variational Dropout (Gal & Ghahramani,
2016), has found enormous success due to ease of imple-
mentation by interpreting a dropout regularised network as
Gaussian Processes (GPs) on each layer of a NN. However,
an explicit approximate posterior is marginalised automati-
cally, and thus of limited use for CL, for instance.

In this paper, we develop a novel Bayesian approach to
learning for neural networks, built upon adaptive methods
such as ADAGRAD (Duchi et al., 2011), RMSPROP (Tiele-
man & Hinton, 2012) and ADAM (Kingma & Lei, 2015).
Our method relies on a new probabilistic interpretation of
adaptive algorithms, that effectively shows these can readily
be utilised together with a Laplace approximation of the
posterior. Our proposed algorithm is also similar in spirit
to the work of (Khan et al., 2018), but in contrast, their
algorithm performs natural gradient variational inference,
implemented within ADAM via weight perturbation of the
gradient evaluation. Examples of the predictive uncertain-
ties of our method and other common methods for approxi-
mate inference of Bayesian Neural Networks (BNNs) for a
simple regression task are show in Figure 1 and discussed
in Section 4.

2. Preliminaries
Problem setup. Let f(θ) be a noisy objective function,
a scalar function that is differentiable w.r.t. the parame-
ters θ ∈ Θ, where Θ denotes the parameter space.We are
interested in minimising the expected value of this func-
tion, E[f(θ)], w.r.t. its parameters θ. Let f1(θ), . . . , fT (θ)
denote the realisations of the stochastic function at the sub-
sequent time steps t ∈ [T ]. The stochastic nature may arise
from the evaluation of the function at random subsamples
(minibatches) of datapoints, or from inherent function noise.

The simplest algorithm for this setting is the standard online
gradient descent algorithm (Zinkevich, 2003), which moves
the current estimate θt of θ in the opposite direction of the
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Figure 1. Qualitative comparison of the predictive uncertainties of our method and our principle baselines. BADAM, like the Laplace
approximation, places some probability mass where data has been observed and less further away (Ritter et al., 2018).

last observed (sub)gradient value gt = ∇ft(θt), i.e.,

θt+1 = θt − ηtgt, (1)

where ηt > 0 is an adaptive learning rate that is typically set
to η/

√
t, for some positive constant η. While the decreasing

learning rate is required for convergence, such an aggressive
decay typically translates into poor empirical performance.

Generic adaptive optimisation methods. We now
present a framework that contains a wide range of popu-
lar adaptive methods as special cases, and highlight their
differences. The presentation here follows closely that of
(Reddi et al., 2018). The update rule of this generic class of
adaptive methods can be compactly written in the form

θt+1 = θt − ηtV −1/2t mt, (2)

where mt and Vt are estimates of the (sub)gradient and
inverse Hessian, respectively, of the functions ft(·), based
on observations up to and including iteration t. In other
words, they are functions of the (sub)gradient history g1:t ≡
g1, . . . , gt, which we express as

mt = ĝt(g1:t), V
1/2
t = Ĥt(g1:t), (3)

where ĝt(·) and Ĥt(·) denote approximation functions for
the (sub)gradient and Hessian of the loss function at iteration
t, respectively. The corresponding procedure is repeated
until convergence.

We first observe that the standard online gradient descent
(OGD) algorithm arises as a special case of this framework
if we use:

mt = gt, Vt = 1 . (4)

The key idea of adaptive methods is to choose estimator
functions appropriately so as to entail good convergence.
For instance, ADAGRAD (Duchi et al., 2011), employs the
following estimator functions:

mt = gt, Vt =
1

t
diag

(
t∑
i=1

gig
>
i

)
. (5)

In contrast to the learning rate of η/
√
t in OGD with

learning-rate decay, such a setting effectively implies a mod-
est learning-rate decay of η/

√∑
i g

2
i,j for j ∈ [d]. When

the gradients are sparse, this can potentially lead to huge
gains in terms of convergence (see (Duchi et al., 2011)).

Adaptive methods based on EWMA. Exponentially
weighted moving average (EWMA) variants of ADAGRAD
are popular in the deep learning community. ADADELTA
(Zeiler, 2012), RMSPROP (Tieleman & Hinton, 2012) and
ADAM (Kingma & Lei, 2015) are some prominent algo-
rithms that fall in this category. The key difference between
these algorithms and ADAGRAD is that they use an EWMA
as the function Vt instead of a simple average. ADAM, a par-
ticularly popular variant, is based on the following estimator
functions:

mt =
1− β1
1− βt1

t∑
i=1

βt−i1 gi,

Vt =
1− β2
1− βt2

diag

(
t∑
i=1

βt−i2 gig
>
i

)
,

(6)

where β1, β2 ∈ [0, 1) are exponential decay rates. RM-
SPROP, which appeared in an earlier unpublished work
(Tieleman & Hinton, 2012), is essentially a variant of ADAM
with β1 = 0. In practice, especially in deep-learning ap-
plications, the momentum term arising due to non-zero β1
appears to significantly boost performance.

More recently, (Khan et al., 2018) are able to derive similar
EWMA update rules by performing natural gradient conju-
gate computations based on (Khan, 2017) to Bayesian neural
networks using a Gaussian approximation with a mean-field
approximation for the Hessian along with squared gradients.
By exploiting the duality within the exponential family dis-
tributions, simple updates for variational BNNs with fast
convergence are derived.

Bayesian neural networks. A Bayesian neural network
(BNN) is a neural network where the weights, θ are ran-
dom variables. Consider an i.i.d. data set of N feature
vectors x1, . . . , xN ∈ Rd, with a corresponding set of out-
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puts {y1, . . . , yN} ∈ R. For illustration purposes, we shall
suppose that the likelihood for each datapoint is Gaussian,
with mean NN(x, θ) and variance σ2

o :

p(yn|xn, θ, σ2) = N (yn|NN(xn, θ), σ
2
o). (7)

Similarly, we shall choose a prior distribution over
the weights θ that is Gaussian of the form p(θ|α) =
N (θ|0, σ2 1). The resulting posterior distribution is then

p(θ|D, σ2, σ2
n) ∝ p(θ|σ2)p(D|θ, σ2

o), (8)

as a consequence of the nonlinear dependence of NN(x, θ)
on θ, will be non-Gaussian. However, we can find a Gaus-
sian approximation by using the Laplace approximation
(MacKay, 1992).

3. Probabilistic Interpretation of Adaptive
Methods

Consider a second-order Taylor expansion of the log-
posterior p(θ|D) around the MAP θt:

log p(θ|D) ≈ log p(θt|D) +
1

2
(θ − θt)>H(θ − θt). (9)

The gradient upon convergence is zero and so the first
order gradient in the Taylor expansion drops out. H =
E
[
∇2 log p(θ|D)|θ=θt

]
and

∇2 log p(θ|D)|θ=θt = ∇2 log p(D|θ)|θ=θt + σ2 1 (10)

where the first term on the r.h.s is a Hessian of
a mean-squared error loss function, log p(D|θ) ∝
1
2

∑
n(NN(xn, θ)−yn)2, where σ2

o is treated a nuisance pa-
rameter and set to 1. This Hessian can be approximated by
the Gaussian-Newton matrix (GGN) (MacKay, 1992), (this
approximation is introduced more formally in Section B).
The second term in Equation (10) is the contribution from
the Gaussian prior. The likelihood term is scaled by N =
|D| as most implementations will take an average of the
log-likelihood. In practice, the GGN matrix requires iterat-
ing over the training data and calculating and manipulating
Jacobians which are expensive for large datasets and over-
parameterized NNs, notice that one can replace it by the
approximation from adaptive optimisation methods which
can also be used to train the NN:

E
[
∇2 log p(θ|D)|θ=θt

]
≈ V 1/2

t . (11)

Exponentiation of Equation (9) yields a Gaussian functional
form in θ, and hence a Gaussian approximate posterior or
Laplace approximation centred on the MAP:

q(θ|D, g1:t, ηt, ω) = N
(
θ | θt,

(
NV

1/2
t

)−1)
, (12)
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Figure 2. Weight pruning test accuracies. BADAM produces high
quality uncertainties and obtains high accuracies.

where
(
NV

1/2
t

)−1
is guaranteed to be positive semi-

definite, ω is a vector of hyperparameters1 other than the
learning rate, if any, that govern the underlying adaptive
method. We summarise the practical implementation of
this procedure through our proposed algorithm, BADAM in
Section A.

An advantage from this proposal is that V 1/2
t is readily

available from the adaptive method, which offers computa-
tional and implementation benefits. In particular, the use of
ADAM’s EWMA estimates for mt and Vt, which enable us
to filter out the noise arising from the stochastic nature of
the gradients, while at the same time accounting for changes
in these quantities over different areas of the loss landscape.
In contrast, using ADAGRAD’s estimate for Vt would im-
ply that the resulting covariance matrix in Equation (12) is
constant over the trajectory of the loss landscape: a rather
severe assumption. In practice, we can run ADAM and then
get Vt = diag(vt) post-hoc to get a cheap approximate pos-
terior. By re-using the curvature estimates we circumvent
the need to calculate an approximation of the Hessian such
as the GGN approximation which involves iterating over the
training dataset and evaluating Jacobians.

The estimate of the Hessian is a root mean square of gradi-
ents: V 1/2

t , contrast this with the GGN approximation of a
typical Laplace approximation which does not contain the
square root. The significance of the square root term is two-
fold. Firstly, it ensures a reduction of the condition number
for our estimate of the covariance in the high-dimensional
setting. Thus, the diagonal estimate for the Hessian of the
objective function has smaller eigenvalues, ensuring a more
stable covariance upon inversion. Secondly, it ensures the
Gaussian approximate posterior, q(θ|D, g1:t, ηt, ω) has a
more conservative covariance matrix and uncertainty esti-
mate than the traditional Laplace which can place proba-
bility mass where the true posterior has none (Ritter et al.,
2018).

1For example, ω = ∅ in the case of ADAGRAD, whereas
ω = (β1, β2) for ADAM.
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Table 1. Cumulative rewards normalised by the optimal reward ± one std. The results are taken from 10 runs. VADAM outperforms on
most datasets, then BADAM performs better than the other approximate inference methods.

Mushroom Financial Jester Statlog Adult Covertype Census

BADAM 0.74±0.09 0.74±0.03 0.48±0.01 0.97±0.02 0.13±0.01 0.58±0.01 0.36±0.06

MC DROPOUT 0.68±0.11 0.68±0.02 0.48±0.01 0.96±0.02 0.13±0.01 0.57±0.01 0.44±0.03

BBB 0.60±0.15 0.21±0.13 0.46±0.02 0.71±0.17 0.10±0.04 0.39±0.06 0.38±0.02

VADAM 0.76±0.03 0.81±0.00 0.48±0.01 0.99±0.00 0.26±0.02 0.74±0.01 0.65±0.00

Greedy 0.64±0.18 0.86±0.03 0.50±0.01 0.97±0.03 0.16±0.01 0.62±0.03 0.44±0.02

Uniform −0.93±0.09 −0.01±0.01 0.34±0.00 0.14±0.00 0.07±0.00 0.14±0.00 0.11±0.00

4. Results
We demonstrate the approximate posterior’s effectiveness
by pruning on MNIST and in a contextual bandit setting. We
present our method in comparison to BBB, MC DROPOUT
and VADAM.

In Figure 1 we introduced our method’s predictive distri-
bution for a simple regression experiment. The predictive
distribution for BADAM is similar to a standard Laplace
approximation in that more probability mass is placed is
places close to the observations than the other methods and
uncertainties widen gradually (Ritter et al., 2018). We use
the Linearised Laplace trick for a stable predictive distribu-
tion (Foong et al., 2019). BBB and VADAM are expensive
to run and at convergence don’t produce large uncertainties
far away from observations. VADAM, also requires a careful
choice of an initial precision of the posterior to initialise the
algorithm and its performance is sensitive to different speci-
fications of the initial precision, which makes it difficult to
train in practice.

Classification on MNIST. To assess the quality of the
obtained uncertainties we follow weight-pruning on MNIST.
Given a posterior mean µ and posterior variance σ2, we
sort the weights by their signal-to-noise (|µ|/σ) ratio and
discard the fraction p of weights with the lowest values, by
setting these weights to zero. As a baseline, we perform
pruning on a model with Σ = 1. BADAM can produce high
quality uncertainties seen as the pruning via signal-to-noise
drop in the accuracy is more robust to pruning than all other
baselines and it has a high accuracy for without pruning.
Experimental details can be found in Section D.2.

Contextual Bandits. We demonstrate the effectiveness of
the BADAM uncertainties by using the BNN in a contex-
tual multi-armed bandit setting where the agent requires a
good measure uncertainty for decision making. The con-
textual multi-armed bandit problem proceeds as follows, at
time t our agent will receive a context Xt ∈ Rd and will
need to decide which action at ∈ A to pick to maximise
a total reward r =

∑T
t=1 rt. Our agent learns a function

f : (Xt, at) → rt ∈ R. Thompson sampling provides a

Bayesian framework for our agent to manage the exploration
exploitation dilemma (Thompson, 1933). In Thompson sam-
pling at each iteration our model samples from its prior and
then greedily selects the action which maximises the reward.
The model then receives feedback for the selected decision
and updates its prior. No feedback is observed for actions
which are not selected. The challenge in this setting is that
at time t our agent’s approximate prior is used to estimate
rt and pick an arm. The rewards rj , j ≤ t are not i.i.d. and
this feedback loop together with an approximate posterior
can lead to disagreements between the model’s posterior
and the true posterior (Riquelme et al., 2018). This in turn
can result in large cumulative regrets. Since the posterior
uncertainty construction and representation learning in the
BADAM algorithm are separate we postulate good perfor-
mance (Riquelme et al., 2018). Details of the experimental
setup can be found in Section D.3.

The results in Table 1 show that the rewards from BADAM
are comparable to MC DROPOUT and outperforms BBB.
VADAM performs best, at each iteration of VADAM as there
is an injection of noise which could increase exploration and
explain the good performance. The greedy bandit performs
well as in (Riquelme et al., 2018), however it underperforms
BADAM on the Mushroom bandit.

5. Conclusion
In this paper, we introduce a straightforward and cheap ap-
proach to posterior inference in BNNs, derived from a new
probabilistic interpretation of adaptive methods. In partic-
ular, we discuss how to refine this framework to ADAM.
Finally, we demonstrate empirically the performance of
the posterior distribution on MNIST classification and on
contextual bandit problems. BADAM is computationally
efficient, like MC DROPOUT, does not require post-hoc
computation of a covariance matrix like the Laplace approx-
imation and has the additional advantage of producing an
explicit approximate posterior distribution like (Blundell
et al., 2015; Khan et al., 2018), without the complexity of
implementing and tuning stochastic variational inference.
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Appendices

A. BADAM Algorithm
The specific approach whereby we can use ADAM to obtain cheap estimates of the posterior are illustrated in Algorithm 1.

Algorithm 1 BADAM: Bayesian Learning of Neural Networks via ADAM

Input: θ1 ∈ Rd, global learning rate η, exponential decay rates β1, β2, constant ε
Set m0 = v0 = 0
for t = 1 to T − 1 do
gt = ∇ft(θt)
mt = β1mt−1+(1−β1)gt

1−βt1
and vt =

β2vt−1+(1−β2)gtg
>
t

1−βt2
θt+1 = θt − ηmt/(v

1/2
t + ε) (element-wise division)

end for
Output: final weight distribution N

(
θ | θt, (Ndiag(v

1/2
t ))−1

)

B. The Generalised Gauss Newton Matrix
The Hessian of the log-likelihood in Equation (10) is the Hessian of a mean-squared error loss function, log p(D|θ) ∝
1
2

∑
n(NN(xn, θ)− yn)2, (σ2

o is treated a nuisance parameter and set to 1). The Hessian can be written as:

∇2
θ log p(D|θ) =

∑
n

∇θNN(xn, θ)∇θNN(xn, θ)
> +

∑
n

(NN(xn, θ)− yn)∇2
θNN(xn, θ), (13)

The second term involves a residual term which is assumed to be small for NNs if it is able to fit the data well. Hence the
Hessian can be approximated by a sum of outer products of Jacobians of the NN predictions. Hence taking expectations like
in Equation (10):

Epθ(y|xn)
[
∇2
θ log p(D|θ)

]
= Epθ(y|xn)

[∑
n

∇θNN(xn, θ)∇θNN(xn, θ)
>

]
(14)

=
∑
n

∇θNN(xn, θ)∇θNN(xn, θ)
>, (15)

since the Jacobians do not depend on y and then

H =
∑
n

∇θNN(xn, θ)∇θNN(xn, θ)
> + σ2 1 . (16)

This is referred to as the Gaussian-Newton matrix (GGN) (MacKay, 1992), its inverse is the covariance of traditional
Laplace approximation of the posterior of a BNN. The GGN matrix corresponds Fisher information for exponential family
distributions (Martens, 2014).

C. Predictive Distributions
The predictive distribution over unseen data x∗ can be obtained through sampling from the posterior:

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ ≈ 1

M

M∑
i=1

p(y∗|x∗θ(i)), (17)

where θ(i) ∼ q(θ|D). Sampling from the Laplace approximation can cause serious underfitting (Lawrence, 2000). Reg-
ularisation over a validation set can be performed to mitigate against underfitting by tuning N and the prior variance σ2.
In practice the scaling N can be treated as a hyperparameter (Kirkpatrick et al., 2017). Alternatively N can be treated as
“pseudo-observations” (Ritter et al., 2018). By adding dropout too neural network each new pass through the data will change
the loss function landscape. With this in mind a heuristic it is useful to regularise the posterior by tuning N according to a
validation dataset. Alternatively the predictive distribution can be approximated by linearizing the output about the MAP to
generate stable, θt (Foong et al., 2019). The predictive distribution for BADAM uses this see Figure 1.



Practical Bayesian Neural Networks via Adaptive Optimization Methods

D. Experimental details
D.1. Toy Regression Experiments

Data generation. Data is generated from the function y = x + 0.3 sin(2π(x + ε)) + 0.3 sin(4π(x + ε)) + ε where
ε ∼ N (0, 0.02). Data for training is sampled from the range (0.0, 0.5) while data used for evaluating the testing was
sampled from the range (−0.5, 1.2). The training set has 200 samples.

Model architecture. A two layer NN with ReLU activations and hidden state sixes of 50 neurons are used. For training
BADAM we use and L2 regularisation size of 10−4 and N = 200 (in equation 12) is the number of points in the training
set . the predictive distribution uses the Linearised-Laplace to obtain a closed form Gaussian solution to the predictive
distribution (Foong et al., 2019). The BADAM network is trained for 20, 000 epochs with a learning rate of 0.001.

D.2. MNIST Weight Pruning Experiments

The BADAM network 2 layers of size 400, uses dropout with a rate of 0.2. For weight pruning it is the ordering of the
weights which matters and so N simply acts to scale the denominators of the snr, |µ|/σ, therefore N = 60, 000 which is the
training set size. Interestingly setting no L2 regularisation produced the best uncertainties. We found that using a larger
value of β2 = 0.99999 produces good uncertainties. We run BADAM with default settings for 100 epochs to achieve a good
solution.

D.3. Contextual Bandits Experiments

Model step. We use the experimental setup described in an implementation provided by (Riquelme et al., 2018) for
evaluation of our BADAM algorithm. A detailed description of the datasets used for our multi-armed bandit experiments
can also be found in the appendix of (Riquelme et al., 2018). We compare to BBB, MC DROPOUT, VADAM an NN which
greedily picks each action (named Greedy in Tables 1), and as a baseline an agent which uniformly samples actions. The
neural networks architectures used for all networks are the same: 2 layers with 100 units each and ReLU activations, they
regress contexts in Rd to outputs in R|A|. BADAM weights are initialized with U [−0.3, 0.3], and use gradient clipping such
that the 2-norm of the gradients are not greater than 5. In terms of hyperparameters, all networks use an initial learning rate
of 0.1 with an inverse decaying schedule. The number of points seen N is set dynamically as the t× batch_size, where t is
the number of rounds of the bandit.

Multi-armed bandits experimental details. The experimental setup for the multi-armed bandits proceeds as follows: at
each round a new context from the dataset is presented to the bandit algorithm, we go through the dataset once. Each action
is initially selected 3 times so that each agent has some initial information to learn from. Subsequently, actions are greedily
chosen, and only the reward for the chosen action will be backpropagated upon training. In terms of training, all observed
contexts, actions and rewards are stored in a buffer. The buffer is sampled to create batches used for training. Training
occurred every tf = 20 rounds for ts = 50 minibatches using a batch size of 512 for all neural bandits.

The full datasets are used for all bandits experiments apart from the Census and Covertype datasets which are very large, we
use a subset of n = 10000 points from these two datasets.


