In a forward direction: Analyzing distribution shifts in machine translation test sets over time

Thomas Liao ${ }^{1}$ Benjamin Recht ${ }^{1}$ Ludwig Schmidt ${ }^{1}$

Abstract

We study the effect of distribution shift between machine translation datasets by evaluating six recent English-to-German translation models on twelve years of competition test sets. We find substantial differences across years and a strong upward trend over time, even for fixed models. For the best model on the 2019 test set, the performance difference between the 2008 and 2019 test sets is three times larger than the gap between the worst and best model in our testbed. We explain this trend in terms of translationese, a well-known linguistic phenomenon. After adjusting for translationese, the performance scores across years become more comparable, but models still perform better on more recent test sets.

1. Introduction

Machine learning now often achieves impressive performance when training and test distribution agree. At the same time, current techniques still fail in unexpected and poorly understood ways when the test distribution deviates from the training data (Quionero-Candela et al., 2009; Torralba \& Efros, 2011). For instance, progress on ImageNet is often cited as one of the breakthroughs in machine learning, but state-of-the-art models still see substantial performance degradation from small distribution shift (Recht et al., 2019). This raises the question if progress in other domains of machine learning is similarly brittle.

We address this question in the context of machine translation. Machine translation has seen substantial progress over the past decade and is also regarded as a key advance in machine learning. Our starting point is the widely used WMT (Workshop on Machine Translation) test sets. Since 2006, the Conference on Machine Translation (originally the WMT) has shepherded machine translation with a yearly

[^0]translation competition. The organizers create a new competition test set each year, which provides a natural setting to analyze distribution shift in machine translation. Building on these datasets, the core part of our paper is a comprehensive testbed of six recent English-to-German models that we evaluate on the past twelve years of WMT test sets.

Figure 1(a) shows the main trend for each model as a function of competition year. There is a clear increase in BLEU scores even as models are held fixed. This plot is complementary to competitions such as ImageNet, where the test set is fixed across years and hence better performance can be attributed solely to improvements in classification models. We wish to know, therefore, to what extent improved performance scores in machine translation are due to model improvements vs. changes in datasets.

To investigate this question, we carefully dissect the WMT test sets and find that translationese, a known linguistic phenomenon, explains some of the trend in Figure 1(a). Translationese is text in a language X which originates in another language Y, e.g., a Czech sentence first translated into English to serve as source sentence in an English-toGerman translation task, and then also translated into German to serve as target sentence. two significant changes to WMT test set construction in 2014 and 2019 aimed to control translationese. Beginning in 2014 (Bojar et al., 2014), WMT organizers stopped including most translationese sentences in the test set. And in 2019, they stopped including sentences which originated in German (Barrault et al., 2019), only including English-originating ones.

Figure 1(b) shows the aggregated performance across models after controlling for translationese. Until 2014, performance is roughly constant on the portion of each year's test set which is made of sentences originating in English. However, since these sentences comprise a small fraction of the test set, overall performance is driven by performance on the translationese component. After 2014, performance on both the English-originating subset and the non-Englishoriginating subset rise.

Our results demonstrate that distribution shift also substantially affects machine translation models. Translationese captures some of the variations across datasets, but does not explain all performance changes. Moreover, it is unclear if

(a) Performance trends of fixed models on translation test sets. We test six pretrained models on the past twelve years of WMT English-to-German datasets. Models achieve better BLEU on more recent test sets and perform worse on older test sets. While some models were tuned on the datasets shown here, no model was tuned on the 2019 test set.

(b) Aggregated performance of models on test set subparts. We bucket all model translations together to calculate aggregated performance of models on: (i) the full dataset for each year; (ii) only the sentences each year which originate in English; (iii) the remaining sentences ("translationese"). The percentage of each year's dataset originating in English is shown with a dotted line.

Figure 1: Model performance trends on the WMT test sets from 2008 to 2019.
the lower performance of models on translationese is due to lower data quality or because the models fail to generalize to irregular linguistic phenomena. We hope that our testbed will be a useful resource for evaluating translation models in a wide variety of contexts and making models more robust to the resulting distribution shifts.

2. Preliminaries

We restrict our attention to the English-to-German test sets ($\mathrm{EN} \rightarrow \mathrm{DE}$ newstest) for three reasons: (i) although various language pairs have been added and been removed by WMT, EN \rightarrow DE has been supported since 2008, the earliest year we investigate; (ii) $\mathrm{EN} \rightarrow \mathrm{DE}$ is the unique language pair for which a machine translation system has been declared superior to humans in human evaluation (Toral et al., 2018; Toral, 2020; Läubli et al., 2018; 2020), an indication of the greatest actual improvement in performance; (iii) and, finally, EN \rightarrow DE scores on the 2014 test set have been used as a point of comparison for a number of influential neural machine translation papers (Bahdanau et al., 2015; Vaswani et al., 2017). Further details about the test sets are elaborated in Appendix 6.1.

2.1. Models

Most of our pretrained models (Gehring et al., 2017; Edunov et al., 2018; Ott et al., 2018; Ng et al., 2019; Wu et al., 2019)) are sourced from the FAIRSEQ (Ott et al., 2019) repository and the rest (Junczys-Dowmunt et al., 2018; Lample \& Conneau, 2019) are provided by the HuggingFace (Wolf et al.,
2019) repository. We include the WMT18 and WMT19 winners for the $\mathrm{EN} \rightarrow \mathrm{DE}$ direction, (Edunov et al., 2018) and (Ng et al., 2019), respectively. We provide further details on models and generation in Appendix 6.3.

2.2. BLEU scores

BLEU (Papineni et al., 2002) is the dominant metric used by the machine translation community to measure the performance of MT systems. The metric outputs a score between 0 and 100 , where 100 is the maximum theoretically possible score. The state-of-the-art model on the 2019 test set achieved a BLEU of 42 and was preferred by annotators over human reference translators (Barrault et al., 2019).

All scores reported in this paper are computed using the SACREBLEU Python package ${ }^{1}$. More details about BLEU scores are provided in Appendix 6.2.

3. Changes in test set construction

We hypothesize that a major reason for the year-on-year score increase for fixed models is changes in test set construction - specifically, the progressive exclusion of translationese segments in 2014 and 2019 described in Section 1.

3.1. Linguistic effects of translationese

Figure 2 shows that all models perform poorly on translationese by re-grouping segments from all newstest

[^1]

Figure 2: Performance of fixed models on translationese. Models are ordered on the X -axis according to performance on newstest2019. We re-group sentences from the past twelve years of WMT EN \rightarrow DE newstest datasets into nine buckets based on their original language, and test models against each bucket. Models marked with ' \dagger ' used backtranslation during training. WMT stopped including translationese in newstest datasets beginning in 2019.
test sets based on their original language. Models are ordered on the x-axis based on their performance on newstest 2019 , with the best model on the right. The points labeled "en" represent scores for translations of segments pulled from newstest2008,2009, ..., 2019 which are originally in English (i.e, the only segments which are not translationese to any degree). The points labeled "cs" represent scores for translations of segments which were originally in Czech, then translated to English for use in the EN \rightarrow DE newstests. Not all languages were included for each year; Russian, for example, was only included in newstest2013.

Translationese exhibits unique artifacts from the process of translation (Baker et al., 1993), such as being simpler or being more explicit (Laviosa-Braithwaite, 1998) than the source sentence, as well as properties carried over from the source language, such as grammatical structure or overor under-representation of particular words (Koppel \& Ordan, 2011). Recent work (Graham et al., 2019) studying the effect of translationese in WMT evaluation found that translationese in WMT test sets was generally shorter than original text and that testing systems on reverse text resulted in higher human scores.

On non-German-originating translationese, models tend to perform within 5 BLEU of other, but the best model scores almost 10 BLEU higher on the originally-English segments than the worst model and nearly 15 BLEU higher on the originally-German segments. This suggests that most of the gains in English-to-German translation over time have been
achieved on translating English- or German-original text, with little improvement in translating English segments that originate in a third language. All models perform significantly better on English- and German-originating segments, and worst on originally-Hungarian segments.

(a) Model performance (BLEU) when only Englishoriginal sentences are included.

Dataset year
(b) Model performance (BLEU) when only English- or German-original sentences are included.

Figure 3: In 2019, only English-original sentences are included, so scores are exactly the same as in Figure 1(a). Most models do worse when German-original sentences are included, except the two models trained with backtranslation (denoted with ' \dagger '). Models trained with backtranslation supplement the training data with reverse-direction sentences sentences translated from the target language (i.e., German) into the source language (i.e., English) - so they suffer a less drastic performance drop when tested on reverse direction sentences

3.2. The effect of backtranslation

We observe that models perform best on forward direction segments, which is unsurprising when the training data con-
sists heavily of forward-direction segments. The exception is models trained with backtranslation (denoted with ' \dagger '), which perform best on reverse direction segments.
Backtranslation (Sennrich et al., 2016a;b) is a data augmentation strategy which significantly improves model performance. Additional training sentences are generated by automatically translating sentences from monolingual corpora in the target language into the source language. Concretely for the $\mathrm{EN} \rightarrow$ DE pair, this would entail taking sentences originally in German, translating them to English using a $\mathrm{DE} \rightarrow \mathrm{EN}$ translation model, then using the resulting pairs of sentences to train a EN \rightarrow DE model.

We show in Figure 3 that the rising trend flattens when we remove translationese. The models marked with a ' \dagger ' are trained with backtranslation, and perform better on reverse direction sentences then the other models. It is known that models trained with backtranslation are better at translating reverse direction sentences (Edunov et al., 2018) than those trained without, so it is unsurprising that they suffer a lower drop in BLEU when reverse direction sentences are added, as shown in Figure 3(b).

4. Related Work

Distribution shift in ML. Machine learning systems trained to maximize scores on particular test sets demonstrate substantial degradations in performance when tested against similar examples drawn from distributions which are similar to the original training set (Torralba \& Efros, 2011). Researchers have long ascertained the performance of ML systems on test sets which remain fixed for years (e.g. the ImageNet dataset (Deng et al., 2009) for object recognition; the Penn Treebank (Marcus et al., 1993) for part-of-speech tagging). By constructing highly similar datasets drawn from similar distributions, then testing systems against them, previous work has concluded that machine learning systems are highly susceptible to minor shifts in data distributions (CIFAR-10 and ImageNet replications (Recht et al., 2019); MNIST replication (Yadav \& Bottou, 2019)). Modern neural classifiers suffer a loss in accuracy equivalent to multiple years of progress. The yearly WMT test sets provide an extended chronology of natural distribution shifts.
Source-target domain mismatch. Concurrent work on backtranslation has found that the technique is less effective when there is a mismatch between the topics or domains between the source and target language (Shen et al., 2019) corpora, a problem exacerbated in low-resource language pairs. Since the EN \rightarrow DE newstest test sets are drawn from news articles at similar points in time, we speculate that the effect of domain mismatch is substantially less than in such low-resource cases. Another independent work (Bogoychev \& Sennrich, 2019) notes "subtle" domain dif-
ferences in FR \rightarrow EN (a high-resource pair) newstest test sets. They train a model to distinguish between origlang=FR and origlang=EN segments, but they admit it is ambiguous whether this model is relying on translationese artifacts or can readily distinguish between the source and target domain.

Backtranslation. (Zhang \& Toral, 2019) conduct a similar experiment where they remove reverse-direction translationese sentences for newstest2016, newstest2017, newstest 2018 across a number of language pairs. They find that the best two EN \rightarrow DE models in 2017 and 2018 suffer little drop in performance as judged by humans, which accords with our result that high-performing backtranslation models perform well on the reverse-direction subset on all years. In contrast to our work, they examine only models submitted for those years' competitions, whereas we score SOTA models from the full twelve years. The narrower focus on these three test sets also precludes an analysis of translationese from the third direction (e.g. origlang!=en, de for $\mathrm{EN} \rightarrow \mathrm{DE}$), which we show has "weighed down" on machine translation due to greater translation difficulty.

5. Discussion and Future Work

In this work, we six state-of-the-art English-to-German translation models on twelve years of WMT translation test sets. We identify a near-doubling of BLEU scores and connect this increase to deliberate changes made by competition organizers to minimize the impact of translationese, a linguistic phenomenon caused by incorporating sentences which originate in neither the source nor target language. We recommend that researchers no longer rely exclusively on the 2014 WMT test set to compare models, as it favors models trained with a particular data augmentation, backtranslation.

Future lines of research include: creating a new set of reference translations, to control for the influence of translation quality on model performance; measuring the effect of domain shift by annotating news articles with topic or theme; soliciting human judgments of translation quality to determine whether human annotators also discern a matching increase in performance.

References

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

Baker, M., Francis, G., and Tognini-Bonelli, E. Corpus linguistics and translation studies: Implications and applications. In Text and Technology: In Honour of John Sinclair. John Benjamins Publishing Company, Nether-
lands, 1993.
Barrault, L., Bojar, O., Costa-jussà, M. R., Federmann, C., Fishel, M., Graham, Y., Haddow, B., Huck, M., Koehn, P., Malmasi, S., Monz, C., Müller, M., Pal, S., Post, M., and Zampieri, M. Findings of the 2019 conference on machine translation (WMT19). In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5301. URL https: //www.aclweb.org/anthology/w19-5301.

Belz, A. and Reiter, E. Comparing automatic and human evaluation of NLG systems. In 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, Italy, April 2006. Association for Computational Linguistics. URL https: //www.aclweb.org/anthology/E06-1040.

Bogoychev, N. and Sennrich, R. Domain, translationese and noise in synthetic data for neural machine translation. arXiv preprint arXiv:1911.03362, 2019.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P., Post, M., SaintAmand, H., Soricut, R., Specia, L., and Tamchyna, A. Findings of the 2014 workshop on statistical machine translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation. Association for Computational Linguistics, 2014. doi: 10.3115/ v1/W14-3302. URL https://www.aclweb.org/ anthology/W14-3302.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Névéol, A., Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M., Verspoor, K., and Zampieri, M. Findings of the 2016 conference on machine translation. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pp. 131-198, Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-2301. URL https: //www.aclweb.org/anthology/W16-2301.

Callison-Burch, C., Osborne, M., and Koehn, P. Reevaluating the role of Bleu in machine translation research. In 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, Italy, April 2006. Association for Computational Linguistics. URL https://www.aclweb. org/anthology/E06-1032.

Callison-Burch, C., Koehn, P., Monz, C., Peterson, K., Przybocki, M., and Zaidan, O. Findings of the 2010 joint workshop on statistical machine translation and
metrics for machine translation. In Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR. Association for Computational Linguistics, 2010. URL https://www.aclweb.org/ anthology/W10-1703.

Callison-Burch, C., Koehn, P., Monz, C., and Zaidan, O. Findings of the 2011 workshop on statistical machine translation. In Proceedings of the Sixth Workshop on Statistical Machine Translation. Association for Computational Linguistics, 2011. URL https: //www.aclweb.org/anthology/W11-2103.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, 2009.

Edunov, S., Ott, M., Auli, M., and Grangier, D. Understanding back-translation at scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2018. doi: 10.18653/v1/D18-1045. URL https: //www.aclweb.org/anthology/D18-1045.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. Convolutional sequence to sequence learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Graham, Y., Haddow, B., and Koehn, P. Translationese in machine translation evaluation. arXiv preprint arXiv:1906.09833, 2019.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann, T., Seide, F., Germann, U., Fikri Aji, A., Bogoychev, N., Martins, A. F. T., and Birch, A. Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, System Demonstrations, pp. 116-121, Melbourne, Australia, July 2018. Association for Computational Linguistics. URL http: //www.aclweb.org/anthology/P18-4020.

Koppel, M. and Ordan, N. Translationese and its dialects. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.

Lample, G. and Conneau, A. Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291, 2019.

Läubli, S., Sennrich, R., and Volk, M. Has machine translation achieved human parity? a case for documentlevel evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4792-4796, Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1512. URL https://www.aclweb.org/ anthology/D18-1512.

Läubli, S., Castilho, S., Neubig, G., Sennrich, R., Shen, Q., and Toral, A. A set of recommendations for assessing human-machine parity in language translation. Journal of Artificial Intelligence Research, 67:653-672, 2020.
Laviosa-Braithwaite, S. Universals of translation. Routledge encyclopedia of translation studies. London: Routledge, pp. 288-291, 1998.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 1993. URL https://www.aclweb.org/anthology/ J93-2004.

Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., and Edunov, S. Facebook FAIR's WMT19 news translation task submission. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Association for Computational Linguistics, 2019. doi: $10.18653 / \mathrm{v} 1 / \mathrm{W} 19-5333$. URL https: //www. aclweb.org/anthology/W19-5333.

Novikova, J., Dušek, O., Cercas Curry, A., and Rieser, V. Why we need new evaluation metrics for NLG. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 22412252, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/ v1/D17-1238. URL https://www.aclweb.org/ anthology/D17-1238.
Ott, M. Personal communication, 2020.
Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling neural machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 1-9, 2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACLHLT 2019: Demonstrations, 2019.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2002. doi: 10.3115/ 1073083.1073135. URL https://www.aclweb. org/anthology/P02-1040.

Post, M. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, 2018. URL https: //www.aclweb.org/anthology/W18-6319.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset Shift in Machine Learning. The MIT Press, 2009.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do imagenet classifiers generalize to imagenet? In International Conference on Machine Learning, 2019.

Reiter, E. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393-401, September 2018. doi: 10.1162/coli_a_00322. URL https://www . aclweb.org/anthology/J18-3002.

Sennrich, R., Haddow, B., and Birch, A. Improving neural machine translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 86-96, Berlin, Germany, August 2016a. Association for Computational Linguistics. doi: 10.18653/ v1/P16-1009. URL https://www.aclweb.org/ anthology/P16-1009.

Sennrich, R., Haddow, B., and Birch, A. Edinburgh neural machine translation systems for WMT 16. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pp. 371-376, Berlin, Germany, August 2016b. Association for Computational Linguistics. doi: 10.18653/v1/W16-2323. URL https: //www.aclweb.org/anthology/W16-2323.

Shen, J., Chen, P.-J., Le, M., He, J., Gu, J., Ott, M., Auli, M., and Ranzato, M. The source-target domain mismatch problem in machine translation. arXiv preprint arXiv:1909.13151, 2019.

Toral, A. Reassessing claims of human parity and superhuman performance in machine translation at wmt 2019. arXiv preprint arXiv:2005.05738, 2020.

Toral, A., Castilho, S., Hu, K., and Way, A. Attaining the unattainable? reassessing claims of human parity in neural machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 113-123, 2018.

Torralba, A. and Efros, A. A. Unbiased look at dataset bias. In CVPR 2011, 2011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. In Advances in neural information processing systems, pp. 5998-6008, 2017.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. Huggingface's transformers: State-of-theart natural language processing. ArXiv, abs/1910.03771, 2019.

Wu, F., Fan, A., Baevski, A., Dauphin, Y. N., and Auli, M. Pay less attention with lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Yadav, C. and Bottou, L. Cold case: The lost mnist digits. In Advances in Neural Information Processing Systems, 2019.

Zhang, M. and Toral, A. The effect of translationese in machine translation test sets. In Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research Papers), pp. 73-81, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5208. URL https://www. aclweb.org/anthology/W19-5208.

6. Appendix

6.1. Datasets

In each newstest instance, all sentences in the source are English sentences, and the reference sentences are rendered in German. However, WMT initially collected news articles originating in all six language of the competition: Czech, English, French, German, Hungarian, and Spanish. These articles were translated from their original language into all five other languages to create that year's test set. For example, newstest 2008 has 2051 sentences, 349 of which were originally English, 361 originally German, 416 Czech, etc. Languages were added and removed at various points. As mentioned in Section 1, only sentences originating in the source or target language (in our case, EN or DE) were used to create the test set starting in 2014 (Bojar et al., 2014). And in 2019, only sentences originating in the source language (i.e., EN) were permitted (Barrault et al., 2019).

Although translations were originally sourced from a wide mix of translators, including fluent speakers who were not professional translators, all translations have been produced since 2010 by professional translators (Callison-Burch et al., 2010). WMT organizers themselves observe that the quality of the translations has fluctuated between years (CallisonBurch et al., 2011).

Each test set is on average 2728 segments in length (a segment is a line of text, such as a sentence or a fragment); newstest 2019 is the shortest at 1997 segments, and newstest 2009 is the longest at 3027 segments. Each segment is on average 120 characters long, with a standard deviation of 68 .

Language codes are as follows: Czech (CS), English (EN), French (FR), German (DE), Hungarian (HU), Russian (RU), Italian (IT), and Spanish (ES).

6.2. BLEU scores

In this paper, we always report cased detokenized BLEU (using the "v13a" tokenizer). While many papers process the reference text to split compound words, we never process the reference. SACREBLEU signatures are shown in Appendix 7.

Historically, different papers have computed BLEU inconsistently (Post, 2018), and, consequently, comparing BLEU scores between different models on the same dataset is not always kosher: changes to the scoring parameterization and processing of the reference translations can vary BLEU by as much as 1.5 points in our experience. Such irregularities mean that BLEU scores in this paper are not guaranteed to be commensurate with self-reported scores from prior works, and may be higher or lower than scores reported by
those papers.
While substantial work (Callison-Burch et al., 2006; Novikova et al., 2017; Reiter, 2018; Bojar et al., 2016; Belz \& Reiter, 2006) has cast doubt on the quality of the BLEU score as a evaluation metric (e.g. concerns over systematic divergences between human judgments of quality and BLEU scores), it has persisted as the most widely used evaluation tool in machine translation.

6.3. Translation generation

The FAIRSEQ pretrained models are provided by the authors of their respective papers and, are to the best of our knowledge, identical to the ones used for the competition, with the exception (Ott, 2020) of the model described in (Gehring et al., 2017). The XLM model (Lample \& Conneau, 2019) was trained by HUGGINGFACE maintainers, not the XLM authors. Experiments were conducted on an AWS EC2 p3.16xlarge instance with a Tesla V100 GPU.

When reported, we use model-specific generation parameters, such as beam width and length penalties, but fall back on framework-specific defaults otherwise. We attempt to match text preprocessing pipelines when not provided, but exact details are rarely reported in the literature. Since even subtle differences in tokenizing punctuation marks matter for BLEU, the differences in preprocessing pipelines contributes to differences from our scores with reported scores.

7. SACREBLEU signatures

T5-base.huggingface.en-de.19.pretrained
newstest2008 BLEU $=22.07$ 53.5/27.3/16.2/10.2 $(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=47205$ ref_len $=47437)$
newstest2009 BLEU $=21.6053 .7 / 27.2 / 15.9 / 9.8(\mathrm{BP}=0.989$ ratio $=0.989$ hyp_len $=73277$ ref_len $=74087)$
newstest2010 BLEU $=24.5157 .3 / 30.9 / 18.9 / 12.0(B P=0.974$ ratio $=0.974$ hyp_len $=59928$ ref_len $=61503)$
newstest2011 BLEU $=21.92$ 54.2/27.5/16.1/10.0 $(B P=0.990$ ratio $=0.991$ hyp_len $=72289$ ref_len $=72981)$
newstest2012 BLEU $=22.5255 .1 / 28.6 / 17.1 / 10.7(B P=0.973$ ratio $=0.973$ hyp_len $=70941$ ref_len $=72886)$
newstest2013 BLEU $=26.5258 .1 / 32.4 / 20.6 / 13.5(\mathrm{BP}=0.986$ ratio $=0.986$ hyp_len $=62870$ ref_len $=63737)$
newstest2014 BLEU $=27.02$ 57.1/32.5/20.8/13.8 $(\mathrm{BP}=1.000$ ratio $=1.036$ hyp_len $=64918$ ref_len $=62688)$
newstest2015 BLEU $=29.8760 .2 / 35.4 / 23.4 / 16.0(B P=1.000$ ratio $=1.025$ hyp_len $=45367$ ref_len $=44260)$
newstest2016 BLEU $=33.8563 .5 / 39.5 / 27.1 / 19.3(\mathrm{BP}=1.000$ ratio $=1.002$ hyp_len $=62777$ ref_len $=62669)$
newstest2017 BLEU $=27.7658 .8 / 33.5 / 21.4 / 14.1(\mathrm{BP}=1.000$ ratio $=1.016$ hyp_len $=62263$ ref_len $=61287)$
newstest2018 BLEU $=40.9168 .6 / 46.5 / 34.1 / 25.7(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=64686$ ref_len $=64276)$
newstest2019 BLEU $=36.0063 .2 / 41.1 / 29.7 / 22.2(B P=0.995$ ratio $=0.995$ hyp_len $=48504$ ref_len $=48746)$

	Gehring17.fairseq.en-de.17.pretrained
newstest2008	BLEU $=20.3551 .8 / 25.3 / 14.6 / 9.0(\mathrm{BP}=1.000$ ratio $=1.012$ hyp_len $=48023$ ref_len $=47437)$
newstest2009	$\mathrm{BLEU}=20.8753 .2 / 26.2 / 15.0 / 9.0(\mathrm{BP}=1.000$ ratio $=1.002$ hyp_len $=74224$ ref_len $=74087)$
newstest2010	$\mathrm{BLEU}=23.4256 .9 / 29.9 / 17.8 / 11.1(\mathrm{BP}=0.973$ ratio $=0.974$ hyp_len $=59890$ ref_len $=61503)$
newstest2011	$\mathrm{BLEU}=21.2553 .8 / 26.4 / 15.4 / 9.5(\mathrm{BP}=0.997$ ratio $=0.997$ hyp_len $=72756$ ref_len $=72981)$
newstest2012	$\mathrm{BLEU}=21.4954 .7 / 27.3 / 16.0 / 9.9(\mathrm{BP}=0.976$ ratio $=0.976$ hyp_len $=71132$ ref_len $=72886)$
newstest2013	$\mathrm{BLEU}=25.2357 .5 / 31.0 / 19.2 / 12.3(\mathrm{BP}=0.990$ ratio $=0.990$ hyp_len $=63114$ ref_len $=63737)$
newstest2014	$\mathrm{BLEU}=25.4956 .4 / 31.0 / 19.3 / 12.5(\mathrm{BP}=1.000$ ratio $=1.041$ hyp_len $=65261$ ref_len $=62688)$
newstest2015	$\mathrm{BLEU}=28.1359 .4 / 33.6 / 21.7 / 14.5(\mathrm{BP}=1.000$ ratio $=1.026$ hyp_len $=45406$ ref_len $=44260)$
newstest2016	$\mathrm{BLEU}=32.8963 .5 / 38.6 / 26.1 / 18.3(\mathrm{BP}=1.000$ ratio $=1.003$ hyp_len $=62854$ ref_len $=62669)$
newstest2017	$\mathrm{BLEU}=26.4958 .1 / 32.1 / 20.1 / 13.1(\mathrm{BP}=1.000$ ratio $=1.027$ hyp_len $=62934$ ref_len $=61287)$
newstest2018	$\mathrm{BLEU}=39.0567 .7 / 44.7 / 32.2 / 23.9(\mathrm{BP}=1.000$ ratio $=1.014$ hyp_len $=65163$ ref_len $=64276)$
newstest2019	$\mathrm{BLEU}=35.4563 .8 / 40.6 / 28.9 / 21.1(\mathrm{BP}=1.000$ ratio $=1.004$ hyp_len $=48962$ ref_len $=48746)$

Ott18.fairseq.en-de.18.pretrained
newstest2008 newstest2009 newstest2010 newstest2011 newstest2012 newstest2013 newstest2014 newstest2015 newstest2016 newstest2017 newstest2018 newstest2019

BLEU $=22.5154 .4 / 28.0 / 16.8 / 10.8(B P=0.983$ ratio $=0.983$ hyp_len $=46615$ ref_len $=47437)$ BLEU $=22.2555 .3 / 28.3 / 16.8 / 10.4(B P=0.972$ ratio $=0.972$ hyp_len $=72042$ ref_len $=74087)$
BLEU $=25.0759 .2 / 32.3 / 19.9 / 12.8(B P=0.950$ ratio $=0.951$ hyp_len $=58479$ ref_len $=61503)$
BLEU $=22.5756 .0 / 28.6 / 16.9 / 10.6(B P=0.975$ ratio $=0.976$ hyp_len $=71196$ ref_len $=72981)$
BLEU $=23.1557 .2 / 29.8 / 17.9 / 11.3(B P=0.956$ ratio $=0.957$ hyp_len $=69778$ ref_len $=72886)$
BLEU $=27.0760 .1 / 33.5 / 21.4 / 14.0(B P=0.971$ ratio $=0.972$ hyp_len $=61923$ ref_len $=63737)$
BLEU $=29.3160 .3 / 35.0 / 22.8 / 15.3(B P=1.000$ ratio $=1.008$ hyp_len $=63198$ ref_len $=62688)$
BLEU $=32.1463 .3 / 38.0 / 25.5 / 17.7(B P=0.996$ ratio $=0.996$ hyp_len $=44081$ ref_len $=44260)$
BLEU $=35.17$ 66.7/41.7/28.9/20.8 $(B P=0.978$ ratio $=0.978$ hyp_len $=61314$ ref_len $=62669)$
BLEU $=30.1362 .0 / 36.1 / 23.6 / 15.8(\mathrm{BP}=0.997$ ratio $=0.997$ hyp_len $=61100$ ref_len $=61287)$
BLEU $=42.43$ 71.4/48.7/35.9/27.2 $(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=63511$ ref_len $=64276)$
BLEU $=38.8467 .2 / 44.5 / 32.6 / 24.5(B P=0.988$ ratio $=0.988$ hyp_len $=48164$ ref_len $=48746)$

Edunov18.fairseq.en-de.18.pretrained

newstest2008	BLEU $=23.9856 .1 / 29.7 / 18.4 / 12.1(\mathrm{BP}=0.971$ ratio $=0.971$ hyp_len $=46074$ ref_len $=47437)$
newstest2009	$\mathrm{BLEU}=23.6756 .5 / 29.9 / 18.2 / 11.6(\mathrm{BP}=0.970$ ratio $=0.970$ hyp_len $=71877$ ref_len $=74087)$
newstest2010	$\mathrm{BLEU}=26.2159 .8 / 33.5 / 21.3 / 14.2(\mathrm{BP}=0.939$ ratio $=0.941$ hyp_len $=57879$ ref_len $=61503)$
newstest2011	$\mathrm{BLEU}=24.2257 .5 / 30.5 / 18.6 / 12.0(\mathrm{BP}=0.967$ ratio $=0.968$ hyp_len $=70622$ ref_len $=72981)$
newstest2012	$\mathrm{BLEU}=25.4059 .0 / 32.3 / 20.3 / 13.3(\mathrm{BP}=0.947$ ratio $=0.949$ hyp_len $=69135$ ref_len $=72886)$
newstest2013	$\mathrm{BLEU}=29.2161 .5 / 35.8 / 23.6 / 16.1(\mathrm{BP}=0.965$ ratio $=0.966$ hyp_len $=61561$ ref_len $=63737)$
newstest2014	$\mathrm{BLEU}=33.8163 .5 / 39.6 / 27.2 / 19.2(\mathrm{BP}=0.998$ ratio $=0.998$ hyp_len $=62554$ ref_len $=62688)$
newstest2015	$\mathrm{BLEU}=34.7765 .3 / 40.8 / 28.2 / 20.1(\mathrm{BP}=0.992$ ratio $=0.992$ hyp_len $=43900$ ref_len $=44260)$
newstest2016	$\mathrm{BLEU}=37.7769 .0 / 45.2 / 32.1 / 23.6(\mathrm{BP}=0.964$ ratio $=0.964$ hyp_len $=60440$ ref_len $=62669)$
newstest2017	$\mathrm{BLEU}=32.7864 .9 / 39.3 / 26.6 / 18.6(\mathrm{BP}=0.979$ ratio $=0.979$ hyp_len $=59991$ ref_len $=61287)$
newstest2018	$\mathrm{BLEU}=45.7073 .9 / 52.6 / 40.0 / 31.2(\mathrm{BP}=0.974$ ratio $=0.974$ hyp_len $=62604$ ref_len $=64276)$
newstest2019	$\mathrm{BLEU}=37.8566 .6 / 43.9 / 32.0 / 24.2(\mathrm{BP}=0.975$ ratio $=0.976$ hyp_len $=47552$ ref_len $=48746)$

Ng 19.fairseq.en-de.19.pretrained

newstest2008	BLEU $=25.2956 .6 / 30.7 / 19.2 / 12.7(\mathrm{BP}=0.991$ ratio $=0.991$ hyp_len $=47002$ ref_len $=47437)$
newstest2009	$\mathrm{BLEU}=24.9056 .9 / 30.6 / 18.9 / 12.3(\mathrm{BP}=0.987$ ratio $=0.987$ hyp_len $=73122$ ref_len $=74087)$
newstest2010	$\mathrm{BLEU}=28.2661 .5 / 35.3 / 22.9 / 15.5(\mathrm{BP}=0.953$ ratio $=0.954$ hyp_len $=58691$ ref_len $=61503)$
newstest2011	$\mathrm{BLEU}=25.3858 .0 / 31.3 / 19.4 / 12.7(\mathrm{BP}=0.982$ ratio $=0.982$ hyp_len $=71656$ ref_len $=72981)$
newstest2012	$\mathrm{BLEU}=29.0561 .5 / 35.8 / 23.5 / 16.2(\mathrm{BP}=0.960$ ratio $=0.961$ hyp_len $=70053$ ref_len $=72886)$
newstest2013	$\mathrm{BLEU}=32.7063 .8 / 39.0 / 26.7 / 18.9(\mathrm{BP}=0.976$ ratio $=0.976$ hyp_len $=62229$ ref_len $=63737)$
newstest2014	$\mathrm{BLEU}=36.0165 .0 / 41.7 / 29.3 / 21.2(\mathrm{BP}=1.000$ ratio $=1.011$ hyp_len $=63403$ ref_len $=62688)$
newstest2015	$\mathrm{BLEU}=40.5668 .9 / 46.2 / 33.7 / 25.3(\mathrm{BP}=1.000$ ratio $=1.000$ hyp_len $=44244$ ref_len $=44260)$
newstest2016	$\mathrm{BLEU}=41.1370 .9 / 47.8 / 34.8 / 26.1(\mathrm{BP}=0.982$ ratio $=0.982$ hyp_len $=61539$ ref_len $=62669)$
newstest2017	$\mathrm{BLEU}=38.4268 .3 / 44.4 / 31.7 / 23.3(\mathrm{BP}=0.993$ ratio $=0.993$ hyp_len $=60830$ ref_len $=61287)$
newstest2018	$\mathrm{BLEU}=49.0775 .6 / 55.2 / 42.8 / 33.9(\mathrm{BP}=0.989$ ratio $=0.989$ hyp_len $=63559$ ref_len $=64276)$
newstest2019	$\mathrm{BLEU}=42.1469 .7 / 47.7 / 35.6 / 27.3(\mathrm{BP}=0.994$ ratio $=0.994$ hyp_len $=48461$ ref_len $=48746)$

Wu19-dynamicglu.fairseq.en-de.16.pretrained
newstest2008 newstest2009 newstest2010 newstest2011 newstest2012 newstest2013 newstest2014 newstest2015 newstest2016 newstest2017 newstest2018 newstest2019

BLEU $=21.9654 .1 / 27.5 / 16.4 / 10.4(B P=0.980$ ratio $=0.980$ hyp_len $=46480$ ref_len $=47437)$ BLEU $=22.0955 .3 / 28.5 / 16.9 / 10.4(B P=0.963$ ratio $=0.964$ hyp_len $=71416$ ref_len $=74087)$ BLEU $=24.5658 .6 / 31.7 / 19.4 / 12.5(B P=0.947$ ratio $=0.948$ hyp_len $=58317$ ref_len $=61503)$ BLEU $=22.3455 .4 / 28.4 / 16.8 / 10.5(B P=0.972$ ratio $=0.973$ hyp_len $=70991$ ref_len $=72981)$ BLEU $=22.5356 .3 / 29.3 / 17.5 / 11.0(B P=0.950$ ratio $=0.951$ hyp_len $=69322$ ref_len $=72886)$ BLEU $=26.7759 .5 / 33.2 / 21.2 / 14.0(B P=0.967$ ratio $=0.968$ hyp_len $=61697$ ref_len $=63737)$ BLEU $=29.0259 .5 / 34.7 / 22.6 / 15.2(\mathrm{BP}=1.000$ ratio $=1.014$ hyp_len $=63546$ ref_len $=62688)$ BLEU $=30.85$ 62.1/36.7/24.3/16.7 $(B P=0.995$ ratio $=0.995$ hyp_len $=44027$ ref_len $=44260)$ BLEU $=34.3065 .5 / 41.0 / 28.3 / 20.2(\mathrm{BP}=0.974$ ratio $=0.974$ hyp_len $=61054$ ref_len $=62669)$ BLEU $=28.5760 .4 / 34.5 / 22.2 / 14.7(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=61002$ ref_len $=61287)$ BLEU $=41.6270 .0 / 47.8 / 35.3 / 26.7(B P=0.987$ ratio $=0.987$ hyp_len $=63444$ ref_len $=64276)$ BLEU $=37.5865 .5 / 43.2 / 31.5 / 23.7(B P=0.987$ ratio $=0.987$ hyp_len $=48096$ ref_len $=48746)$

	Aggregated performance of all models on full dataset
newstest2008	BLEU $=22.7554 .4 / 28.1 / 16.9 / 10.8(\mathrm{BP}=0.989$ ratio $=0.989$ hyp_len $=281399$ ref_len $=284622)$
newstest2009	$\mathrm{BLEU}=22.5855 .2 / 28.4 / 17.0 / 10.6(\mathrm{BP}=0.981$ ratio $=0.981$ hyp_len $=435958$ ref_len $=444522)$
newstest2010	$\mathrm{BLEU}=25.3558 .8 / 32.2 / 20.0 / 13.0(\mathrm{BP}=0.956$ ratio $=0.957$ hyp_len $=353184$ ref_len $=369018)$
newstest2011	$\mathrm{BLEU}=22.9655 .8 / 28.8 / 17.2 / 10.9(\mathrm{BP}=0.981$ ratio $=0.981$ hyp_len $=429510$ ref_len $=437886)$
newstest2012	$\mathrm{BLEU}=24.0557 .3 / 30.5 / 18.7 / 12.1(\mathrm{BP}=0.960$ ratio $=0.961$ hyp_len $=420361$ ref_len $=437316)$
newstest2013	$\mathrm{BLEU}=27.9460 .0 / 34.1 / 22.1 / 14.8(\mathrm{BP}=0.976$ ratio $=0.976$ hyp_len $=373394$ ref_len $=382422)$
newstest2014	$\mathrm{BLEU}=30.1160 .3 / 35.7 / 23.6 / 16.2(\mathrm{BP}=1.000$ ratio $=1.018$ hyp_len $=382880$ ref_len $=376128)$
newstest2015	$\mathrm{BLEU}=32.8263 .2 / 38.4 / 26.1 / 18.3(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=267025$ ref_len $=265560)$
newstest2016	$\mathrm{BLEU}=35.9066 .5 / 42.3 / 29.5 / 21.3(\mathrm{BP}=0.984$ ratio $=0.984$ hyp_len $=369978$ ref_len $=376014)$
newstest2017	$\mathrm{BLEU}=30.8962 .1 / 36.6 / 24.2 / 16.6(\mathrm{BP}=1.000$ ratio $=1.001$ hyp_len $=368120$ ref_len $=367722)$
newstest2018	$\mathrm{BLEU}=43.2871 .2 / 49.2 / 36.7 / 28.1(\mathrm{BP}=0.993$ ratio $=0.993$ hyp_len $=382967$ ref_len $=385656)$
newstest2019	$\mathrm{BLEU}=38.0166 .0 / 43.5 / 31.7 / 23.8(\mathrm{BP}=0.991$ ratio $=0.991$ hyp_len $=289739$ ref_len $=292476)$

T5-base.huggingface.en-de.19.pretrained
origlang=en newstest2008 origlang=en newstest2009 origlang=en newstest2010 origlang=en newstest2011 origlang=en newstest2012 origlang=en newstest2013 origlang=en newstest2014 origlang=en newstest2015 origlang=en newstest2016 origlang=en newstest2017 origlang=en newstest2018 origlang=en newstest2019

BLEU $=34.75$ 66.6/42.0/28.5/19.9 $(\mathrm{BP}=0.979$ ratio $=0.979$ hyp_len $=8812$ ref_len $=9002)$ BLEU $=27.8760 .9 / 34.9 / 22.2 / 14.6(B P=0.967$ ratio $=0.968$ hyp_len $=10513$ ref_len $=10866)$ BLEU $=30.8961 .6 / 37.5 / 24.9 / 17.1(B P=0.981$ ratio $=0.981$ hyp_len $=13294$ ref_len $=13554)$ BLEU $=26.8755 .9 / 31.7 / 20.7 / 14.2(B P=1.000$ ratio $=1.007$ hyp_len $=14220$ ref_len $=14123)$ BLEU $=30.0761 .5 / 36.8 / 24.5 / 16.8(B P=0.968$ ratio $=0.969$ hyp_len $=14794$ ref_len $=15268)$ BLEU $=28.3259 .3 / 34.0 / 22.4 / 15.4(B P=0.980$ ratio $=0.981$ hyp_len $=10705$ ref_len $=10916)$ $\mathrm{BLEU}=27.2557 .2 / 32.7 / 21.1 / 14.0(\mathrm{BP}=1.000$ ratio $=1.010$ hyp_len $=36096$ ref_len $=35745)$ BLEU $=32.47$ 63.1/38.3/25.8/17.9 $(\mathrm{BP}=1.000$ ratio $=1.004$ hyp_len $=30334$ ref_len $=30207)$ $\mathrm{BLEU}=36.87$ 66.4/43.4/30.9/22.7 $(\mathrm{BP}=0.978$ ratio $=0.978$ hyp_len $=35858$ reflen $=36655)$ BLEU $=29.9862 .2 / 36.8 / 24.0 / 16.1(B P=0.978$ ratio $=0.979$ hyp_len $=33574$ ref_len $=34310)$ BLEU $=45.6873 .0 / 52.5 / 40.1 / 31.2(B P=0.976$ ratio $=0.977$ hyp_len $=36362$ ref_len $=37232)$ BLEU $=36.0063 .2 / 41.1 / 29.7 / 22.2(B P=0.995$ ratio $=0.995$ hyp_len $=48504$ ref_len $=48746)$

Gehring17.fairseq.en-de.17.pretrained
origlang=en newstest2008 origlang=en newstest2009 origlang=en newstest2010 origlang=en newstest2011 origlang=en newstest2012 origlang=en newstest2013 origlang=en newstest2014 origlang=en newstest2015 origlang=en newstest2016 origlang=en newstest2017 origlang=en newstest2018 origlang=en newstest2019

BLEU $=33.6165 .6 / 40.4 / 27.1 / 18.6(\mathrm{BP}=0.990$ ratio $=0.990$ hyp_len $=8911$ ref_len $=9002)$ BLEU $=26.4660 .3 / 33.5 / 20.6 / 13.2(B P=0.972$ ratio $=0.973$ hyp_len $=10569$ ref_len $=10866)$ BLEU $=29.5162 .0 / 36.5 / 23.5 / 15.7(B P=0.977$ ratio $=0.977$ hyp_len $=13241$ ref_len $=13554)$ $\mathrm{BLEU}=25.6756 .3 / 30.5 / 19.4 / 13.1(\mathrm{BP}=1.000$ ratio $=1.017$ hyp_len $=14359$ ref len $=14123)$ $\mathrm{BLEU}=28.6461 .4 / 35.1 / 22.5 / 14.9(\mathrm{BP}=0.982$ ratio $=0.982$ hyp_len $=14997$ ref_len $=15268)$ BLEU $=27.2258 .7 / 32.8 / 21.2 / 14.3(B P=0.985$ ratio $=0.985$ hyp_len $=10754$ ref_len $=10916)$ $\mathrm{BLEU}=25.5456 .8 / 31.2 / 19.4 / 12.4(\mathrm{BP}=1.000$ ratio $=1.011$ hyp_len $=36130$ ref_len $=35745)$ BLEU $=30.3862 .4 / 36.2 / 23.8 / 16.0(B P=0.997$ ratio $=0.997$ hyp_len $=30127$ ref_len $=30207)$ $\mathrm{BLEU}=36.57$ 67.6/43.4/30.5/22.1 $(\mathrm{BP}=0.976$ ratio $=0.977$ hyp_len $=35801$ ref_len $=36655)$ BLEU $=29.2162 .2 / 35.7 / 22.8 / 15.2(\mathrm{BP}=0.985$ ratio $=0.985$ hyp_len $=33801$ ref_len $=34310)$ BLEU $=44.2672 .8 / 51.0 / 38.2 / 29.3(B P=0.980$ ratio $=0.980$ hyp_len $=36501$ ref_len $=37232)$ BLEU $=35.4563 .8 / 40.6 / 28.9 / 21.1(B P=1.000$ ratio $=1.004$ hyp_len $=48962$ ref_len $=48746)$

	Ott18.fairseq.en-de.18.pretrained
origlang=en newstest2008	$\mathrm{BLEU}=34.6767 .7 / 42.4 / 28.7 / 20.0(\mathrm{BP}=0.968$ ratio $=0.968$ hyp_len $=8716$ ref_len $=9002)$
origlang=en newstest2009	$\mathrm{BLEU}=28.0662 .9 / 36.1 / 22.6 / 14.8(\mathrm{BP}=0.951$ ratio $=0.952$ hyp_len $=10345$ ref_len $=10866)$
origlang=en newstest2010	$\mathrm{BLEU}=30.8064 .2 / 38.4 / 25.1 / 17.2(\mathrm{BP}=0.959$ ratio $=0.959$ hyp_len $=13004$ ref_len $=13554)$
origlang=en newstest2011	$\mathrm{BLEU}=27.4758 .0 / 32.6 / 21.1 / 14.3(\mathrm{BP}=1.000$ ratio $=1.003$ hyp_len $=14161$ ref_len $=14123)$
origlang=en newstest2012	$\mathrm{BLEU}=31.4164 .3 / 38.6 / 25.4 / 17.4(\mathrm{BP}=0.971$ ratio $=0.971$ hyp_len $=14832$ ref_len $=15268)$
origlang=en newstest2013	$\mathrm{BLEU}=29.0461 .6 / 35.3 / 23.2 / 15.8(\mathrm{BP}=0.972$ ratio $=0.973$ hyp_len $=10616$ ref_len $=10916)$
origlang=en newstest2014	$\mathrm{BLEU}=28.4159 .8 / 34.3 / 22.2 / 14.7(\mathrm{BP}=0.993$ ratio $=0.993$ hyp_len $=35499$ ref_len $=35745)$
origlang=en newstest2015	$\mathrm{BLEU}=33.6565 .8 / 40.5 / 27.4 / 19.1(\mathrm{BP}=0.979$ ratio $=0.979$ hyp_len $=29585$ ref_len $=30207)$
origlang=en newstest2016	$\mathrm{BLEU}=38.1169 .7 / 45.5 / 32.5 / 23.9(\mathrm{BP}=0.962$ ratio $=0.962$ hyp_len $=35276$ ref_len $=36655)$
origlang=en newstest2017	$\mathrm{BLEU}=32.1065 .3 / 39.5 / 26.1 / 17.8(\mathrm{BP}=0.971$ ratio $=0.972$ hyp_len $=33333$ ref_len $=34310)$
origlang=en newstest2018	$\mathrm{BLEU}=46.2975 .4 / 53.8 / 41.0 / 31.8(\mathrm{BP}=0.965$ ratio $=0.966$ hyp_len $=35968$ ref_len $=37232)$
origlang=en newstest2019	$\mathrm{BLEU}=38.8467 .2 / 44.5 / 32.6 / 24.5(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=48164$ ref_len $=48746)$

Edunov18.fairseq.en-de.18.pretrained
origlang=en newstest2008 origlang=en newstest2009 origlang=en newstest 2010 origlang $=$ en newstest2011 origlang=en newstest2012 origlang=en newstest2013 origlang=en newstest2014 origlang=en newstest2015 origlang=en newstest2016 origlang=en newstest2017 origlang=en newstest2018 origlang=en newstest2019

BLEU $=34.0366 .3 / 41.3 / 28.2 / 19.9(B P=0.966$ ratio $=0.967$ hyp_len $=8705$ ref_len $=9002)$
BLEU $=28.85$ 63.4/36.7/23.7/15.9 $(\mathrm{BP}=0.944$ ratio $=0.945$ hyp_len $=10272$ ref_len $=10866)$
BLEU $=29.6361 .0 / 36.5 / 24.3 / 16.8(B P=0.959$ ratio $=0.959$ hyp_len $=13003$ ref_len $=13554)$
BLEU $=28.1258 .3 / 33.1 / 21.7 / 14.9(B P=1.000$ ratio $=1.002$ hyp_len $=14152$ ref_len $=14123)$
BLEU $=31.7364 .1 / 38.7 / 26.3 / 18.3(B P=0.961$ ratio $=0.961$ hyp_len $=14678$ ref_len $=15268)$
BLEU $=31.06$ 63.0/37.9/25.3/17.7 $(\mathrm{BP}=0.965$ ratio $=0.966$ hyp_len $=10544$ ref_len $=10916)$
$\mathrm{BLEU}=30.3561 .1 / 36.5 / 24.4 / 16.6(\mathrm{BP}=0.984$ ratio $=0.984$ hyp_len $=35185$ ref_len $=35745)$
BLEU $=34.4866 .4 / 41.3 / 28.4 / 20.1(B P=0.976$ ratio $=0.976$ hyp_len $=29493$ ref_len $=30207)$
$\mathrm{BLEU}=36.6668 .7 / 44.6 / 31.5 / 23.0(\mathrm{BP}=0.950$ ratio $=0.951$ hyp_len $=34857$ reflen $=36655)$
BLEU $=30.9065 .2 / 38.5 / 25.3 / 17.2(\mathrm{BP}=0.955$ ratio $=0.956$ hyp_len $=32809$ ref_len $=34310)$
BLEU $=45.5374 .7 / 53.4 / 40.9 / 32.1(\mathrm{BP}=0.952$ ratio $=0.953$ hyp_len $=35484$ reflen $=37232)$
BLEU $=37.85$ 66.6/43.9/32.0/24.2 $(\mathrm{BP}=0.975$ ratio $=0.976$ hyp_len $=47552$ ref_len $=48746)$

Ng 19.fairseq.en-de.19.pretrained
origlang=en newstest2008 origlang=en newstest2009 origlang=en newstest2010 origlang=en newstest2011 origlang=en newstest2012 origlang=en newstest2013 origlang=en newstest2014 origlang=en newstest2015 origlang=en newstest2016 origlang=en newstest2017 origlang=en newstest2018 origlang=en newstest2019

BLEU $=37.22$ 69.1/44.5/31.1/22.1 $(\mathrm{BP}=0.976$ ratio $=0.976$ hyp_len $=8786$ ref_len $=9002)$
BLEU $=30.7164 .5 / 38.1 / 24.9 / 16.9(B P=0.964$ ratio $=0.964$ hyp_len $=10480$ ref_len $=10866)$
BLEU $=34.5667 .2 / 42.0 / 28.5 / 20.1(B P=0.969$ ratio $=0.969$ hyp_len $=13134$ ref_len $=13554)$
BLEU $=30.1760 .1 / 35.2 / 23.6 / 16.6(\mathrm{BP}=1.000$ ratio $=1.009$ hyp_len $=14247$ ref_len $=14123)$
BLEU $=38.1468 .8 / 44.9 / 32.0 / 23.5(B P=0.977$ ratio $=0.978$ hyp_len $=14927$ ref_len $=15268)$
BLEU $=35.8165 .8 / 42.0 / 29.8 / 21.8(B P=0.979$ ratio $=0.979$ hyp_len $=10686$ ref_len $=10916)$
$\mathrm{BLEU}=33.2563 .1 / 39.0 / 26.7 / 18.6(\mathrm{BP}=1.000$ ratio $=1.001$ hyp_len $=35775$ ref_len $=35745)$
$\mathrm{BLEU}=40.8370 .3 / 47.3 / 34.4 / 25.7(\mathrm{BP}=0.986$ ratio $=0.986$ hyp_len $=29774$ ref_len $=30207)$
BLEU $=41.5171 .7 / 48.8 / 35.5 / 26.6(B P=0.974$ ratio $=0.974$ hyp_len $=35704$ ref_len $=36655)$
BLEU $=38.19$ 69.8/45.3/32.0/23.2 $(\mathrm{BP}=0.976$ ratio $=0.977$ hyp_len $=33505$ ref_len $=34310)$
BLEU $=50.0377 .1 / 56.9 / 44.7 / 35.7(\mathrm{BP}=0.973$ ratio $=0.973$ hyp_len $=36242$ ref_len $=37232)$
BLEU $=42.14$ 69.7/47.7/35.6/27.3 $(B P=0.994$ ratio $=0.994$ hyp_len $=48461$ ref_len $=48746)$

	Wul9-dynamicglu.fairseq.en-de.16.pretrained
origlang=en newstest2008	$\mathrm{BLEU}=34.2166 .6 / 41.8 / 28.2 / 19.6(\mathrm{BP}=0.971$ ratio $=0.972$ hyp_len $=8747$ ref_len $=9002)$
origlang=en newstest2009	$\mathrm{BLEU}=28.1062 .2 / 35.9 / 22.8 / 15.1(\mathrm{BP}=0.949$ ratio $=0.950$ hyp_len $=10326$ ref_len $=10866)$
origlang=en newstest2010	$\mathrm{BLEU}=30.8563 .6 / 38.4 / 25.5 / 17.8(\mathrm{BP}=0.951$ ratio $=0.952$ hyp_len $=12907$ ref_len $=13554)$
origlang=en newstest2011	$\mathrm{BLEU}=27.1856 .8 / 32.1 / 21.0 / 14.5(\mathrm{BP}=0.996$ ratio $=0.996$ hyp_len $=14068$ ref_len $=14123)$
origlang=en newstest2012	$\mathrm{BLEU}=30.2462 .4 / 37.4 / 24.7 / 17.0(\mathrm{BP}=0.961$ ratio $=0.962$ hyp_len $=14687$ ref_len $=15268)$
origlang=en newstest2013	$\mathrm{BLEU}=29.2760 .8 / 35.5 / 23.4 / 15.9(\mathrm{BP}=0.978$ ratio $=0.979$ hyp_len $=10682$ ref_len $=10916)$
origlang=en newstest2014	$\mathrm{BLEU}=28.5959 .4 / 34.4 / 22.4 / 15.0(\mathrm{BP}=0.994$ ratio $=0.994$ hyp_len $=35518$ ref_len $=35745)$
origlang=en newstest2015	$\mathrm{BLEU}=32.3964 .8 / 39.2 / 26.2 / 18.1(\mathrm{BP}=0.978$ ratio $=0.978$ hyp_len $=29538$ ref_len $=30207)$
origlang=en newstest2016	$\mathrm{BLEU}=36.8668 .1 / 44.4 / 31.6 / 23.2(\mathrm{BP}=0.956$ ratio $=0.957$ hyp_len $=35062$ ref_len $=36655)$
origlang=en newstest2017	$\mathrm{BLEU}=30.0463 .3 / 37.3 / 24.3 / 16.4(\mathrm{BP}=0.964$ ratio $=0.965$ hyp_len $=33096$ ref_len $=34310)$
origlang=en newstest2018	$\mathrm{BLEU}=45.5674 .1 / 53.2 / 40.6 / 31.5(\mathrm{BP}=0.962$ ratio $=0.962$ hyp_len $=35831$ ref_len $=37232)$
origlang=en newstest2019	$\mathrm{BLEU}=37.5865 .5 / 43.2 / 31.5 / 23.7(\mathrm{BP}=0.987$ ratio $=0.987$ hyp_len $=48096$ ref_len $=48746)$

T5-base.huggingface.en-de.19.pretrained
origlang $=\{$ en, de $\}$ newstest2008 origlang $=\{$ en,de $\}$ newstest2009 origlang $=\{$ en, de $\}$ newstest 2010 origlang $=\{$ en, de $\}$ newstest2011 origlang $=\{$ en, de $\}$ newstest2012 origlang $=\{$ en, de $\}$ newstest2013 origlang $=\{$ en,de $\}$ newstest2014 origlang $=\{$ en,de $\}$ newstest2015 origlang $=\{$ en, de $\}$ newstest2016 origlang $=\{$ en, de $\}$ newstest2017 origlang $=\{$ en, de $\}$ newstest2018 origlang $=\{$ en,de $\}$ newstest2019
$\mathrm{BLEU}=30.5862 .1 / 36.8 / 24.0 / 16.2(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=16042$ ref_len $=16116)$
$\mathrm{BLEU}=26.5957 .7 / 32.3 / 20.3 / 13.2(\mathrm{BP}=1.000$ ratio $=1.003$ hyp_len $=18967$ ref_len $=18914)$
$\mathrm{BLEU}=31.6961 .9 / 37.8 / 25.2 / 17.2(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=23297$ ref_len $=23151)$
$\mathrm{BLEU}=26.1056 .2 / 31.2 / 19.8 / 13.3(\mathrm{BP}=1.000$ ratio $=1.021$ hyp_len $=25816$ ref_len $=25273)$
$\mathrm{BLEU}=27.7258 .7 / 33.5 / 21.5 / 14.3(\mathrm{BP}=0.994$ ratio $=0.994$ hyp_len $=26193$ ref_len $=26348)$
$\mathrm{BLEU}=30.8661 .1 / 36.5 / 24.3 / 16.7(\mathrm{BP}=1.000$ ratio $=1.013$ hyp_len $=19781$ ref_len $=19519)$
$\mathrm{BLEU}=27.0257 .1 / 32.5 / 20.8 / 13.8(\mathrm{BP}=1.000$ ratio $=1.036$ hyp_len $=64918$ ref_len $=62688)$
$\mathrm{BLEU}=29.8760 .2 / 35.4 / 23.4 / 16.0(\mathrm{BP}=1.000$ ratio $=1.025$ hyp_len $=45367$ ref_len $=44260)$
$\mathrm{BLEU}=33.8563 .5 / 39.5 / 27.1 / 19.3(\mathrm{BP}=1.000$ ratio $=1.002$ hyp_len $=62777$ ref_len $=62669)$
$\mathrm{BLEU}=27.7658 .8 / 33.5 / 21.4 / 14.1(\mathrm{BP}=1.000$ ratio $=1.016$ hyp_len $=62263$ ref_len $=61287)$
$\mathrm{BLEU}=40.9168 .6 / 46.5 / 34.1 / 25.7(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=64686$ ref_len $=64276)$
$\mathrm{BLEU}=36.0063 .2 / 41.1 / 29.7 / 22.2(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=48504$ ref_len $=48746)$

	T5-base.huggingface.en-de.19.pretrained
origlang $=\{$ en, de $\}$ newstest2008	BLEU $=30.58$ 62.1/36.8/24.0/16.2 $(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=16042$ ref_len $=16116$)
origlang $=\{$ en,de $\}$ newstest2009	BLEU $=26.59$ 57.7/32.3/20.3/13.2 $(\mathrm{BP}=1.000$ ratio $=1.003$ hyp_len $=18967$ ref_len $=18914)$
origlang $=\{$ en, de $\}$ newstest2010	BLEU $=31.69$ 61.9/37.8/25.2/17.2 $(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=23297$ ref_len $=23151)$
origlang $=\{$ en, de $\}$ newstest2011	BLEU $=26.1056 .2 / 31.2 / 19.8 / 13.3(\mathrm{BP}=1.000$ ratio $=1.021$ hyp_len $=25816$ ref_len $=25273$)
origlang $=\{$ en, de $\}$ newstest2012	BLEU $=27.7258 .7 / 33.5 / 21.5 / 14.3(\mathrm{BP}=0.994$ ratio $=0.994$ hyp_len $=26193$ ref_len $=26348$)
origlang $=\{$ en, de $\}$ newstest2013	BLEU $=30.86$ 61.1/36.5/24.3/16.7 $(\mathrm{BP}=1.000$ ratio $=1.013$ hyp_len $=19781$ ref_len $=19519)$
origlang $=\{$ en, de $\}$ newstest2014	BLEU $=27.0257 .1 / 32.5 / 20.8 / 13.8(\mathrm{BP}=1.000$ ratio $=1.036$ hyp_len $=64918$ ref_len $=62688)$
origlang $=\{$ en, de $\}$ newstest2015	BLEU $=29.87$ 60.2/35.4/23.4/16.0 $(\mathrm{BP}=1.000$ ratio $=1.025$ hyp_len $=45367$ ref_len $=44260)$
origlang $=\{$ en, de $\}$ newstest2016	BLEU $=33.85$ 63.5/39.5/27.1/19.3 $(\mathrm{BP}=1.000$ ratio $=1.002$ hyp_len $=62777$ ref_len $=62669$)
origlang $=\{$ en, de $\}$ newstest2017	BLEU $=27.7658 .8 / 33.5 / 21.4 / 14.1(\mathrm{BP}=1.000$ ratio $=1.016$ hyp_len $=62263$ ref_len $=61287)$
origlang $=\{$ en, de $\}$ newstest2018	BLEU $=40.91$ 68.6/46.5/34.1/25.7 $(\mathrm{BP}=1.000$ ratio $=1.006$ hyp_len $=64686$ ref_len $=64276$)
origlang $=\{$ en,de $\}$ newstest2019	BLEU $=36.0063 .2 / 41.1 / 29.7 / 22.2(B P=0.995$ ratio $=0.995$ hyp_len $=48504$ ref_len $=48746)$

Gehring17.fairseq.en-de.17.pretrained
origlang $=\{$ en, de $\}$ newstest2008 origlang $=\{$ en, de $\}$ newstest2009 origlang $=\{$ en, de $\}$ newstest 2010 origlang $=\{$ en, de $\}$ newstest2011 origlang $=\{$ en, de $\}$ newstest2012 origlang $=\{$ en,de $\}$ newstest2013 origlang $=\{$ en, de $\}$ newstest2014 origlang $=\{$ en, de $\}$ newstest2015 origlang $=\{$ en, de $\}$ newstest2016 origlang $=\{$ en,de $\}$ newstest2017 origlang $=\{$ en, de $\}$ newstest2018 origlang $=\{$ en, de $\}$ newstest2019

BLEU $=27.77$ 59.0/33.5/21.3/14.1 $(\mathrm{BP}=1.000$ ratio $=1.028$ hyp_len $=16574$ ref_len $=16116)$
BLEU $=25.2057 .1 / 31.0 / 19.0 / 12.0(B P=1.000$ ratio $=1.015$ hyp_len $=19193$ ref_len $=18914)$
BLEU $=30.5162 .2 / 36.8 / 23.9 / 16.0(B P=0.998$ ratio $=0.998$ hyp_len $=23100$ ref_len $=23151)$
$\mathrm{BLEU}=24.8356 .1 / 29.8 / 18.6 / 12.2(\mathrm{BP}=1.000$ ratio $=1.030$ hyp_len $=26040$ ref_len $=25273)$
BLEU $=26.4458 .5 / 32.1 / 20.1 / 13.1(\mathrm{BP}=0.997$ ratio $=0.997$ hyp_len $=26277$ ref_len $=26348)$
BLEU $=29.3660 .4 / 35.0 / 22.9 / 15.4(\mathrm{BP}=1.000$ ratio $=1.019$ hyp_len $=19899$ ref_len $=19519)$
BLEU $=25.4956 .4 / 31.0 / 19.3 / 12.5(B P=1.000$ ratio $=1.041$ hyp_len $=65261$ ref_len $=62688)$
BLEU $=28.1359 .4 / 33.6 / 21.7 / 14.5(B P=1.000$ ratio $=1.026$ hyp_len $=45406$ ref_len $=44260)$
BLEU $=32.89$ 63.5/38.6/26.1/18.3 $(\mathrm{BP}=1.000$ ratio $=1.003$ hyp_len $=62854$ ref_len $=62669)$
BLEU $=26.4958 .1 / 32.1 / 20.1 / 13.1(\mathrm{BP}=1.000$ ratio $=1.027$ hyp_len $=62934$ ref_len $=61287)$
BLEU $=39.05$ 67.7/44.7/32.2/23.9 $(\mathrm{BP}=1.000$ ratio $=1.014$ hyp_len $=65163$ ref_len $=64276)$
$\mathrm{BLEU}=35.45$ 63.8/40.6/28.9/21.1 $(\mathrm{BP}=1.000$ ratio $=1.004$ hyp_len $=48962$ ref_len $=48746)$

	Ott18.fairseq.en-de.18.pretrained
origlang $=\{$ en, de $\}$ newstest2008	BLEU $=31.61$ 63.6/38.2/25.1/17.1 $(\mathrm{BP}=0.989$ ratio $=0.989$ hyp_len $=15935$ ref_len $=16116$)
origlang $=\{$ en, de $\}$ newstest2009	BLEU $=27.92$ 60.5/34.4/21.9/14.3 $(\mathrm{BP}=0.982$ ratio $=0.982$ hyp_len $=18577$ ref_len $=18914)$
origlang $=\{$ en, de $\}$ newstest2010	BLEU $=33.15$ 65.3/40.2/27.0/18.7 $(\mathrm{BP}=0.977$ ratio $=0.977$ hyp_len $=22615$ ref_len $=23151)$
origlang $=\{$ en, de $\}$ newstest2011	BLEU $=27.5458 .9 / 33.0 / 21.0 / 14.1(\mathrm{BP}=1.000$ ratio $=1.009$ hyp_len $=25495$ ref_len $=25273)$
origlang $=\{$ en,de $\}$ newstest2012	BLEU $=28.9561 .6 / 35.4 / 22.9 / 15.4(\mathrm{BP}=0.978$ ratio $=0.979$ hyp_len $=25783$ ref_len $=26348)$
origlang $=\{$ en,de $\}$ newstest2013	BLEU $=32.39$ 63.8/38.3/25.7/17.7 $(\mathrm{BP}=0.997$ ratio $=0.997$ hyp_len $=19465$ ref_len $=19519)$
origlang $=\{$ en,de $\}$ newstest2014	BLEU $=29.3160 .3 / 35.0 / 22.8 / 15.3(\mathrm{BP}=1.000$ ratio $=1.008$ hyp_len $=63198$ ref_len $=62688$)
origlang $=\{$ en, de $\}$ newstest2015	BLEU $=32.14$ 63.3/38.0/25.5/17.7 $(\mathrm{BP}=0.996$ ratio $=0.996$ hyp_len $=44081$ ref_len $=44260)$
origlang $=\{$ en,de $\}$ newstest2016	BLEU $=35.17$ 66.7/41.7/28.9/20.8 $(\mathrm{BP}=0.978$ ratio $=0.978$ hyp_len $=61314$ ref_len $=62669)$
origlang $=\{$ en, de $\}$ newstest2017	BLEU $=30.13$ 62.0/36.1/23.6/15.8 $(\mathrm{BP}=0.997$ ratio $=0.997$ hyp_len $=61100$ ref_len $=61287)$
origlang $=\{$ en,de $\}$ newstest2018	BLEU $=42.43$ 71.4/48.7/35.9/27.2 $(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=63511$ ref_len $=64276)$
origlang $=\{$ en,de $\}$ newstest2019	BLEU $=38.84$ 67.2/44.5/32.6/24.5 $(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=48164$ ref_len $=48746)$

Edunov18.fairseq.en-de.18.pretrained
origlang $=\{$ en, de $\}$ newstest2008 origlang $=\{$ en, de $\}$ newstest2009 origlang $=\{$ en, de $\}$ newstest2010 origlang $=\{$ en,de $\}$ newstest2011 origlang $=\{$ en, de $\}$ newstest2012 origlang $=\{$ en,de $\}$ newstest2013 origlang $=\{$ en,de $\}$ newstest2014 origlang $=\{$ en,de $\}$ newstest2015 origlang $=\{$ en,de $\}$ newstest2016 origlang $=\{$ en,de $\}$ newstest2017 origlang $=\{$ en, de $\}$ newstest2018 origlang $=\{$ en,de $\}$ newstest2019

```
BLEU = 35.08 66.1/41.5/28.8/20.8 (BP = 0.980 ratio = 0.981 hyp_len = 15804 ref_len = 16116)
BLEU = 30.87 63.3/37.7/25.0/17.1 (BP=0.971 ratio =0.972 hyp_len = 18376 ref_len = 18914)
BLEU = 35.42 65.7/42.2/29.7/21.4 (BP=0.973 ratio =0.973 hyp_len = 22523 ref_len =23151)
BLEU = 30.44 60.8/35.7/23.8/16.6 (BP=1.000 ratio = 1.004 hyp_len = 25366 ref_len =25273)
BLEU = 33.16 64.8/39.8/27.4/19.3 (BP=0.970 ratio =0.970 hyp_len =25567 ref_len = 26348)
BLEU = 36.32 66.3/42.4/29.8/21.7 (BP=0.990 ratio =0.990 hyp_len = 19320 ref_len = 19519)
BLEU = 33.81 63.5/39.6/27.2/19.2 (BP = 0.998 ratio = 0.998 hyp_len = 62554 ref_len = 62688)
BLEU = 34.77 65.3/40.8/28.2/20.1 (BP = 0.992 ratio = 0.992 hyp_len = 43900 ref_len = 44260)
BLEU = 37.77 69.0/45.2/32.1/23.6 (BP = 0.964 ratio =0.964 hyp_len = 60440 ref_len = 62669)
BLEU = 32.78 64.9/39.3/26.6/18.6 (BP = 0.979 ratio = 0.979 hyp_len = 59991 ref_len = 61287)
BLEU = 45.70 73.9/52.6/40.0/31.2 (BP = 0.974 ratio = 0.974 hyp_len = 62604 ref_len = 64276)
BLEU = 37.85 66.6/43.9/32.0/24.2 (BP = 0.975 ratio =0.976 hyp_len = 47552 ref_len = 48746)
```

Ng 19.fairseq.en-de.19.pretrained
origlang $=\{$ en, de $\}$ newstest2008 origlang $=\{$ en, de $\}$ newstest2009 origlang $=\{$ en, de $\}$ newstest 2010 origlang $=\{$ en,de $\}$ newstest2011 origlang $=\{$ en, de $\}$ newstest2012 origlang $=\{$ en, de $\}$ newstest2013 origlang $=\{$ en,de $\}$ newstest2014 origlang $=\{$ en,de $\}$ newstest2015 origlang $=\{$ en,de $\}$ newstest2016 origlang $=\{$ en,de $\}$ newstest2017 origlang $=\{$ en, de $\}$ newstest2018 origlang $=\{$ en,de $\}$ newstest2019

BLEU $=36.5867 .2 / 42.8 / 29.8 / 21.4(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=16033$ ref_len $=16116)$
BLEU $=32.55$ 64.2/38.9/26.1/18.0 $(B P=0.989$ ratio $=0.989$ hyp_len $=18699$ ref_len $=18914)$
BLEU $=38.9969 .3 / 45.8 / 32.6 / 24.0(B P=0.982$ ratio $=0.982$ hyp_len $=22732$ ref_len $=23151)$
BLEU $=31.3761 .6 / 36.6 / 24.7 / 17.4(B P=1.000$ ratio $=1.014$ hyp_len $=25626$ ref_len $=25273)$
BLEU $=38.6468 .5 / 45.1 / 32.5 / 24.1(B P=0.980$ ratio $=0.980$ hyp_len $=25831$ ref_len $=26348)$
BLEU $=40.76$ 69.0/46.4/33.9/25.4 $(\mathrm{BP}=1.000$ ratio $=1.000$ hyp_len $=19518$ ref_len $=19519)$
BLEU $=36.0165 .0 / 41.7 / 29.3 / 21.2(\mathrm{BP}=1.000$ ratio $=1.011$ hyp_len $=63403$ ref_len $=62688)$
BLEU $=40.56$ 68.9/46.2/33.7/25.3 $(\mathrm{BP}=1.000$ ratio $=1.000$ hyp_len $=44244$ ref_len $=44260)$
BLEU $=41.1370 .9 / 47.8 / 34.8 / 26.1(\mathrm{BP}=0.982$ ratio $=0.982$ hyp_len $=61539$ ref_len $=62669)$
BLEU $=38.42$ 68.3/44.4/31.7/23.3 $(\mathrm{BP}=0.993$ ratio $=0.993$ hyp_len $=60830$ ref_len $=61287)$
BLEU $=49.07$ 75.6/55.2/42.8/33.9 $(\mathrm{BP}=0.989$ ratio $=0.989$ hyp_len $=63559$ ref_len $=64276)$
$\mathrm{BLEU}=42.1469 .7 / 47.7 / 35.6 / 27.3(\mathrm{BP}=0.994$ ratio $=0.994$ hyp_len $=48461$ ref_len $=48746)$

Wu19-dynamicglu.fairseq.en-de.16.pretrained
origlang $=\{$ en,de $\}$ newstest2008 origlang $=\{$ en,de $\}$ newstest2009 origlang $=\{\mathrm{en}, \mathrm{de}\}$ newstest2010 origlang $=\{$ en,de $\}$ newstest2011 origlang $=\{$ en,de $\}$ newstest2012 origlang $=\{$ en,de $\}$ newstest2013 origlang $=\{$ en,de $\}$ newstest2014 origlang $=\{$ en,de $\}$ newstest2015 origlang $=\{$ en,de $\}$ newstest2016 origlang $=\{$ en,de $\}$ newstest2017 origlang $=\{$ en,de $\}$ newstest2018 origlang $=\{$ en,de $\}$ newstest2019

BLEU $=30.5562 .4 / 37.0 / 24.1 / 16.3(B P=0.990$ ratio $=0.990$ hyp_len $=15962$ ref_len = 16116 $)$ BLEU $=27.7060 .1 / 34.2 / 21.7 / 14.3(B P=0.980$ ratio $=0.981$ hyp_len $=18547$ ref len $=18914)$ BLEU $=32.54$ 64.5/39.6/26.5/18.5 $(\mathrm{BP}=0.973$ ratio $=0.973$ hyp_len $=22534$ ref_len $=23151)$ BLEU $=27.3857 .8 / 32.6 / 21.0 / 14.2(B P=1.000$ ratio $=1.000$ hyp_len $=25284$ ref len $=25273)$ BLEU $=27.86$ 60.2/34.6/22.3/15.0 $(\mathrm{BP}=0.964$ ratio $=0.964$ hyp_len $=25409$ ref_len $=26348)$ BLEU $=32.3462 .8 / 38.2 / 25.7 / 17.8(B P=1.000$ ratio $=1.004$ hyp_len $=19595$ ref len $=19519)$ BLEU $=29.02$ 59.5/34.7/22.6/15.2 $(\mathrm{BP}=1.000$ ratio $=1.014$ hyp_len $=63546$ ref_len $=62688)$ BLEU $=30.85$ 62.1/36.7/24.3/16.7 $($ BP $=0.995$ ratio $=0.995$ hyp_len $=44027$ ref $\operatorname{len}=44260)$ BLEU $=34.3065 .5 / 41.0 / 28.3 / 20.2(B P=0.974$ ratio $=0.974$ hyp_len $=61054$ ref_len $=62669)$ BLEU $=28.5760 .4 / 34.5 / 22.2 / 14.7(\mathrm{BP}=0.995$ ratio $=0.995$ hyp_len $=61002$ ref len $=61287)$ BLEU $=41.6270 .0 / 47.8 / 35.3 / 26.7(B P=0.987$ ratio $=0.987$ hyp_len $=63444$ ref_len $=64276)$ BLEU $=37.5865 .5 / 43.2 / 31.5 / 23.7(B P=0.987$ ratio $=0.987$ hyp_len $=48096$ ref len $=48746)$

T5-base.huggingface.en-de.19.pretrained
de $\quad \mathrm{BLEU}=27.48$ 58.1/33.1/21.1/14.1 $(\mathrm{BP}=1.000$ ratio $=1.051$ hyp_len $=185545$ ref_len $=176623)$
en \quad BLEU $=33.77$ 63.3/39.7/27.5/19.7 $(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=293066$ ref len $=296624)$
fr $\quad \mathrm{BLEU}=23.1857 .0 / 30.1 / 18.0 / 11.3(\mathrm{BP}=0.955$ ratio $=0.956$ hyp_len $=68613$ ref_len $=71785)$
ru $\quad \mathrm{BLEU}=19.4551 .3 / 24.6 / 14.1 / 8.2(\mathrm{BP}=0.993$ ratio $=0.993$ hyp_len $=9266$ ref_len $=9329)$
es \quad BLEU $=20.5254 .0 / 26.7 / 15.3 / 9.2(B P=0.966$ ratio $=0.967$ hyp_len $=79113$ ref_len $=81826)$
$\mathrm{cz} \quad \mathrm{BLEU}=20.0253 .2 / 25.9 / 14.5 / 8.4(\mathrm{BP}=0.988$ ratio $=0.988$ hyp_len $=42313$ ref_len $=42812)$
cs \quad BLEU $=17.1750 .2 / 23.2 / 12.6 / 7.2(B P=0.953$ ratio $=0.954$ hyp_len $=24921$ ref_len $=26113)$
it $\quad \mathrm{BLEU}=18.1050 .5 / 23.4 / 12.7 / 7.1(\mathrm{BP}=1.000$ ratio $=1.021$ hyp_len $=10447$ ref_len $=10229)$
hu $\quad \mathrm{BLEU}=13.3043 .9 / 17.5 / 8.8 / 4.7(\mathrm{BP}=1.000$ ratio $=1.025$ hyp_len $=21741$ ref_len $=21216)$

Gehring17.fairseq.en-de.17.pretrained
de $\quad \mathrm{BLEU}=25.8556 .7 / 31.3 / 19.6 / 12.8(\mathrm{BP}=1.000$ ratio $=1.062$ hyp_len $=187510$ ref_len $=176623)$
en $\quad \mathrm{BLEU}=32.6863 .4 / 38.6 / 26.2 / 18.4(\mathrm{BP}=0.992$ ratio $=0.992$ hyp_len $=294153$ ref_len $=296624)$
fr $\quad \mathrm{BLEU}=21.9456 .2 / 28.8 / 16.7 / 10.1(\mathrm{BP}=0.959$ ratio $=0.960$ hyp_len $=68879$ ref_len $=71785$)
ru $\quad \mathrm{BLEU}=18.7150 .7 / 23.6 / 13.3 / 7.8(\mathrm{BP}=0.998$ ratio $=0.998$ hyp_len $=9306$ ref_len $=9329)$
es $\quad \mathrm{BLEU}=19.7153 .3 / 25.4 / 14.4 / 8.6(\mathrm{BP}=0.974$ ratio $=0.974$ hyp_len $=79692$ ref_len $=81826)$
cz \quad BLEU $=19.6452 .9 / 25.3 / 14.0 / 8.2(B P=0.991$ ratio $=0.991$ hyp_len $=42447$ ref_len $=42812)$
cs $\quad \mathrm{BLEU}=16.3850 .0 / 22.1 / 11.7 / 6.6(\mathrm{BP}=0.957$ ratio $=0.958$ hyp_len $=25020$ ref_len $=26113)$
it $\quad \mathrm{BLEU}=17.2449 .5 / 22.2 / 11.9 / 6.7(\mathrm{BP}=1.000$ ratio $=1.029$ hyp_len $=10526$ ref_len $=10229)$
hu $\quad \mathrm{BLEU}=12.5743 .1 / 16.8 / 8.1 / 4.2(\mathrm{BP}=1.000$ ratio $=1.046$ hyp_len $=22186$ ref_len = 21216 $)$

Ott18.fairseq.en-de.18.pretrained
de $\quad \mathrm{BLEU}=30.3961 .4 / 36.0 / 23.8 / 16.2(\mathrm{BP}=1.000$ ratio $=1.018$ hyp_len $=179739$ ref_len $=176623)$
en \quad BLEU $=35.0566 .2 / 41.7 / 29.0 / 20.8(B P=0.976$ ratio $=0.976$ hyp_len $=289499$ ref_len $=296624)$
$\mathrm{fr} \quad \mathrm{BLEU}=22.9758 .1 / 30.5 / 18.2 / 11.4(\mathrm{BP}=0.934$ ratio $=0.936$ hyp_len $=67196$ ref_len $=71785)$
ru BLEU $=20.3453 .0 / 25.7 / 15.0 / 9.1(B P=0.979$ ratio $=0.980$ hyp_len $=9138$ ref_len $=9329)$
es $\quad \mathrm{BLEU}=20.9755 .2 / 27.3 / 15.8 / 9.7(\mathrm{BP}=0.957$ ratio $=0.958$ hyp_len $=78384$ ref_len $=81826)$
cz $\quad \mathrm{BLEU}=20.6454 .9 / 27.0 / 15.4 / 9.2(\mathrm{BP}=0.965$ ratio $=0.965$ hyp_len $=41321$ ref_len $=42812)$
cs $\quad \mathrm{BLEU}=17.8652 .3 / 24.4 / 13.4 / 7.8(\mathrm{BP}=0.933$ ratio $=0.935$ hyp_len $=24419$ ref_len $=26113)$
it $\quad \mathrm{BLEU}=19.0851 .4 / 24.2 / 13.6 / 7.8(\mathrm{BP}=1.000$ ratio $=1.010$ hyp_len $=10327$ ref_len $=10229)$
hu $\quad \mathrm{BLEU}=13.4544 .5 / 17.6 / 8.8 / 4.7(\mathrm{BP}=1.000$ ratio $=1.008$ hyp_len $=21378$ ref_len $=21216)$

Edunov18.fairseq.en-de.18.pretrained

de	$\quad \mathrm{BLEU}=38.5467 .4 / 44.2 / 31.7 / 23.4(\mathrm{BP}=1.000$ ratio $=1.004$ hyp_len $=177263$ ref_len $=176623)$
en	$\mathrm{BLEU}=34.8566 .0 / 41.7 / 29.2 / 21.1(\mathrm{BP}=0.966$ ratio $=0.967$ hyp_len $=286734$ ref_len $=296624)$
fr	$\mathrm{BLEU}=23.6558 .6 / 31.5 / 19.1 / 12.2(\mathrm{BP}=0.923$ ratio $=0.926$ hyp_len $=66482$ ref_len $=71785)$
ru	$\mathrm{BLEU}=21.5054 .5 / 27.3 / 16.3 / 9.9(\mathrm{BP}=0.971$ ratio $=0.972$ hyp_len $=9064$ ref_len $=9329)$
es	$\mathrm{BLEU}=21.6656 .0 / 28.4 / 16.7 / 10.4(\mathrm{BP}=0.946$ ratio $=0.947$ hyp_len $=77493$ ref_len $=81826)$
cz	$\mathrm{BLEU}=21.6456 .0 / 28.4 / 16.4 / 10.0(\mathrm{BP}=0.957$ ratio $=0.958$ hyp_len $=41018$ ref_len $=42812)$
cs	$\mathrm{BLEU}=19.3153 .8 / 26.1 / 14.9 / 8.9(\mathrm{BP}=0.929$ ratio $=0.932$ hyp_len $=24333$ ref_len $=26113)$
it	$\mathrm{BLEU}=19.6852 .2 / 25.1 / 14.0 / 8.2(\mathrm{BP}=1.000$ ratio $=1.005$ hyp_len $=10280$ ref_len $=10229)$
hu	$\mathrm{BLEU}=14.7545 .9 / 19.2 / 9.9 / 5.4(\mathrm{BP}=1.000$ ratio $=1.014$ hyp_len $=21522$ ref_len $=21216)$

Ng 19.fairseq.en-de.19.pretrained

de	$\mathrm{BLEU}=40.4768 .5 / 46.0 / 33.6 / 25.3(\mathrm{BP}=1.000$ ratio $=1.012$ hyp_len $=178754$ ref_len $=176623)$
en	$\mathrm{BLEU}=39.5569 .1 / 45.9 / 33.3 / 24.8(\mathrm{BP}=0.983$ ratio $=0.983$ hyp_len $=291721$ ref_len $=296624)$
fr	$\mathrm{BLEU}=25.8259 .9 / 33.4 / 20.8 / 13.7(\mathrm{BP}=0.940$ ratio $=0.941$ hyp_len $=67576$ ref_len $=71785)$
ru	$\mathrm{BLEU}=24.4356 .4 / 30.1 / 18.6 / 12.0(\mathrm{BP}=0.984$ ratio $=0.985$ hyp_len $=9185$ ref_len $=9329)$
es	$\mathrm{BLEU}=23.5857 .0 / 29.9 / 18.2 / 11.6(\mathrm{BP}=0.962$ ratio $=0.963$ hyp_len $=78778$ ref_len $=81826)$
cz	$\mathrm{BLEU}=22.8656 .5 / 29.3 / 17.3 / 10.7(\mathrm{BP}=0.971$ ratio $=0.972$ hyp_len $=41600$ ref_len $=42812)$
cs	$\mathrm{BLEU}=21.1555 .0 / 27.7 / 16.3 / 10.1(\mathrm{BP}=0.944$ ratio $=0.946$ hyp_len $=24700$ ref_len $=26113)$
it	$\mathrm{BLEU}=20.2752 .4 / 25.6 / 14.5 / 8.7(\mathrm{BP}=1.000$ ratio $=1.019$ hyp_len $=10422$ ref_len $=10229)$
hu	$\mathrm{BLEU}=14.4245 .3 / 18.8 / 9.7 / 5.2(\mathrm{BP}=1.000$ ratio $=1.039$ hyp_len $=22053$ ref_len $=21216)$

	Wu19-dynamicglu.fairseq.en-de.16.pretrained
de	$\mathrm{BLEU}=29.5760 .3 / 35.2 / 23.0 / 15.6(\mathrm{BP}=1.000$ ratio $=1.019$ hyp_len $=179942$ ref_len $=176623)$
en	$\mathrm{BLEU}=34.1764 .9 / 40.8 / 28.3 / 20.4(\mathrm{BP}=0.972$ ratio $=0.973$ hyp_len $=288558$ ref_len $=296624)$
fr	$\mathrm{BLEU}=22.8857 .6 / 30.3 / 18.0 / 11.2(\mathrm{BP}=0.939$ ratio $=0.941$ hyp_len $=67556$ ref_len $=71785)$
ru	$\mathrm{BLEU}=19.4352 .6 / 25.0 / 14.3 / 8.7(\mathrm{BP}=0.967$ ratio $=0.968$ hyp_len $=9028$ ref_len $=9329)$
es	$\mathrm{BLEU}=20.3654 .7 / 26.8 / 15.4 / 9.3(\mathrm{BP}=0.951$ ratio $=0.952$ hyp_len $=77879$ ref_len $=81826)$
cz	$\mathrm{BLEU}=20.7854 .8 / 27.1 / 15.5 / 9.2(\mathrm{BP}=0.967$ ratio $=0.968$ hyp_len $=41426$ ref_len $=42812)$
cs	$\mathrm{BLEU}=17.5152 .0 / 24.2 / 13.4 / 7.8(\mathrm{BP}=0.919$ ratio $=0.922$ hyp_len $=24078$ ref_len $=26113)$
it	$\mathrm{BLEU}=18.6750 .9 / 23.8 / 13.2 / 7.6(\mathrm{BP}=0.999$ ratio $=0.999$ hyp_len $=10220$ ref_len $=10229)$
hu	$\mathrm{BLEU}=13.4044 .9 / 18.0 / 9.0 / 4.9(\mathrm{BP}=0.976$ ratio $=0.976$ hyp_len $=20705$ ref_len $=21216)$

[^0]: ${ }^{1}$ Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, USA. Correspondence to: Thomas Liao <thomasliao@berkeley.edu $>$.

 Presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning. Copyright 2020 by the author(s).

[^1]: ${ }^{1}$ https://github.com/mjpost/SacreBLEU

