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Abstract
Transferability is an intriguing property of ad-
versarial examples. In this work we aim to first
understand the sufficient conditions of transfer-
ability. A theoretical analysis yields two lower
bounds for transferability based on data distribu-
tion similarity and model gradient similarity. We
then prove an upper bound on transferability for
low risk classifiers based on gradient orthogonal-
ity and smoothness. We demonstrate that under
the condition of gradient orthogonality, smoother
classifiers guarantee lower transferability. Finally,
based on our theoretical analysis of transferabil-
ity, we propose a simple yet effective strategy to
train a robust ensemble with low transferability
by enforcing model smoothness and gradient or-
thogonality between base models.

1. Introduction
Machine learning systems, especially those based on deep
neural networks (DNNs), have become widely applied in
numerous settings, including image recognition [19], speech
recognition [11], and natural language processing [29].
However, recently it has been shown that DNNs are vul-
nerable to adversarial examples, which are able to mislead
DNNs by adding small magnitude perturbations to the orig-
inal instances [30; 10]. There have also been a number of
efforts to explore adversarial examples in general machine
learning systems beyond those on DNNs [1; 2; 21; 22; 9].

Though most of the attack strategies mentioned above re-
quire access to the information of target machine learning
models (whitebox attacks), it has been found that even with-
out knowledge about the exact target model, adversarial
examples generated against one model can transferably at-
tack others, giving rise to blackbox attacks [26; 28]. Some
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(a) Orthogonal but Not Smooth (b) Orthogonal and Smooth

Figure 1: An illustration of the relationship between transfer-
ability, gradient orthogonality, and smoothness. (a) Gradient or-
thogonality alone cannot guarantee transferability as the decision
boundaries between two classifiers can be arbitrarily close yet have
orthogonal gradients almost everywhere; (b) Gradient orthogonal-
ity with smoothness provides a stronger guarantee on diversity, as
our theorems will show.

work have been conducted to understand the properties of
transferability [31; 23; 7]. However, a rigorous theoretical
analysis or explanation for transferability is still lacking in
the literature. Can we deepen our theoretical understanding
on transforability? Can we then take advantage of any new
theoretical understanding to enable better robust ensemble
models?

In this paper, we focus on these two questions. From the the-
oretical side, we are interested in conditions under which the
transferability can be lower bounded or upper bounded, both
of which could lead to insights that could have profound
empirical implications: An upper bound on transferability
could potentially deliver a new optimization objective when
training robust ensemble models, while a lower bound on
transferability could help avoid “doomed” scenarios.

Intuition. Our theoretical arguments admit intuitive inter-
pretation. As shown in Figure 1, gradient orthogonality
between learning models cannot directly imply low trans-
ferability, which contrasts with common understanding; on
the other hand only orthogonal and smoothed models would
potentially limit transferability. Our analysis is inspired by
this intuition, with a focus on understanding the impact of
model smoothness and gradient similarity on transferability.

Contributions. We make a first attempt towards theoretical
understanding of adversarial transferability, and providing



Characterizing Adversarial Transferability via Gradient Orthogonality and Smoothness

practical approaches to developing robust ensembles. Our
contributions include: (1) We provide theoretical analysis
for adversarial transferability. We prove lower bounds on
transferability between low risk classifiers for both `p norm
bounded and distribution enabled adversarial examples. (2)
We prove an upper bound of transferability based on model
similarity and smoothness, emphasizing the importance of
model smoothness to decrease the transferability between
models. We show that with smoother models, both the lower
and upper bound are tighter. (3) We propose a simple yet
effective approach to train a robust ensemble by enforcing
model smoothness and reducing loss gradient similarity
between models. (4) We conduct extensive experiments to
evaluate the robustness of the proposed ensemble model, and
show that it outperforms the state-of-the-art robust ensemble
methods on multiple datasets against a range of attacks.

2. Transferability of Adversarial Perturbation
In this section, we connect transferability with different
characteristics of models, which, in the next section, will
allow us to explicitly minimize transferability by enforcing
(or rewarding) certain properties of models. We first intro-
duce necessary notation, then describe the attack model and
theoretical analysis of adversarial transferability.

LetX be the input space on which predictions of labels Y ⊂
Z are made. Denoting the product space asM = X × Y ,
we assume there exists a fixed but unknown probability
measure Q on M. A classifier F is a mapping from X
into Y . We consider the model-dependent loss function
`F : X × Y → R. Typically `F (x, y) can be seen as
the composition of the training loss and model output, i.e.,
`F (x, y) = `(F(x), y). Since `F is used in training, we
assume for simplicity of exposition that the loss function `F
is differentiable, i.e., ∇x`F (x, y) exists.

We use Px to represent the marginal distribution on X , and
Pr (E) to denote the probability of event E under Px. A
classifier’s risk is defined as ηF = Pr (F(x) 6= y). A clas-
sifier’s empirical risk is defined as ξF = E(x,y) [`F (x, y)],
where (x, y) ∈M is distributed according to Q.

We define an attack strategy as a functionA (x) ∈ X on tar-
get point x ∈ X , which seeks an adversarial instance A (x),
such that F(A (x)) 6= F(x). We use PA(x) to represent the
distribution of A (x) ∈ X where x ∼ Px.

2.1. Attack Model
How should we define an adversarial attack? We first adopt
a natural approach to defining an attack strategy — the
attacker adds an `p norm bounded perturbation to data in-
stance x. In practice, there are two types of attacks, un-
targeted attacks and targeted attacks. As previous work
observed that the adversarial transferability is different un-
der different attacks [23], we consider both in our analysis.

Definition 1 (Adversarial Attack). Consider an input x with
existing label y, F(x) = y.

• An untargeted attack satisfies that AU (x) = x + δ ∈
argmax
δ:‖δ‖p≤ε

`F (x+ δ, y).

• A targeted attack with adversarial target yt satisfies that
AT (x) = x+ δ ∈ argmin

δ:‖δ‖p≤ε
`F (x+ δ, yt).

In this definition, ‖δ‖p represents the Lp norm of δ. In un-
targeted attacks, provided the prediction on an adversarial
instance differs from the ground truth, the attack is consid-
ered successful. In targeted attacks, the attack succeeds only
when the adversarial instance can be mis-recognized as the
specific adversarial target yt.

How do we formally define that an attack is effective? We de-
fine the attack effectiveness for both targeted and untargeted
attacks based on the statistical confidence.

Definition 2 ((α,F )-effective attack). Consider a input x ∈
X with true label y. An attack is (α,F)- effective in both
untargeted and targeted (with class target yt) scenarios if:

• Untargeted: Pr (F(AU (x)) 6= y) ≥ 1− α.

• Targeted: Pr (F(AT (x)) = yt) ≥ 1− α.

2.2. Bounding Adversarial Transferability
Given two models F and G, what are the characteristics of
F and G that have impact on transferability under a given
attack strategy? In this section, we obtain new theoretical
insights for formalizing this intuition, which later inspires a
practical algorithm for minimizing transferability.

2.2.1. TRANSFERABILITY AND PRELIMINARIES

Before we present our result, we formally define transferabil-
ity and relevant characteristics of models. We then connect
transferability with these properties.

Definition 3 (Transferability). Consider an adversarial in-
stance AU (x) or AT (x) constructed against a surrogate
model F . The transferability Tr between F and a target
model G is defined as follows (for adversarial target yt):

• Untargeted: Tr(F ,G, x) = 1[F(x) = G(x) = y ∧
F(AU (x)) 6= y ∧ G(AU (x)) 6= y].

• Targeted: Tr(F ,G, x, yt) = 1[F(x) = G(x) = y ∧
F(AT (x)) = G(AT (x)) = yt].

Definition 4 (Lower Loss Gradient Similarity). The lower
loss gradient similarity S between two differentiable loss
functions `F and `G is defined as:

S(`F , `G) = inf
x′∈X ,y∈Y

∇x`F (x′, y) · ∇x`G(x′, y)
‖∇x`F (x′, y)‖2 · ‖∇x`G(x′, y)‖2

.

Definition 5 (Upper Loss Gradient Similarity). The upper
loss gradient similarity S between two differentiable loss
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functions `F and `G is defined as:

S(`F , `G) = sup
x′∈X ,y∈Y

∇x`F (x′, y) · ∇x`G(x′, y)
‖∇x`F (x′, y)‖2 · ‖∇x`G(x′, y)‖2

.

Definition 6 (Model Smoothness). The model F is said to
be β-smooth if β satisfies:

β ≥ sup
x1,x2∈X ,y∈Y

‖∇x`F (x1, y)−∇x`F (x2, y)‖2
‖x1 − x2‖2

.

2.2.2. LOWER BOUND OF TRANSFERABILITY

Next we show that with both loss gradient similarity and
model smoothness it is possible to lower bound the transfer-
ability between low risk classifiers.

Theorem 1 (Lower Bound on Untargeted Attack Transfer-
ability). Consider an instance x ∈ Rn with true label y
and adversarial target yt. An (α,F)-effective (untargeted)
adversarial attack xA = AU (x) with perturbation ball
‖δ‖2 ≤ ε is transferable to G with probability

Pr (Tr(F ,G, x) = 1) ≥ (1− α)− (ηF + ηG)−
ε(1 + α)− cF (1− α)

ε− cG
− ε(1− α)

ε− cG
√

2− 2S(`F , `G),

where cF = min
(x,y)∈M

min
y′;y′ 6=y

`F (x
A, y′)− `F (x, y)− βε2/2

‖∇x`F (x, y)‖2
,

cG = max
(x,y)∈M

min
y′;y′ 6=y

`G(x
A, y′)− `G(x, y) + βε2/2

‖∇x`G(x, y)‖2
.

Here ηF , ηG are the risks of models F and G respectively.

Due to the page limit we omit the lower bound for target
attack to the appendix. Though it seems pessimistic given
the lower bound of transferability, we would ask another
question: Is it possible to upper bound the transferability
given additional constraints?

2.2.3. UPPER BOUND OF TRANSFERABILITY FOR
SMOOTHED CLASSIFIERS

Suppose we have two models F and G, then for any targeted
adversarial attack, we can upper bound the transferability
of the two models by constraining their gradient similarity,
model smoothness and respective risks.

Theorem 2 (Upper Bound on Untargeted Attack Transfer-
ability). Consider an instance x ∈ Rn with true label y
and adversarial target yt. Assume both model F and G are
β-smooth with gradients bounded byB. An (α,F)-effective
(untargeted) adversarial attack xA = AU (x) with pertur-
bation ball ‖δ‖2 ≤ ε is transferable to G with probability

Pr (Tr(F,G, x, yt) = 1) ≤
ξF + ξG

`min − εB

1 +

√
1 + S(`F , `G)

2

− βε2
,

where `min = min
x,y′:(x,y)∈M,y′ 6=y

(`F (x, y
′), `G(x, y

′)).

Here ξF and ξG are the empirical risks of models F and G
respectively, defined relative to a differentiable loss.

Due to the page limit we omit the upper bound for target
attack to the appendix. From both lower bound and upper
bound, we observe that it is possible for us to restrict the
loss gradient similarity between models to enforce model
orthogonality, and at the same time regularize the model
smoothness to reduce transferability whose intuition has
been shown in Figure 1.

3. Improving Ensemble Robustness via
Transferability Minimization

Built upon our theoretical analysis on transferability, we
propose a simple yet effective robust ensemble training
approach to reduce the transferability among base models
by enforcing the model smoothness and minimizing model
loss gradient similarity. we develop Transferability Reduced
Smooth ensemble (TRS) to train a robust ensemble in which
the transferability between base models is minimized.

The training algorithm of TRS-ensemble is shown in Al-
gorithm 1 in Appendix E. The TRS loss is calculated as

LTRS(x, y) =
x⊗ y√

x⊗ x · y ⊗ y
+ λ1‖x‖+ λ2‖y‖.

Here ⊗ denotes the operator that calculates the Frobenius
norm [6] of the outer product of two vectors. Algorithm
1 describes training on one dataset for one epoch, and in
practice we update by mini-batches.

We leverage the regularizer of the loss gradient to constrain
model smoothness. From Theorems 2 we can see that when
the models are forced to be smooth, the lower and upper
bound of transferability would be tighter and therefore as
long as the model loss gradient similarity is minimized, the
transferability will be largely constrained. We validate this
observation empirically in Section 4.

4. Experimental Evaluation
In this section we provide experimental evaluation of the
proposed TRS-ensemble comparing with baselines to as-
sess robustness against different attacks and transferabil-
ity. We show that: (1) on benign instances, the trained
TRS-ensemble achieves similar performance compared with
vanilla models; (2) against different adversarial whitebox
attacks, TRS-ensemble outperforms other baselines in terms
of robustness; (3) we specifically analyze the transferability
among base models within the TRS-ensemble and show
that intra-ensemble transferability is indeed reduced signifi-
cantly, across a range of attacks.

4.1. Experimental Setup
we conduct experiments on MNIST and CIFAR-10 [20; 18].
In our experiments, we employ Resnet20 network [13] as
the ensembke base model and use the combined loss for
TRS and Ensemble CrossEntropy (ECE) to train our TRS-
ensemble. The weight for TRS loss is an adjusting constant
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Table 1: Robustness of different approaches against various white-
box attacks.

MNIST para. CosSim CKAE AdaBoost GradientBoost ADP2,0.5 TRS

FGSM ε = 0.1 91.1 91.7 92.2 93.4 96.3 95.0
ε = 0.2 60.1 52.7 45.3 48.5 52.8 65.7

BIM ε = 0.1 86.2 87.2 82.0 84.3 88.5 91.7
ε = 0.15 73.4 70.1 69.5 70.2 73.6 74.4

PGD ε = 0.1 83.2 80.1 74.3 78.2 82.8 93.3
ε = 0.15 51.6 45.2 36.2 38.1 41.0 74.0

MIM ε = 0.1 87.2 90.4 85.1 85.3 92.0 92.5
ε = 0.15 73.6 73.2 72.2 71.9 77.5 75.4

CW c = 0.1 93.2 90.1 92.8 94.1 97.3 95.2
c = 10 34.2 40.1 30.2 31.3 23.8 43.2

c. We set λ1 = λ2 = 0.1, c = 2.0 for MNIST and λ1 =
λ2 = 0.01, c = 5.0 for CIFAR-10. (We evaluated other
parameters and observe similar results in Appendix.)

Adversarial attacks. We considered the following adver-
sarial attacks. FGSM [10], which generates adversarial
example xA = x+ δ by assigning δ = ε · sgn(∇x`(x, y)).
BIM [24] is an iterative FGSM by adding perturbations step
by step: xi = clip(xi−1+ ε/r ·∇x`(xi−1, y)), while clip de-
notes back projection to the ε perturbation range. MIM [8]
can be regarded as a variant of BIM by utilizing the momen-
tum in the gradient backward as gi+1 = µgi +

`(xi,y)
‖∇x`(x,y)‖1

and xi = clip(xi−1 + ε/r × gi) in iteration i. PGD [24]
starts by searching for a randomly perturbed instance within
the `p ball and moves along the gradient direction until
convergence. JSMA [27] is a greedy attack algorithm that
perturbs the pixels with high values on the saliency map at
each iteration. C&W [3] solves the optimization problem
xA := minx′ ‖x′− x‖22 + c · f(x′, y), where c is a constant
to balance the perturbation scale and attack success rate.
EAD [5] follows the same optimization setting by solving
xA := minx′ ‖x′ − x‖22 + β‖x′ − x‖1 + c · f(x′, y). Other
detailed settings will be omitted to Appendix F and we will
also open source our code for further comparison.

4.2. Baseline Methods to Reduce Transferability
In this section, we consider other baseline approaches and
show that TRS-ensemble outperforms others significantly
in terms of improving the learning robustness. We briefly
introduce them and put more details to Appendix. CosSim
considers the ensemble which only minimizes the gradi-
ent similarity between base models. CKAE [17] develops
ensemble based on CKA measurement proved to be effec-
tive to measure the orthogonality between representations.
AdaBoost [12] the final prediction will be a weighted aver-
age of all the weak learners where higher weight is placed
on stronger learners. GradientBoost [15] identifies weaker
learners based on gradient information. ADP (Adaptive
Diversity Promoting) [25] is proposed recently as a regular-
izer to reduce transferability between base models within
an ensemble to improve robustness and become the current
state-of-the-art ensemble method.

Figure 2: Transferability analysis for vanilla and base models
from TRS-ensemble on MNIST (ε = 0.2). Each cell (i, j) shows
the classification accuracy of ith model on the adversarial exam-
ples generated against the jth model. The first row presents vanilla
models, and second row the base models from TRS-ensemble. It
shows that the base models from TRS-ensemble achieves higher
accuracy indicating lower transferability.

4.3. Experimental Results
We first apply a whitebox attack against different ensembles
(each contains 3 base models for fair comparison with state-
of-the-art method ADP). Table 1 presents the robustness
(accuracy) of different ensemble methods against a range
of whitebox attacks. It is shown that the proposed TRS
outperforms other baselines including the state-of-the-art
ADP approach in most cases under different attacks with
various perturbation budgets. (The benign accuracy of all
methods are above 99.3%.)

To further understand the effects that TRS has on model
transferability, we measure the inter model transferability
given different attacks as shown in Figure 2. Due to space
limitations we only show results based on two attacks, with
more results confirming these observations in Appendix Fig-
ure 3, 4. We measure the transferability of TRS-ensemble
under attacks as shown in Figure 2 and find that base mod-
els from TRS achieve higher accuracy (robustness), indi-
cating lower transferability. In addition, we evaluate TRS-
ensemble against an Intermediate Level Attack [14] which
aims to improve transferability of adversarial examples, and
find that its robustness still remains around 96.22% with
ε = 0.1 on MNIST and 78.82% with ε = 0.01 on CIFAR-
10. Detailed results are shown in Appendix Table 2, 6.

5. Conclusion
In this paper we deliver deep understanding of adversarial
transferability theoretically. We propose an ensemble train-
ing approach which reduces transferability by promoting
model smoothness and reducing loss gradient similarity.
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A. Discussion: Beyond `p-Attack
Besides the widely used `p norm based adversarial examples, here we plan to extend our understanding to the distribution
distance analysis.

Definition 7 (Total variation distance; [4]). For two probability distributions Px and PA(x) onX , the total variation distance
between them is defined as

‖Px − PA(x)‖TV = supC⊂X |Px(C)− PA(x)(C)|.

Informally, the total variation distance measures the largest change in probability over all events. For discrete probability
distributions, the total variation distance is just the `1 distance between the vectors in the probability simplex representing
the two distributions.

Definition 8. Given ρ ∈ (0, 1), an attack strategy A (·) is called ρ-conservative1, if for x ∼ Px, ‖Px − PA(x)‖TV ≤ ρ.

This definition formalizes the general objective of generating adversarial examples against deep neural networks: attack
samples are likely to be observed, while they do not themselves arouse suspicion.

Lemma 3. Let f, g : X → Y be classifiers, δ, ρ, ε ∈ (0, 1) be constants, and A (·) be an attack strategy. Suppose that A (·)
is ρ-conservative and f, g have risk at most ε. Then Pr (F(A (x)) 6= G(A (x))) ≤ 2ε + ρ for a given random instance
x ∼ Px.

Remark. This result provides theoretical backing for the intuition that the boundaries of low risk classifiers under certain
dense data distribution are close [31]. It considers two classifiers that have risk at most ε, which indicates their boundaries
are close for benign data. It then shows that their boundaries are also close for the perturbed data as long as the attack
strategy satisfies a conservative condition which constrains the drift in distribution between the benign and adversarial data.

Proof of Lemma 3. Given A (·) is ρ-covert, by Definition 8 we know

|PX [f(A (x)) = g(A (x))]− PX [f(x) = g(x)]|
=
∣∣PA(X)[f(x) = g(x)]− PX [f(x) = g(x)]

∣∣
≤ ρ.

Therefore, we have
Pr (f(A (x)) = g(A (x))) ≥ Pr (f(x) = g(x))− ρ.

From the low-risk conditions, the classifiers agree w.h.p.

Pr (f(A (x)) 6= g(A (x)))

≤ Pr (f(x) 6= g(x)) + ρ

≤ 1− Pr (f(x) = y, g(x) = y) + ρ

≤ 1− (1− Pr (f(x) 6= y)− Pr (g(x) 6= y)) + ρ

= ε+ ε+ ρ , 2

≤ 2ε+ ρ ,

where the third inequality follows from the union bound.3

Theorem 4. Let F ,G : X → Y be classifiers (Y ∈ {−1, 1}), δ, ρ, ε ∈ (0, 1) be constants, and A (·) an attack strategy.
Suppose that A (·) is ρ-conservative and F ,G have risk at most ε. Given random instance x ∈ X , if A (·) is (δ,F)-effective,
then it is also (δ + 4ε+ ρ,G)-effective.

This result formalizes the intuition that low-risk classifiers possess close decision boundaries in high-probability regions. In
such settings, an attack strategy that successfully attacks one classifier would have high probability to mislead the other.
This theorem explains why we should expect successful transferability in practice: defenders will naturally prefer low-risk
binary classifiers. This desirable quality of classifiers is a potential liability.

1We use the total variation distance as it is a natural way to measure distances between distributions. Other notions of distance may
also be applied.

2Here we assume y is the ground truth label.
3Recall that for arbitrary events A1, . . . , An, the union bound implies P

(⋂n
i=1Ai

)
≥ 1−

∑n
i=1 P

(
Ai
)
.
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Proof of Theorem 4. From Lemma 3, and the union bound we have

Pr (g(x) 6= g(A (x)))

≥ Pr (f(x) 6= f(A (x)), g(x) = f(x), g(A (x)) = f(A (x)))

≥ 1− Pr (f(x) = f(A (X)))− Pr (g(x) 6= f(x))− Pr (g(A (x)) 6= f(A (x)))

≥ 1− δ − 4ε− ρ ,

as claimed.
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B. Proof of Transferability Lower Bound (Theorem 1)
Here we present the proof of Theorem 1 first stated in Section 2.2.2.

The following lemma is used in the proof.

Lemma 5. For arbitrary vector δ, x, y, when ‖δ‖2 ≤ ε, x and y are unit vectors, i.e., ‖x‖2 = ‖y‖2 = 1, cos〈x, y〉 =
x · y

‖x‖2 · ‖y‖2
= m. Let c denote any real number. Then

δ · y > c+ ε
√
2− 2m ⇒ δ · x > c.

Proof. δ · x = δ · y + δ · (x− y) > c+ ε
√
2− 2m+ δ · (x− y). By law of cosines, δ · (x− y) ≥ −ε

√
2− 2 cos〈x, y〉 =

−ε
√
2− 2m. Hence, δ · x > c.

Theorem (Lower Bound on Targeted Attack Transferability). Consider an instance x ∈ Rn with true label y and adversarial
target yt. Assume both model F and G are β-smooth. An (α,F )-effective (targeted) attack xA = AT (x) with perturbation
ball ‖δ‖2 ≤ ε is transferable to G with bounded probability

Pr (Tr(F ,G, x, yt) = 1) ≥ (1− α)− (ηF + ηG)−
ε(1 + α) + cF (1− α)

cG + ε
− ε(1− α)

cG + ε

√
2− 2S(`F , `G),

where cF = max
x∈X

miny `F (x
A, y)− `F (x, yt) + βε2/2

‖∇x`F (x, yt)‖2
, cG = min

x∈X

miny `G(x
A, y)− `G(x, yt)− βε2/2
‖∇x`G(x, yt)‖2

,

ηF = Pr (F(x) 6= y) , ηG = Pr (G(x) 6= y) .

Here ηF , ηG are the risks of models F and G respectively.

Proof. Define auxiliary function f, g : X 7→ R such that

f(x) =
miny∈Y `F (x

A, y)− `F (x, yt) + βε2/2

‖∇x`F (x, yt)‖2
, g(x) =

miny∈Y `G(x
A, y)− `G(x, yt)− βε2/2
‖∇x`G(x, yt)‖2

.

Note that cF = maxx∈X f(x) and cG = minx∈X g(x).

The transferability of concern satisfies:

Pr (Tr(F ,G, x, yt) = 1) = Pr
(
F(x) = y ∩ G(x) = y ∩ F(xA) = yt ∩ G(xA) = yt

)
(B.1)

≥ 1− Pr (F(x) 6= y)− Pr (G(x) 6= y)

− Pr
(
F(xA) 6= yt

)
− Pr

(
G(xA) 6= yt

)
(B.2)

≥ 1− ηF − ηG − α− Pr
(
G(xA) 6= yt

)
. (B.3)

Eq. B.1 follows the definition (Definition 3). Eq. B.1 to Eq. B.2 follows from the union bound. From Eq. B.1 to Eq. B.2
definition of model risk and definition of adversarial effectiveness (Definition 2) are applied.

Now consider Pr
(
F(xA) 6= yt

)
and Pr

(
G(xA) 6= yt

)
. Given that model predicts the label for which `F is minimized,

F(xA) 6= yt ⇐⇒ `F (x+ δ, yt) > miny `F (x+ δ, y). Similarly, G(xA) 6= yt ⇐⇒ `G(x+ δ, yt) > miny `G(x+ δ, y).

Following Taylor’s Theorem with Lagrange remainder, we have

`F (x+ δ, yt) = `F (x, yt) + δ∇x`F (x, yt) +
1

2
ξ>HFξ, (B.4)

`G(x+ δ, yt) = `G(x, yt) + δ∇x`G(x, yt) +
1

2
ξ>HGξ. (B.5)

In Eq. B.4 and Eq. B.5, ξ = kδ for some k ∈ [0, 1]. HF and HG are Hessian matrices of `F and `G respectively. Since
`F (x+ δ, yt) and `G(x+ δ, yt) are β-smooth, the maximum eigenvalues of HF and HG are bounded by β, As the result,
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|ξ>HFξ| ≤ β · ‖ξ‖22 ≤ βε2. Applying them to Eq. B.4 and Eq. B.5, we thus have

`F (x, yt) + δ∇x`F (x, yt)−
1

2
βε2 ≤ `F (x+ δ, yt) ≤ `F (x, yt) + δ∇x`F (x, yt) +

1

2
βε2, (B.6)

`G(x, yt) + δ∇x`G(x, yt)−
1

2
βε2 ≤ `G(x+ δ, yt) ≤ `G(x, yt) + δ∇x`G(x, yt) +

1

2
βε2. (B.7)

Apply left hand side of Eq. B.6 to Pr
(
F(xA) 6= yt

)
≤ α (from Definition 2):

Pr
(
F(xA) 6= yt

)
(B.8)

=Pr

(
`F (x+ δ, yt) > min

y
`F (x+ δ, y)

)
(B.9)

≥Pr
(
`F (x, yt) + δ∇x`F (x, yt)−

1

2
βε2 > min

y
`F (x+ δ, y)

)
(B.10)

=Pr

(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
, (B.11)

=⇒ Pr

(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
≤ α. (B.12)

Similarly, we apply right hand side of Eq. B.7 to Pr
(
G(xA) = yt

)
:

Pr
(
G(xA) 6= yt

)
(B.13)

=Pr

(
`G(x+ δ, yt) > min

y
`G(x+ δ, y)

)
(B.14)

≤Pr
(
`G(x, yt) + δ∇x`G(x, yt) +

1

2
βε2 > min

y
`G(x+ δ, y)

)
(B.15)

=Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> g(x)

)
. (B.16)

Knowing that ‖δ‖2 ≤ ε, from Lemma 5 we have

δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√

2− 2S(`F , `G) (B.17)

=⇒ δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√

2− 2 cos〈∇x`F (x, yt),∇x`G(x, yt)〉 (B.18)

=⇒ δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x). (B.19)

From Eq. B.17 to Eq. B.18, the infimum in definition of S (Definition 4) indicates that

S(`F , `G) ≤ cos〈∇x`F (x, yt),∇x`G(x, yt)〉.

Hence,
f(x) + ε

√
2− 2S(`F , `G) ≥ f(x) + ε

√
2− 2 cos〈∇x`F (x, yt),∇x`G(x, yt)〉.

Eq. B.18 to Eq. B.19 directly uses Lemma 5. As the result,

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> f(x) + ε
√
2− 2S(`F , `G)

)
≤ Pr

(
δ · ∇x`F (x, yt)
‖∇x`F (x, yt)‖2

> f(x)

)
≤ α. (B.20)

Note that f(x) ≤ cF , we have

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> cF + ε
√
2− 2S(`F , `G)

)
≤ α. (B.21)
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Now we consider the maximum expectation of δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

. Its maximum is max‖δ‖2 = ε. Therefore, its expectation

is bounded:

E
[
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

]
≤ ε · α+

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α).

Now applying Markov’s inequality, we get

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> cG

)
≤
ε · α+

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α) + ε

cG + ε
(B.22)

=
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε
. (B.23)

Since g(x) ≥ cG ,

Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> g(x)

)
≤ Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> cG

)
(B.24)

≤
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε
. (B.25)

Combine with Eq. B.19, finally,

Pr (Tr(F ,G, x, yt) = 1) ≥ 1− ηF − ηG − α− Pr
(
G(xA) 6= yt

)
(B.26)

≥ 1− ηF − ηG − α− Pr

(
δ · ∇x`G(x, yt)
‖∇x`G(x, yt)‖2

> g(x)

)
(B.27)

≥ 1− ηF − ηG − α−
ε(1 + α) +

(
cF + ε

√
2− 2S(`F , `G)

)
(1− α)

cG + ε
(B.28)

= (1− α)− (ηF + ηG)−
ε(1 + α) + cF (1− α)

cG + ε
− ε(1− α)

cG + ε

√
2− 2S(`F , `G). (B.29)

Eq. B.26 to Eq. B.27 follows Eq. B.16.

Theorem (Lower Bound on Untargeted Attack Transferability). Under the same setting as Theorem B. An (α,F )-effective
(untargeted) adversarial attack xA = AU (x) with perturbation ball ‖δ‖2 ≤ ε is transferable to G with probability

Pr (Tr(F ,G, x) = 1) ≥ (1− α)− (ηF + ηG)−
ε(1 + α)− cF (1− α)

ε− cG
− ε(1− α)

ε− cG
√

2− 2S(`F , `G),

where cF = min
(x,y)∈M

min
y′;y′ 6=y

`F (x
A, y′)− `F (x, y)− βε2/2

‖∇x`F (x, y)‖2
, cG = max

(x,y)∈M

min
y′;y′ 6=y

`G(x
A, y′)− `G(x, y) + βε2/2

‖∇x`G(x, y)‖2
,

ηF = Pr (F(x) 6= y) , ηG = Pr (G(x) 6= y) .

Here ηF and ηG are the risks of models F and G respectively.

Proof. Define auxiliary function f, g :M→ R such that

f(x, y) =
miny′;y′ 6=y `F (x

A, y′)− `F (x, y)− βε2/2
‖∇x`F (x, yt)‖2

, g(x, y) =
miny′;y′ 6=y `G(x

A, y′)− `G(x, y) + βε2/2

‖∇x`G(x, yt)‖2
.

Note that cF = min(x,y)∈M f(x, y) and cG = max(x,y)∈M g(x, y).
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The proof is similar to that of Theorem B.

Pr (Tr(F ,G, x) = 1) = Pr
(
F(x) = y ∩ G(x) = y ∩ F(xA) 6= y ∩ G(xA) 6= y

)
(B.30)

≥ 1− Pr (F(x) 6= y)− Pr (G(x) 6= y)− Pr
(
F(xA) = y

)
− Pr

(
G(xA) = y

)
(B.31)

= 1− ηF − ηG − α− Pr
(
G(xA) = y

)
. (B.32)

From Taylor’s Theorem and Lemma 5, we observe that

Pr
(
G(xA) = y

)
≤ Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cG

)
, (B.33)

Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cF − ε
√
2− 2S(`F , `G)

)
≤ Pr

(
F(xA) = y

)
= α. (B.34)

According to Markov’s inequality, Eq. B.34 implies that

Pr

(
δ · ∇x`G(x, y)
‖∇x`G(x, y)‖2

< cG

)
≤
ε(1 + α)−

(
cF − ε

√
2− 2S(`F , `G)

)
(1− α)

ε− cG
. (B.35)

Combine Eq. B.33 with Eq. B.35, then pump into Eq. B.32,

Pr (Tr(F ,G, x) = 1) ≥ 1− ηF − ηG − α− Pr
(
G(xA) = y

)
(B.36)

≥ (1− α)− (ηF + ηG)−
ε(1 + α)−

(
cF − ε

√
2− 2S(`F , `G)

)
(1− α)

ε− cG
(B.37)

= (1− α)− (ηF + ηG)−
ε(1 + α)− cF (1− α)

ε− cG
− ε(1− α)

ε− cG

√
2− 2S(`F , `G). (B.38)

This completes the proof.

Implications. In both Theorem B and Theorem 1, the only term which correlates both F and G is S(`F , `G), while all
other terms are dependent on either model F or G individually. Thus, we can view all other terms as constant. Note that
cG is within the range (−ε, ε) and usually very small, because β is usually very small compared with ε, and the attack is
typically successful. Then both Pr (Tr(F ,G, x, yt) = 1) and Pr (Tr(F ,G, x) = 1) have the form C − k

√
1− S(`F , `G),

where C and k > 0 are both constants. We can easily observe the positive correlation between S(`F , `G)—loss gradient
similarity, and lower bound of Tr(F ,G, x, yt) or Tr(F ,G, x)—adversarial transferability.

Meanwhile, note that when β increases (i.e., model smoothness decreases), both lower bounds decreases, which implies that
less model smoothness would reduce the tightness of the lower bound. In other words, when the model becomes smoother,
the correlation between gradient similarity and transferability lower bound becomes stronger, which motivates us to improve
the model smoothness to increase the effect of constraining gradient similarity.
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C. Proof of Transferability Upper Bound (Theorem 2)
Here we present the proof of Theorem 2 as stated in Section 2.2.3.

The following lemma is used in the proof.

Lemma 6. Suppose two unit vectors x, y satisfy x · y < S, then for any δ, we have min(δ · x, δ · y) < ‖δ‖2
√

(1 + S)/2.

Proof. For sake of contradiction, suppose δ · x > ‖δ‖2
√

(1 + S)/2, δ · y > ‖δ‖2
√
(1 + S)/2. Denote α to be the

angel between x and y, then cosα < S, or α > arccosS. If αx, αy are the angles between δ and x and between
δ and y respectively, then we have max(αx, αy) ≥ α/2 ≥ arccosS/2. Thus min(δ · x, δ · y) ≤ ‖δ‖2 cos(α/2) =

‖δ‖2
√
(1 + S)/2.

Theorem (Upper Bound on Targeted Attack Transferability). Consider an instance x ∈ Rn with true label y and adversarial
target yt. Assume both model F and G are β-smooth with gradients bounded by B. An (α,F)-effective (targeted) attack
xA = AT (x) with perturbation ball ‖δ‖2 ≤ ε is transferable to G with bounded probability

Pr (Tr(F ,G, x, yt) = 1) ≤ ξF + ξG

`min − εB

(
1 +

√
1 + S(`F , `G)

2

)
− βε2

, (C.1)

where `min = min
x∈X

(`F (x, yt), `G(x, yt)), ξF = Ex,y [`F (x, y)] , ξG = Ex,y [`G(x, y)] .

Here ξF and ξG are the empirical risks of models F and G respectively, defined relative to a differentiable loss.

Proof. Since F(x) outputs label for which `F is minimized, we have

F(x) = y ⇒ `F (x, yt) > `F (x, y) (C.2)

and similarly

F(xA) = yt ⇒ `F (x
A, y) > `F (x

A, yt), (C.3)
G(x) = y ⇒ `G(x, yt) > `G(x, y), (C.4)

G(xA) = yt ⇒ `G(x
A, y) > `G(x

A, yt). (C.5)

Since `F (x, y) and `G(x, y) are β-smooth,

`F (x, y) + δ · ∇x`F (x, y) +
β

2
‖δ‖2 ≥ `F (xA, y), (C.6)

which implies

δ · ∇x`F (x, y) ≥ `F (xA, y)− `F (x, y)−
β

2
‖δ‖2 (C.7)

≥ `F (xA, yt)− `F (x, y)−
β

2
‖δ‖2 =: c′F . (C.8)

Similarly for G,

δ · ∇x`G(x, y) ≥ `G(xA, yt)− `G(x, y)−
β

2
‖δ‖2 =: c′G . (C.9)
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Thus,

Pr
(
F(x) = y,G(x) = y,F(xA) = yt,G(xA) = yt

)
(C.10)

≤Pr
(
`F (x, yt) > `F (x, y), `F (x

A, y) > `F (x
A, yt), `G(x, yt) > `G(x, y), `G(x

A, y) > `G(x
A, yt)

)
(C.11)

≤Pr
(
δ · ∇x`F (x, y) ≥ c′F , δ · ∇x`G(x, y) ≥ c′G

)
(C.12)

≤Pr
((

c′F ≤ ε
√

(1 + S(`F , `G))/2‖∇x`F (x, y)‖2
) ⋃ (

c′G ≤ ε
√
(1 + S(`F , `G))/2‖∇x`G(x, y)‖2

))
(C.13)

≤Pr
(
c′F ≤ ε

√
(1 + S(`F , `G))/2‖∇x`F (x, y)‖2

)
+ Pr

(
c′G ≤ ε

√
(1 + S(`F , `G))/2‖∇x`G(x, y)‖2

)
, (C.14)

where inequality Equation (C.11) comes from Equation (C.2) - Equation (C.5), inequality Equation (C.12) comes from Equa-

tion (C.8) and Equation (C.9). Equation (C.13) is a result of Lemma 6: either δ · ∇x`F (x,y)
‖∇x`F (x,y)‖2 ≤ ‖δ‖2

√
(1 + S(`F , `G))/2

or δ · ∇x`G(x,y)
||∇x`G(x,y)|| ≤ ‖δ‖2

√
(1 + S(`F , `G))/2.

We observe that by β-smoothness condition of the loss function,

c′F = `F (x
A, yt)− `F (x, y)−

β

2
‖δ‖22

≥ `F (x, yt) + δ · ∇x`F (x, yt)−
β

2
‖δ‖22 − `F (x, y)−

β

2
‖δ‖22.

Thus,

Pr

(
c′F ≤ ε

√
(1 + S(`F , `G))/2‖∇x`F (x, y)‖2

)
(C.15)

≤ Pr

(
`F (x, yt)− `F (x, y) ≤ εB(1 +

√
(1 + S(`F , `G))/2) + βε2

)
(C.16)

≤ Pr

(
`F (x, y) ≥ `F (x, yt)− εB(1 +

√
(1 + S(`F , `G))/2− βε2

)
(C.17)

≤ ξF

min
x∈X

`F (x, yt)− εB
(
1 +

√
(1 + S(`F , `G))/2

)
− βε2

. (C.18)

Similarly for G,

Pr

(
c′G ≤ ε

√
(1 + S(`F , `G))/2‖∇x`G(x, y)‖2

)
(C.19)

≤ ξG

min
x∈X

`G(x, yt)− εB
(
1 +

√
(1 + S(`F , `G))/2

)
− βε2

. (C.20)

Combining the two and inject them into Equation (C.14), we get

Pr (Tr(F ,G, x, yt) = 1) ≤ ξF + ξG

`min − εB(1 +
√
(1 + S(`F , `G))/2)− βε2

.

Theorem (Upper Bound on Untargeted Attack Transferability). Consider an instance x ∈ Rn with true label y and
adversarial target yt. Assume both model F and G are β-smooth with gradients bounded by B. An (α,F)-effective
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(untargeted) adversarial attack xA = AU (x) with perturbation ball ‖δ‖2 ≤ ε is transferable to G with probability

Pr (Tr(F ,G, x, yt) = 1) ≤ ξF + ξG

`min − εB

(
1 +

√
1 + S(`F , `G)

2

)
− βε2

, (C.21)

where `min = min
x,y′:(x,y)∈M,y′ 6=y

(`F (x, y
′), `G(x, y

′)), ξF = Ex,y [`F (x, y)] , ξG = Ex,y [`G(x, y)] .

Here ξF and ξG are the empirical risks of models F and G respectively, defined relative to a differentiable loss.

Proof. The proof follows the proof for the targeted attack case, but instead of min(x,yt) `F/G(x, yt) we use
min

x,y′:(x,y)∈M,y′ 6=y
`F/G(x, y

′) in C.18 and henceforth.

Implications In both Theorem C and Theorem 2, we can observe that along with the rise of S(`F , `G), the denominator
decreases and henceforth the upper bound increases. Therefore, S(`F , `G)—upper loss gradient similarity and the upper
bound of Tr(F ,G, x, yt) or Tr(F ,G, x) are positively correlated.

Meanwhile, when β increases, Tr also increases, which implies that when the model becomes smoother (i.e., β decreases),
the transferability upper bound decreases and becomes tighter, which motivates us to improve the model smoothness to
increase the effect of constraining gradient similarity.
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D. Baseline model details
CosSim considers the ensemble which only minimizes the gradient similarity between base models. It serves as a baseline
to empirically verify our theoretical analysis that based on similar model loss gradient similarity, the smoother the models
are, the less transferable they are. Such intuition is also illustrated in Figure 1. CKAE develops ensemble based on
CKA measurement, which is recently shown to be effective to measure the orthogonality between representations [17].
In this paper we consider leveraging such representation orthogonality measurements as objective function to evaluate its
effectiveness on reducing transferability.
AdaBoost. To generate a robust ensemble, it is natural to consider different variants of boosting algorithms, which build
different weak learners in a sequential manner improving diversity in handling different task partitions. We consider
AdaBoost [12], for which the final prediction will be a weighted average of all the weak learners where higher weight is
placed on stronger learners.
GradientBoost. To further explore the “weakness" of model gradient, we also include GradientBoost [15] as another
baseline to identify weaker learners based on gradient information and therefore generate an ensemble for comparison.
ADP (Adaptive Diversity Promoting) is proposed recently as a regularizer to reduce transferability between base models
within an ensemble to improve robustness [25]. So far ADP has achieved state-of-the-art ensemble robustness performance.
We will follow the same setting as the ADP method and compare the performance of our robust TRS-ensemble with ADP
and other baselines.

E. TRS-ensemble Algorithm
Here we present the Robust TRS-ensemble training procedure. For every mini-batch samples, we obtain the gradients of
each submodel to these samples and calculate our TRS loss. We optimize our model by minimizing the combination of the
ensemble cross-entropy loss and the TRS loss until we reach the model’s convergence.

Algorithm 1 Robust TRS-ensemble training.

Input: A training dataset D = {(x1, y1), (x2, y2), . . .}, models {Fθ1(x), . . . , FθN (x)}.
for all (xi, yi) ∈ D do

/* Calculate classification loss and gradient. */
for k = 1, . . . , N do
`k = cross_entropy(Fθk (xi), yi)
gk = ∇x`k

end for
/* Calculate LTRS . */
`TRS =

∑
j<k LTRS(gj , gk)

/* Update each model using the aggregated loss. */
for k = 1, . . . , N do
θk = θk − η · ∇θk

(
`k + λTRS`

TRS
)

end for
end for
Return: the trained models {Fθ1(x), . . . , FθN (x)}.

F. Experimental Results and Details
Experiment details: We use ResNet-20 [13] as our ensemble models in both MNIST and CIFAR-10 Dataset. During
training we use the Adam optimizer [16] with initial learning rate α = 0.001. We run 40 epochs on MNIST and 180 epochs
on CIFAR-10 to make sure the loss has converged well.

Here we show the details of our experiment results on CIFAR-10 as in Table 2. We see that our TRS approach outperforms
any other methods including previous state-of-the-art ADP method[25] on most tasks except on FGSM. On difficult cases
such as CW attack with c = 0.1, the performance improvement is much more significant.

G. Adversarial Transferability Analysis
We show the full transferability table of the untargeted attack on both MNIST and CIFAR10 model in Figure 3, 4, compared
to the baseline model without TRS training. We can see that both individual model’s robustness increased and the attack
transferability decreased significantly.
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Table 2: Robustness of different models against various whitebox attacks on CIFAR-10.

CIFAR-10 para. CosSim CKAE AdaBoost GradientBoost ADP2,0.5 TRS

FGSM ε = 0.02 31.0 38.2 32.1 33.2 61.7 40.9
ε = 0.04 20.1 18.5 20.5 23.1 46.2 15.2

BIM ε = 0.01 18.1 46.8 19.5 50.5 46.6 65.2
ε = 0.02 9.3 32.3 15.9 31.5 31.0 33.8

PGD ε = 0.01 21.5 46.1 35.2 52.1 48.4 73.1
ε = 0.02 9.1 28.2 15.1 31.2 30.4 47.3

MIM ε = 0.01 22.5 45.6 41.2 49.7 52.1 66.0
ε = 0.02 10.1 24.1 15.2 28.5 35.9 36.0

CW c = 0.001 65.1 81.2 70.3 75.4 80.6 83.7
c = 0.1 13.6 23.0 18.4 26.2 25.6 62.6

Figure 3: Transferability analysis for baseline and TRS models on MNIST with ε = 0.2. Each cell shows the classification
accuracy on the generated adversarial examples against different models. The first row presents vanilla models, and second
row the base models within TRS-ensemble. It is clear that for the base models within TRS-ensemble the accuracy is higher
indicating lower transferability.

H. Comparison of Different TRS-Based Models
We evaluate the robustness of several TRS-based models under MNIST and CIFAR-10 dataset and use the current state-of-art
ensemble method ADP[25] as our baseline. In order to show our model’s robustness under stronger attack, we evaluate
PGD attack with more iterations (110 iterations in total). Results are shown in Table 3, 4. We show how the models
robustness related to the different number of our sub-models (k = 2, 3), and how adversarial training will further improve
our TRS-based model. As we can see, the robust accuracy increased with the increasing of the number of sub-models in all
scenario of MNIST dataset and most scenario of CIFAR-10 dataset. And when we utilize the PGD Adversarial Training
[24] to our ensemble model, the robust accuracy reaches the best in all settings.

In order to show that the adjusting parameter c of TRS loss will not affect the model’s robustness too much so we don’t need
to tune it carefully, we show the comparison of TRS-loss based ensemble model with different parameter c. Results are
shown in Table 5.

I. Robustness Against Intermediate Level Attack (ILA)
We also evaluate the robustness of our model against a novel Intermediate Level Attack (ILA) which aims at enhancing
adversarial example transferbility. In particular, after we trained the ensemble of three sub-models, we will perform ILA on
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Table 3: Robustness of different TRS-based models against various whitebox attacks on MNIST, k means the number of
submodels. AT means adding adversarial training loss.

MNIST para. TRS(k = 2) TRS(k = 3) TRS(k = 3) + AT ADP2,0.5

FGSM ε = 0.1 94.8 95.0 97.4 96.3
ε = 0.2 61.6 65.7 91.2 52.8

BIM ε = 0.1 91.4 91.7 97.2 88.5
ε = 0.15 67.2 74.4 94.2 73.6

PGD - 10 iter ε = 0.1 92.8 93.3 97.6 82.8
ε = 0.15 71.5 74.0 95.7 41.0

PGD - 110 iter ε = 0.1 88.6 89.7 97.1 28.1
ε = 0.15 48.6 53.2 93.3 1.18

MIM ε = 0.1 92.1 92.5 97.3 92.0
ε = 0.15 73.1 75.4 94.6 77.5

CW c = 0.1 94.8 95.2 96.0 97.3
c = 10 39.4 43.2 57.2 23.8

Table 4: Robustness of different TRS-based models against various whitebox attacks on CIFAR-10, k means the number of
submodels. AT means adding adversarial training loss.

CIFAR-10 para. TRS(k = 2) TRS(k = 3) TRS(k = 3) + AT ADP2,0.5

FGSM ε = 0.02 42.0 40.9 67.1 61.7
ε = 0.04 21.8 15.2 44.9 46.2

BIM ε = 0.01 59.2 65.2 78.4 46.6
ε = 0.02 36.7 33.8 64.9 31.0

PGD - 10 iter ε = 0.01 65.4 73.1 81.0 48.4
ε = 0.02 46.6 47.3 71.9 30.4

PGD - 110 iter ε = 0.01 57.7 63.1 78.0 15.1
ε = 0.02 32.1 27.9 62.8 5.3

MIM ε = 0.01 59.8 66.0 78.5 52.1
ε = 0.02 38.5 36.0 65.8 35.9

CW c = 0.001 73.8 83.7 85.5 80.6
c = 0.1 61.6 62.6 82.4 25.6

Table 5: Robustness of TRS-based models with different adjusting parameter c against various whitebox attacks on MNIST.
The number of ensemble models k equals to 3 and λ1 = λ2 = 0.1 for all models.

MNIST para. TRS(c = 0.5) TRS(c = 1.0) TRS(c = 2.0)

FGSM ε = 0.1 90.3 92.1 95.0
ε = 0.2 62.4 64.1 65.7

BIM ε = 0.1 89.5 91.2 91.7
ε = 0.15 68.2 70.0 74.4

PGD ε = 0.1 87.3 90.7 93.3
ε = 0.15 72.8 74.2 74.0

MIM ε = 0.1 89.0 91.7 92.5
ε = 0.15 70.7 73.4 75.4

CW c = 0.1 94.1 94.8 95.2
c = 10 38.1 40.5 43.2
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Figure 4: Transferability analysis for baseline and TRS models on CIFAR10 with ε = 0.05. Each cell shows the classification
accuracy on the generated adversarial examples against different models. The first row presents vanilla models, and second
row the base models within TRS-ensemble.

sub-model 1 and evaluate the adversarial examples on the ensemble model and each sub-model. We tried ε = 0.1/0.15
on MNIST and ε = 0.01/0.02 on CIFAR and perform the attack for 10 iterations. The result is shown in Table 6. We see
that the attack does decrease the performance on sub-model 1 (on which the attack is performed). But it does not affect the
performance of other sub-models and the ensemble model. This shows that our TRS approach does reduce the transferbility
of the adversarial examples.

Table 6: Robustness of TRS-based models against ILA attack. The attack is performed on sub-model 1 and evaluated on
other models.

Task para. Sub-model 1 Sub-model 2 Sub-model 3 Ensemble Model

MNIST ε = 0.1 92.66 96.43 96.94 96.22
ε = 0.15 69.56 88.03 89.19 86.26

CIFAR-10 ε = 0.01 71.18 79.75 80.17 78.82
ε = 0.02 37.13 58.28 57.77 51.93


