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Abstract
The Information Bottleneck (IB) principle charac-
terizes learning and generalization in deep neural
networks in terms of the change in two informa-
tion theoretic quantities and leads to a regularized
objective function for training neural networks.
These quantities are difficult to compute directly
for deep neural networks. We show that it is possi-
ble to backpropagate through a simple entropy es-
timator to obtain an IB training method that works
for modern neural network architectures. We eval-
uate our approach empirically on the CIFAR-10
dataset, showing that IB objectives can yield com-
petitive performance on this dataset with a con-
ceptually simple approach while also performing
well against adversarial attacks out-of-the-box.

1. Introduction
The information bottleneck (IB) principle, introduced by
Tishby et al. (2000), states that training a deep neural net-
work that generalizes well can be expressed as a problem
of finding a minimal representation of the input from which
to predict its label. This notion of minimality is captured
by the mutual information between the input X and its la-
tent representation Z, denoted I[X; Z], and the predictive
accuracy is captured by the mutual information between the
latent Z and the target Y , I[Y; Z]. The IB objective recasts
training as the following constrained optimization problem

min I[X; Z] s.t. I[Y; Z] ≥ C, (1)

for some C that specifies the minimum amount of informa-
tion that must be preserved in the latent. It can be relaxed to
the following penalized optimization problem

min I[X; Z] − βI[Y; Z]. (2)
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Figure 1. Adversarial robustness of ResNet18 models trained with
our objective min H[Y | Z] + β′′H[Z] for different β′′. Models
are trained on CIFAR-10, then evaluated on their robustness to
FGSM attacks of varying ε values. We see that models trained
with surrogate IB objectives (shown in coloured lines) largely see
improved robustness over a model trained to minimize the regular
cross-entropy training objective (shown in black) compared to
our objective that does not use cross-entropies. We show the
performance of models where we inject noise and models without
(as a matter of ablation), and see that injecting noise is beneficial.

While the mutual information provides an appealing theo-
retical grounding for neural network training, it is notori-
ously difficult to compute. A number of alternate objectives
have been proposed (Alemi et al., 2016; Strouse & Schwab,
2017), but these alternatives trade off to varying degrees the
quality of the approximation to the information bottleneck,
and the breadth of the class of models under consideration.
There are few scalable IB training objectives in the literature
which can be applied in a straightforward manner to current
state-of-the-art architectures (Kirsch et al., 2020).

This work presents another such objective. Following
Kirsch et al. (2020), we rewrite the IB objective as an ex-
plicit linear combination of entropies, for which we use a
simple non-parametric entropy estimator that we can back-
propagate through.

An analogous perspective would be to approximate the mu-
tual information quantities in equation 2 by using differ-
ences of entropies of the form I[Y; Z] = H[Z] − H[Z | Y],
following (McAllester & Stratos, 2018).

Training with this estimator, we recover competitive per-
formance on the CIFAR-10 dataset, as well as good perfor-
mance out-of-the-box against adversarial examples created
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by FGSM (Goodfellow et al., 2014) compared to models
trained with regular cross-entropy and dropout regulariza-
tion (Srivastava et al., 2014). We obtain information plane
diagrams that show our objective, indeed, creates an infor-
mation bottleneck.

Our method is straightforward to apply to arbitrary network
architectures, laying the groundwork for future investigation
into the information-theoretic principles underlying state-of-
the-art neural networks.

Altogether, it provides an intriguing perspective on using an
old approach on modern neural network architectures with
surprisingly good results. Our results show that the simple
estimator suffers from continual compression as we keep on
training, which will require future research.

2. Overview of IB Objectives
In their seminal work, Tishby et al. (2000) provide an op-
timal algorithm for the tabular case, when X, Y and Z are
all categorical. This has spawned additional research to
optimize the objective for other cases and specifically for
DNNs (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,
2017; Achille & Soatto, 2018). We will use the notation
pθ to refer to a (possibly probabilistic) encoder defining the
conditional distribution pθ(z|x), and qθ to refer to a decoder.
Typically, pθ and qθ will be neural networks, possibly with
added stochasticity such as that due to dropout (Srivastava
et al., 2014). Whether the benefits of training with IB ob-
jectives are due to the IB principle, or some other unrelated
mechanism, remains unclear (Saxe et al., 2019; Amjad &
Geiger, 2019; Tschannen et al., 2019), but independent of
the validity of the IB principle in explaining deep learn-
ing, recent work has also tied the IB objective to successful
results in both unsupervised and self-supervised learning
(Oord et al., 2018; Belghazi et al., 2018; Zhang et al., 2018,
among others)

Deterministic Information Bottleneck (DIB) presents a
variation on the standard IB objective. Strouse & Schwab
(2017) introduce the deterministic information bottleneck
objective (DIB)

min H[Z] − βI[Y; Z] (3)

Like Tishby et al. (2000), they provide an algorithm for the
tabular case. To do so, they examine an analytical solution
for their objective as it is unbounded: H[Z]→ −∞ for the
optimal solution. The DIB objective induces subtly differ-
ent behavior in the latent representation, but its practical
implementation faces similar hurdles to IB.

Deep Variational Information Bottleneck (DVIB) ad-
dresses the challenge of estimating the mutual information.
Alemi et al. (2016) rewrite the terms in the bottleneck as
maximization problem “max I[Y; Z] − βI[X; Z]”, and com-

pute a variational lower bound on this objective, using a
prior r(z) on the distribution of latent representations, which
is fixed to be a unit Gaussian distribution.

minEpθ(z|xn)[− log qθ(y|z)] − βKL(pθ(z|xn)||r(z)).

In principle, the distributions qθ and pθ could be given by
arbitrary parameterizations and function approximators. In
practice, the implementation of DVIB presented by Alemi
et al. (2016) constructs pθ as a multivariate Gaussian with
parameterized mean and parameterized diagonal covariance
using a neural network followed by a linear decoder feeding
into a softmax to yield qθ. The requirement for pθ to have
a closed-form Kullback-Leibler divergence with respect to
the prior r(z) limits the applicability of the DVIB objective.

“Conditional Entropy Bottleneck” (Fisher, 2019) intro-
duces their Conditional Entropy Bottleneck as follows.

min I[X; Z | Y] − I[Y; Z] (4)

Fisher (2019) provides experimental results that favorably
compare to Alemi et al. (2016), possibly due to additional
flexibility as Fisher (2019) do not constrain pθ(z) to be a
unit Gaussian and employ variational approximations for all
terms.

3. IB Objectives without Mutual Information
Terms

Following Kirsch et al. (2020), we can rewrite the objectives
to make use of entropies and conditional entropies instead
of mutual information terms.

Observation 1. For IB, we obtain

arg min I[X; Z] − βI[Y; Z] (5)
= arg min H[Y | Z] + β′ I[X; Z | Y]︸      ︷︷      ︸

=H[Z|Y]−H[Z|X]

, (6)

and, for DIB,

arg min H[Z] − βI[Y; Z] (7)
= arg min H[Y | Z] + β′H[Z | Y] (8)
= arg min H[Y | Z] + β′′H[Z] (9)

with β′ := 1
β−1 ∈ [0,∞) and β′′ := 1

β
∈ [0, 1).

3.1. Entropy Estimation for Continuous Variables

One of the principal challenges in training with IB objec-
tives is the computation of the mutual information quantities
required. We have rewritten the IB objectives using differen-
tial (conditional) entropies. However, differential entropies
have their own number of undesirable properties.

Most importantly, they are unbounded from below. This
means that in principle a neural network could minimize
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H[Z | X] in the DIB objective by scaling the latent repre-
sentation Z to be arbitrarily close to zero, thus obtaining
monotonically “improving” and unbounded objective values
despite not meaningfully changing the representation.

One way to solve this problem is by adding noise to Z.
Again, following Kirsch et al. (2020), we add noise to the la-
tent representation in order to lower-bound entropies, which
allows us to enforce non-negativity across all terms in our
objective (as in the discrete case): for a continuous Ẑ ∈ Rk

and independent noise ε, we set Z := Ẑ + ε; the differential
entropy then satisfies H[Z] = H[Ẑ+ ε] ≥ H[ε]; and by using
zero-entropy noise ε ∼ N(0, 1

2πe Ik) specifically, we obtain
H[Z] ≥ H[ε] = 0.

Observation 2. After adding zero-entropy noise, the in-
equality I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z] also holds in the
continuous case, and we can minimize I[X; Z | Y] in the IB
objective by minimizing H[Z | Y] or H[Z], similarly to the
DIB objective. See section A.1.

Strictly speaking, zero-entropy noise is not necessary for
optimizing bounds: any Gaussian noise is sufficient, but
zero-entropy noise is necessary to ensure non-negativity and
for the inequalities.

4. Method
We are going to focus on deterministic models while in-
jecting zero-entropy noise into the latent Z. We then have
H[Z | X] = 0 and H[Z | Y] ≤ H[Z], which means that the
DIB objective and IB objective match. To see this, compare
equation (6) and (8) after setting H[Z] = 0. We can thus
focus on min H[Y | Z] + β′′H[Z] as objective, which we can
rewrite as

min H[Z | Y] + (β′′ − 1)H[Z] (10)

after dropping a constant H[Y] term. This objective is
more amenable to entropy estimation because H[Z | Y] =
1
C

∑
y H[Z | y] for categorical labels Y for which we can

easily estimate H[Z | y] individually.

Our method consists of training a deterministic neural net-
work encoder (from input X to latent Z) by minimizing the
objective without having to specify a decoder explicitly. We
can then train a decoder separately after training the encoder.

Instead of fitting a DNN as decoder (which works of course),
we can also fit a Gaussian mixture model to the latent Z:
each Gaussian represents one output class, as optimizing
IB objectives for deterministic models under noise leads to
clustering, which we show in section A.2. We will show
that we obtain competitive performance on CIFAR-10 with
either kind of decoder.

4.1. A simple non-parametric entropy estimator

We devote this section to the entropy estimation component
of our method. We use the entropy estimator as presented
in Kraskov et al. (2004), which uses a k-nearest-neighbors
estimate of the Shannon entropy (Kozachenko & Leonenko,
1987):

Ĥ[Z] = −ψ(k) − ψ(N) + log cd +
d
N

N∑
i=1

log ε(i), (11)

where ψ is the digamma function, cd is the volume of the
d-dimensional unit ball with respect to the norm used in the
nearest-neighbors computation, and ε(i) = 2 ‖zi − nk(zi)‖ is
twice the distance from sample zi to its kth nearest neighbor.
zi are latent samples that can be obtained for the whole
training set or using minibatches.

Differentiation is then straightforward:

∇ Ĥ[Z] =
d
N

n∑
i=1

∇
[
log ‖xi − nk(xi)‖

]
. (12)

We can thus estimate our objective in (10) using the estima-
tor in equation (11) and back-propagate through it.

4.2. Improving Stability of the Gradient

To improve stability of the gradients (under `2-norm), we
use the squared distance:

Ĥ[Z] = −ψ(k) − ψ(N) + log cd +
d

2N

N∑
i=1

log ε2(i), (13)

which leads to

∇Ĥ(X) =
d

2N

n∑
i=1

∇
[
log ‖xi − nk(xi)‖2

]
. (14)

5. Empirical Evaluation
We use a regular deterministic ResNet18 model (He et al.,
2016) as encoder with K = 256 continuous latent dimen-
sions. As decoder, we either fit a Gaussian mixture model,
for which we compute a covariance matrix based on sam-
pled Z|Y from the training set, or we use a neural network.
We have both used a simple logistic regression model, but
also a deep decoder that is inspired by ResNets but uses
fully-connected layers instead of convolutions. Specifically,
we use a layer that maps from the latent to 1024 units, then
5 residual blocks of BatchNorm × ReLU × 1024 FC lin-
ear × BatchNorm × ReLU × 1024 FC layer, and a final
BatchNorm and fully-connected linear layer to the output
classes (using softmax). Both perform similarly, yet we
saw slightly better performance with the deeper model. The
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Figure 2. Trajectories for the surrogate objective min H[Y | Z] +
β′′H[Z] on the test set with a ResNet18 model on CIFAR-10. The
trajectories are colored by their respective γ; their transparency
changes by epoch. We estimate I[X; Z] using equation (11) and
estimate I[X; Y | Z] by fitting on the test set to obtain a tight upper
bound on I[X; Y | Z] = H[Y | Z]. Compression (Preserved Infor-
mation ↓) trades-off with performance (Residual Information ↓).
The circle marks the final epoch of a trajectory. The square marks
the best epoch (Residual Information�).

deeper model provides better entropy estimates for visual-
izations, however, again following the approach in Kirsch
et al. (2020). We obtain an accuracy of 92% when training
using our objective with either a GMM or neural network
decoder. See figure 3.

For our experiments, we use PyTorch (Paszke et al., 2019)
and the Adam optimizer (Kingma & Ba, 2014) with a learn-
ing rate of 0.5×10−3 and multiply the learning rate by

√
0.1

whenever the loss plateaus for more than 10 epochs. We
train for 150 epochs.

Robustness to Adversarial Attacks The DVIB objective
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Figure 3. Generalization error for ResNet18 models trained with
our objective min H[Y | Z] + β′′H[Z] for different β′′. Models are
trained on CIFAR-10 without training through a decoder using our
objective. Either a neural network decoder or a Gaussian mixture
decoder are then trained using samples from the training set and
then evaluated on the test set. A similar ResNet18 trained with
regular cross-entropy using the same hyperparameters and training
schedule also achieves an accuracy of 92% (generalization error
of 8%, red dashed line).

from Alemi et al. (2016) leads to improved adversarial ro-
bustness. We perform a similar evaluation. In figure 1 we
see that it performs favorably against adversarially perturbed
images using the Fast Gradient Sign Method (Szegedy et al.,
2013) for varying levels of the perturbation magnitude pa-
rameter ε. We use a ResNet18 model trained with regular
cross-entropy with added DropConnect regularization (Wan
et al., 2013) as comparison (black dashed line).

Information Plane Plots We also create information plane
plots, see figure 2a. It shows the trade-off between compres-
sion and accuracy. However, the models for lower γ do not
seem to converge within 150 epochs and all of them seem to
keep compressing (minimizing H[Z]). For a certain value of
I[X; Y | Z], one can see that different γ regularize compres-
sion differently, especially at the beginning of training. For
the first 50 epochs, the trajectories remain separated. We
hypothesize that given the form of our objective in (10), the
gradients for H[Z] dominate over H[Z | Y], such that small
changes in β′′ have little effect.

Injecting noise is necessary. We train models without inject-
ing noise and obtain plots as in figure 2b, which are quite
chaotic.

We measure I[X; Y | Z] = H[Y | Z] (as H[Y | X] = 0 for
CIFAR-10) on the test set by fitting a ResFC model on the
test set, while keeping the encoder frozen. The cross-entropy
loss of the decoder is an upper bound on H[Y | Z]. This is
similar to approaches in (Alemi et al., 2016; Xu et al., 2020;
McAllester & Stratos, 2018). To estimate I[X; Z] = H[Z]
(as H[Z | X] = 0 for our deterministic model with injected
zero-entropy noise), we use the estimator from equation
(11) that we also use to train the decoder.
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A. Appendix
The proofs here are taken from Kirsch et al. (2020), which
is a prepublication and thus not well-known.

A.1. Differential entropies

Observation. After adding zero-entropy noise, the inequal-
ity I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z] also holds in the con-
tinuous case, and we can minimize I[X; Z | Y] in the IB
objective by minimizing H[Z | Y] or H[Z], similarly to the
DIB objective.

Theorem 1. For random variables A, B, we have

H[A + B] ≥ H[B].

Proof. See Bercher & Vignat (2002, section 2.2). �

Proposition 1. Let Y , Z and X be random variables satisfy-
ing the independence property Z ⊥ Y |X, and F a possibly
stochastic function such that Z = F(X)+ε, with independent
noise ε satisfying ε ⊥ F(X), ε ⊥ Y and H(ε) = 0. Then the
following holds whenever I[Y; Z] is well-defined.

I[X; Z | Y] ≤ H[Z | Y] ≤ H[Z].

Proof. First, we note that H[Z | X] = H[F(X) + ε | X] ≥
H[ε | X] = H[ε] with theorem 1, as ε is independent of X,
and thus H[Z | X] ≥ 0. We have H[Z | X] = H[Z | X,Y]
by the conditional independence assumption, and by the
non-negativity of mutual information, I[Y; Z] ≥ 0. Then:

I[X; Z | Y] + H[Z | X]︸   ︷︷   ︸
≥0

= H[Z | Y]

H[Z | Y] + I[Y; Z]︸ ︷︷ ︸
≥0

= H[Z]

�

The probabilistic model from section ?? fulfills the condi-
tions exactly, and the two statements motivate our observa-
tion.

It is important to note that while zero-entropy noise is neces-
sary for preserving inequalities like I[X; Z | Y] ≤ H[Z | Y] ≤
H[Z] in the continuous case, any Gaussian noise will suffice
for optimization purposes: we optimize via pushing down
an upper bound, and constant offsets will not affect this.

Thus, if we had H[ε] , 0, even though I[X; Z | Y] +
H[Z | X] 6≤ H[Z | Y], we could instead use

I[X; Z | Y] + H[Z | X] − H[ε] ≤ H[Z | Y] − H[ε]

as upper bound to minimize. The gradients remain the same.

This also points to the nature of differential entropies as
lacking a proper point of origin by themselves. We choose

one by fixing H[ε]. Just like other literature usually only
considers mutual information as meaningful, we consider
H[Z | X]−H[ε] as more meaningful than H[Z | X]. However,
we can side-step this discussion conveniently by picking a
canonical noise as point of origin in the form of zero-entropy
noise H[ε] = 0.

A.2. Soft clustering by entropy Minimization with
Gaussian noise

This section motivates why we can fit a GMM, with one
Gaussian per class, to our latent space and obtain high accu-
racy: minimizing with our objective (10) leads to clustering
of the latent encodings.

Consider the problem of minimizing H[Z | Y] and H[Y | Z],
in the setting where Z = fθ(X) + ε ∼ N(0, σ2)—i.e. the
embedding Z is obtained by adding Gaussian noise of fixed
σ to a deterministic function of the input. Let the training
set be enumerated x1, . . . , xn, with µi = fθ(xi). Then the
distribution of Z is given by a mixture of Gaussians with the
following density, where d(x, µi) := ‖x − µi‖

2 /σ2.

p(z) ∝
1
n

n∑
i=1

exp(−d(z, µi))

Assuming that each xi has a deterministic label yi, we then
find that the conditional distributions p(y | z) and p(z | y) are
given as follows:

p(z | y) ∝
1
ny

∑
i:yi=y

exp(−d(z, µi))

p(y | z) =
∑
i:yi=y

p(µi | z) =
∑
i:yi=y

p(z | µi) p(µi)
p(z)

=

∑
i:yi=y p(z | µi)∑n
k=1 p(z | µk)

=

∑
i:yi=y exp(−d(z, µi))∑n
k=1 exp(−d(z, µk))

,

where ny is the number of xi with class yi = y. Thus, the
conditional Z|Y can be interpreted as a mixture of Gaussians
and Y |Z as a Softmax marginal with respect to the distances
between Z and the mean embeddings. We observe that
H[Z | Y] is lower-bounded by the entropy of the random
noise added to the embeddings:

H[Z | Y] = H[ fθ(X) + ε | Y] ≥ H[ε]

with equality when the distribution of fθ(X)|Y is determinis-
tic – that is when fθ is constant for each class y.

Further, the entropy H[Y | Z] is minimized when H[Z] is
large compared to H[Z | Y] as we have the decomposition

H[Y | Z] = H[Z | Y] − H[Z] + H[Y].

In particular, when fθ is constant over equivalence classes
of the input, then H[Y | Z] is minimized when the entropy
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H[ fθ(X) + ε] is large – i.e. the values of fθ(xi) for each
equivalence class are distant from each other and there is
minimal overlap between the clusters. Therefore, the op-
tima of the information bottleneck objective under Gaussian
noise share similar properties to the optima of geometric
clustering of the inputs according to their output class.

To gain a better understanding of local optimization behav-
ior, we decompose the objective terms as follows:

H[Z | Y] = Ep̂(y) H(p(z | y) || p(z | y))
= Ep̂(x,y) H(p(z | x) || p(z | y))
= Ep̂(x,y) DKL(p(z | x) || p(z | y)) + H[Z | x]
= Ep̂(x,y) DKL(p(z | x) || p(z | y))
+ H[Z | X]︸   ︷︷   ︸

=const

.

To examine how the mean embedding µk of a single data-
point xk affects this entropy term, we look at the derivative
of this expression with respect to µk = fθ(xk). We obtain:

d
dµk

H[Z | Y] =
d

dµk
H[Z | yk]

=
d

dµk
Ep(x|yk) DKL(p(z | x) || p(z | y))

=
∑

i,i:yi=yk

1
nyk

d
dµk

DKL(p(z | xi) || p(z | yk))

+
1

nyk

d
dµk

DKL(p(z | xk) || p(z | yk)).

While these derivatives do not have a simple analytic form,
we can use known properties of the KL divergence to de-
velop an intuition on how the gradient will behave. We
observe that in the left-hand sum µk only affects the distri-
bution of Z|Y (that is we are differentiating a sum of terms
that look like a reverse KL), whereas it has greater influence
on p(z | xk) in the right-hand term, and so its gradient will
more closely resemble that of the forward KL. The left-
hand-side term will therefore push µk towards the centroid
of the means of inputs mapping to y, whereas the right-hand
side term is mode-seeking.


