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Abstract
Invariant learning aims to train models robust to
nuisance confounding that may be present in the
data. This is typically achieved by minimizing
some measure of dependence between learned rep-
resentations or predictions and confounding fac-
tors. However, accurate estimation as well as reli-
able minimization of typically used dependence
measures can be challenging. Chi-square diver-
gence based dependence measure has recently
been found effective in enforcing fairness through
learning invariant representations. We show that
with an appropriate parameterization, this choice
both improves dependence estimation quality and
simplifies its minimization. Empirically, we find
that our proposal is effective at fair predictor learn-
ing and domain generalization.

1. Introduction
Consider a supervised setting where we are interested in
learning a mapping between an outcome y and covariates
x. Additionally, we assume that a sensitive attribute or a
nuisance factor s is observed and may be correlated with
x and/or y. A model, parameterized by θ, that learns to
predict ŷ = fθ(x) ignoring s, is said to be invariant to
s. Such invariance is desirable in many applications. For
instance, we may wish to learn fair machine learning models,
where a model’s predictions are invariant to attributes such
as race or gender, or we may wish our models to be robust
to domain shift by being invariant to the domain (Fernando
et al., 2013; Ganin & Lempitsky, 2015) or even generalize to
unseen domains (Muandet et al., 2013; Ghifary et al., 2015).
The notion of invariance can be formalized via conditional
independence statements involving y, x and s, where the
exact form is dependent on the application. For example,
in fairness, the property ŷ ⊥⊥ s, where model predictions
are not dependent on sensitive attributes such as race and
gender, is called demographic parity (Barocas et al., 2019).
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In practice, the independence criterion is replaced by de-
pendence measures. Thus, estimation and minimization of
dependence between two variables is crucial for learning
models that are robust or invariant to nuisance factors. Mu-
tual Information (MI), defined as the Kullback-Leibler (KL)
divergence between a joint distribution and the product of
marginal distributions, is a popular choice for measuring de-
pendence. In (Micheas & Zografos, 2006), the authors con-
sider generalizations of mutual information that involve re-
placing the KL-divergence with other f -divergences. Here,
we focus on one such f -divergence — the χ2-divergence
and the corresponding dependence measure. It is an upper
bound to Mutual Information (MI) and Gebelein-Rényi Max-
imum Correlation Coefficient (HGR) dependence measures
that satisfies Rényi properties. When one of the variables is
binary, Chi-square information is equivalent to HGR (Mary
et al., 2019). Hence, it can also be employed as a surrogate
for minimizing MI or HGR. Estimating the dependence mea-
sure between two variables (χ2 or otherwise) is challenging.
It typically requires either the estimation of complex joint
and/or marginal densities of the variables or the ability to
sample from these distributions; both of which are daunt-
ing, especially in high dimensions (Gao et al., 2015; 2017).
However, the conditional distributions are often easier to
approximate (Poole et al., 2019) and may even be known in
one direction in certain applications such as representation
learning. In this work, we exploit this insight to develop
tractable approximations to the χ2 dependence measure.
Our contributions include,

• We show that the Chi-square information between two
variables X and Y can be expressed in a convenient
form that involves the product of conditional densities
p(y|x) and p(x|y). Additionally, we propose unbiased
Monte-Carlo estimates for this dependence measure
based on this form for discrete and continuous cases.

• Through synthetic experiments and real world fair-
ness applications, we demonstrate that estimating and
minimizing the dependence of two variables by esti-
mating their conditional distributions is simpler and
just as effective compared to learning the joint distri-
bution p(x,y) and/or the marginal distributions p(x)
and p(y).

• Finally, through domain generalization application, we
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demonstrate the proposed approach can be effective in
minimizing the dependence between high-dimensional
continuous variables.

2. Estimating Chi-square Information using
Conditional Distributions

In this section, we introduce Monte-Carlo estimators for
computing the Chi-square mutual information (shortened
as CHI2MI) between two random variables X and Y . We
assume the existence of the marginal distributions PX , PY
and the joint distribution PX,Y overX , Y andX×Y , respec-
tively, with known density p(y|x) and with either known
density p(x|y) or the ability to sample from distribution
PX|Y . Let us first define the χ2-divergence between two
distributions as:

Definition 1 (χ2-divergence). Let PX and QX be two dis-
tributions that admit density p(x) and q(x) respectively.
The χ2-divergence between these two distributions is

Dχ2(PX ||QX) =

∫ ((p(x)

q(x)

)2

− 1
)
q(x)dx (1)

This divergence belongs to a general family of distribu-
tions called f -divergences that include commonly used
divergences such as Kullback-Leibler (KL) and Jenson-
Shannon (JS) divergences. The Chi-square mutual infor-
mation MIχ2(X;Y ) is defined in terms of χ2-divergence
as:

Definition 2 (Chi-square mutual information). Let PX , PY
and PX,Y denote the marginal distributions and the joint
distribution of X and Y admitting densities p(x), p(y) and
p(x,y), respectively. The Chi-square dependence measure
between two random variables X and Y is

MIχ2(X;Y ) = Dχ2(PX,Y ||PXPY )

=

∫ ∫
p(x,y)2

p(x)p(y)
dxdy − 1

(2)

We can obtain the well known Mutual Information by re-
placing the χ2-divergence with KL-divergence between
the joint distribution p(x,y) and product of marginals
p(x)p(y).

Remark 1. Let PX|Y and PY |X be the conditional distribu-
tions that admit densities p(x|y) and p(y|x), respectively.
MIχ2(X;Y ) between X and Y can be expressed as:

MIχ2(X;Y ) =

∫ ∫
p(x | y)p(y | x)dxdy − 1, (3)

Proof can be found in the Appendix A. When x,y
are conditionally independent, we have MIχ2(X;Y ) =

∫
p(x|y)p(y|x)dxdy =

∫
p(x)p(y)dxdy − 1 = 0. We

can similarly define the conditional Chi-square dependence
measure MIχ2(X;Y |Z) between X and Y conditioned on
Z as,

MIχ2(X;Y |Z) = Ep(z)[Dχ2(PX,Y |Z ||PX|ZPY |Z)]

= Ep(z)

[ ∫ ∫
p(x|y, z)p(y|x, z)dxdy

]
− 1

(4)

where PX|Z , PY |Z and PX,Y |Z denote the marginal condi-
tional distributions and joint conditional distribution of X
and Y conditioned on Z.

When one or both of the variables are discrete the above
form of MIχ2(X;Y ) leads to simple Monte-Carlo esti-
mates based on the conditional distributions (Derivation can
be found in Appendix B).

When both X and Y are continuous, we can express
MIχ2(X;Y ) as

MIχ2(X;Y ) =

∫ ∫
p(x|y)p(y|x)dxdy − 1

=

∫
Ep(x|y)[p(y|x)]dy − 1

(5)

Let us denote Ep(x|y)[p(y|x)] as f(y) and f̂(yj) =
1
N

∑N−1
i=0 p(yj | xi,j) as the empirical estimate where

xi,j ∼ p(x|yj). By replacing the expectation inside the
integral with a Monte-Carlo estimate, we arrive at the fol-
lowing estimate:

ˆMIχ2(X;Y ) =

∫
f̂(y)dy − 1 (6)

Let us first consider a special case, when one of the variables
is scalar and, without loss of generality, let us assume that
the scalar variable is Y . In this case, the integral in Equation
6 can be efficiently and accurately estimated using numerical
quadrature (Davis & Rabinowitz, 1967). The parameters
φx→y of the conditional density p(y | x) can to be estimated
from the observed data after choosing a suitable form for
the distribution. Similar to the discrete case, we only need
samples from PX|Y . This is especially beneficial whenX is
high-dimensional since we can employ implicit generative
models to sample without simplistic assumption on the form
of the distribution.

When numerical quadrature is infeasible, we can estimate
the integral in 6 using Importance Sampling (IS) with a
proposal distribution q(x,y) = q(y)p(x | y):

MIχ2(X;Y ) = Ep(x,y)

[ p(x,y)

p(x)p(y)

]
− 1

= Eq(x,y)

[p(y|x)

p(y)

p(x,y)

q(x,y)

]
− 1

= Eq(y)p(x|y)

[p(y | x)

q(y)

]
− 1

(7)
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Using M samples from the proposal distribution, we arrive
at the CHI2MI-MC estimator:

ˆMIχ2(X;Y ) =
1

M

M−1∑
i=0

p(yi | xi)
q(yi)

− 1

where (xi,yi) ∼ q(y)p(x|y).

(8)

In Appendix C we show the effect of M and choice of
proposal distribution for a synthetic dataset where we can
analytically compute ground truth MIχ2(X;Y ).

3. Applications
We investigate the use of CHI2MC estimate in two appli-
cations that involve minimizing dependence or conditional
dependence. First, we show that the estimate can be used
to enforce fairness criteria when learning predictors that
performs similar or better than methods that involve KDE-
based density estimation. Next, we demonstrate, through
the domain generalization application, the scalablity of the
estimate to high-dimensional variables where it is difficult
to learn good KDE based density estimates.

3.1. Learning Fair Predictors

Let us denote random variables X , Y and S as the covari-
ates, the ground truth outcome and the sensitive attribute.
We denote Ŷ = hθ(X) as the prediction using the model
hθ(·). Two common metrics used to measure fairness are
statistical parity (Barocas et al., 2019) and equality of odds
(Hardt et al., 2016). These metrics can be expressed as
independence statements. Statistical parity, also called de-
mographic parity or Independence, implies Ŷ ⊥⊥ S. We
can achieve equality of odds, also called Separation, by
rendering the predictions conditionally independent of the
sensitive attribute given the true outcomes (Ŷ ⊥⊥ S|Y ). Fi-
nally, equality of opportunity is a special case of equality of
odds where the predictions are conditionally independent
of the sensitive attribute given the true outcome is positive:
Ŷ ⊥⊥ S|Y = 1. The difference in equal opportunity (DEO)
is, therefore, defined as the absolute value of the difference
in true positive rates between groups.

In this section, we use the scalable CHI2MC estimates
to directly minimize MIχ2(S; Ŷ ) and MIχ2(S; Ŷ |Y ) to
achieve demographic parity and equalized odds, respec-
tively. Concretely, we solve the following optimization
problem to improve demographic parity:

min
θ

Ep(x,y)[l(y, hθ(x))] + λMIχ2(S;hθ(X)) (9)

To encourage equality of odds, MIχ2(S;hθ(X)|Y ) is in-
stead minimized. Appendix F shows the exact expressions
for the estimates. The estimation involves learning the pa-
rameters φ of the conditional distribution pφ(s|ŷ) in the

case of MIχ2(S;hθ(X)) and the conditional distribution
pφ(s|ŷ, y) in the case of MIχ2(S;hθ(X)|Y ).

Experiments: We benchmark our method on four popu-
lar algorithmic fairness datasets: COMPAS (violent recidi-
vism), Adult, German Credit Data, and Drug Consumption.
We follow the preprocessing steps and classification tasks
from (Mary et al., 2019). The Ŷ -predictor (θ) network we
use for these experiments has two hidden layers with sizes
20 and 10 with BatchNorm (Ioffe & Szegedy, 2015), ReLU
non-linearities, and Dropout (p = 0.2) after each hidden
layer. We reproduce the results from (Mary et al., 2019)
using this network (NN + χ2-KDE in Table 1). We use a
simple linear model to estimate S.

For both models we use an Adam optimizer and alternate
training the S-predictor (φ) and Ŷ -predictor for 5 steps and
20 steps, respectively, 100 times (with a 2 epoch “warm-
start” training for the Ŷ -predictor first). We do 10-fold cross
validation repeated 20 times for each dataset (except Adult
for which we use the provided test split). Using a validation
set consisting of 30% or 50% of the training set (thus the
actual training set size is reduced to 70% or 50% as well), we
compute the validation DEO and use early stopping to pick
the best iteration for each fold subject to a balanced accuracy
threshold of 0.65 or 0.55 (drug only). Finally, the best
hyperparameters are chosen using the average validation
DEO. We use λ = 1.0 for all results and report the best
results for batch size from {100, 250, 1000}.

For COMPAS, we were unable to reproduce similar accu-
racy results to (Mary et al., 2019) for either NN + χ2-KDE
or NN + CHI2MC but DEO was still competitive. Similarly,
we note that the accuracy on Adult for NN + χ2-KDE is
abnormally low. Overall, our method shows competitive per-
formance on this task. As noted in (Mary et al., 2019), many
of these datasets make poor benchmarks for deep learning
models due to their small size. German, and Drug contain
only 1000, and 1885 total samples, respectively. COM-
PAS and Adult are significantly larger and consequently our
method performs well on these datasets.

3.2. Domain Generalization

DIVA (Ilse et al., 2019) is an Variational Autoencoder
(VAE)-based generative approach for learning domain-
invariant feature representations. The generative process in-
volves a decoder pθ(x|zy, zd, zx) that transforms latent rep-
resentations zy, zd and zx, drawn from independent Gaus-
sian prior p(zx) and learnable conditional priors p(zd|d),
p(zy|y), that capture the class label, domain label and other
variables, respectively, into the observed sample x. Varia-
tional posteriors are obtained using three separate encoders
qφy (zy|x), qφd(zd|x), qφx(zx|x) which enforce the follow-
ing factorization of the marginal distribution over latent:
qφ(z) = qφy (zy)qφd(zd)qφx(zx).
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Table 1. Results showing the average and standard deviation of the accuracy and Difference in Equality of Opportunity (DEO) metrics for
benchmark datasets.

COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO

Naive SVM (Donini et al., 2018) 0.72±0.01 0.14±0.02 0.80 0.09 0.74±0.05 0.12±0.05 0.81±0.02 0.22±0.04
Mary et. al.(Mary et al., 2019) 0.96∗ ± 0.00 0.00±0.00 0.83 0.03 0.73±0.03 0.25±0.14 0.78±0.05 0.00±0.00
NN + χ2-KDE 0.83±0.01 0.09±0.06 0.76 0.00 0.73±0.04 0.19±0.16 0.85±0.01 0.06±0.12
NN + CHI2MC 0.83±0.01 0.10±0.05 0.84 0.02 0.68±0.05 0.24±0.17 0.84±0.02 0.10±0.01

Table 2. The effect of CHI2MC regularization on the ROC AUC performance of the model on an unseen test domain when unlabeled
samples from additional domain are included in the training.

Dataset Unsupervised Test λ = 0.0 λ = 0.1 λ = 1.0
Domain Domain (DIVA*)

Rotated MNIST M60◦ M75◦ 76.9 ± 1.2 77.1 ± 0.8 78.4 ± 0.7
Malaria Cell Images C59P20 C116P77 70.3 ± 2.5 71.7 ± 2.9 75.5 ± 2.5

We study the semi-supervised variant of DIVA that was
found to be more challenging than the fully supervised set-
ting. We modify the DIVA semi-supervised lower bound
FSS−DIV A (See Appendix G for derivation) to explicitly
minimize the dependence between the domain and label spe-
cific representations, Zd and Zy, respectively. Maximizing
the following lower bound minimizes any leakage of infor-
mation between the two latent representations and render
them even more separated.

FSS−CHI2MC := FSS−DIV A − λ ˆMIχ2(Zd;Zy) (10)

Assuming N labeled samples and M unlabeled samples,
the MIχ2 estimate is computed using M + N samples
(zy,i, zd,i) from the empirical distribution consisting of T
datapoints as below:

ˆMIχ2(Zd;Zy) =
T

N +M

N+M−1∑
i=0

pφz,d
(zd,i | zy,i)− 1

(11)

Experiments: We show improvement over the DIVA base-
line in cases where additional unlabeled data is included
in the training data. In Table 3.1, we show results for this
on two settings: the rotated MNIST (Ghifary et al., 2015)
and malaria cell images (Rajaraman et al., 2018) datasets.
We follow the procedure in (Ilse et al., 2019) to construct
the domains in each dataset. Rotated MNIST consists of 6
domains. DomainM0◦ is formed by sampling 100 images
from each of the 10 classes in the original MNIST dataset.
Additional domains are created by rotating the digits by 15,
30, 45, 60 and 75 degrees and are denoted asM15◦ ,M30◦ ,
M45◦ ,M60◦ andM75◦ , respectively. Malaria cell images
is a more challenging dataset consisting of 27558 single

red blood cell images taken from 50 and 150 healthy and
infected patients, respectively. 10 patients among these with
the highest amount of cells are chosen as 10 domains with
total 5922 images. The domains are denoted by the patient
IDs and the task is to predict the healthy or infected state.

We study the performance of the model on an unseen test
domain when maximizing the FSS−CHI2MC objective for
the two datasets. All the model architectures and hyperpa-
rameters pertaining to DIVA are set to the default values in
the code accompanying the paper (Ilse et al., 2019). We do
not perform any grid search for these hyperparameters. We
provide these details in the Appendix H. We use a Gaussian
distribution for pφz,d(zd|zy) = N (aφz,d

(zy), I). The ar-
chitecture of aφz,d

(·) consists of a fully-connected network
with a single hidden layer of dimension 20. Table 3.1 shows
the average and standard error of ROC AUC on the test
domain with increasing CHI2MC regularization strength
(λ), where λ = 0 corresponds to vanilla DIVA model. We
repeat the experiments 10 times for each dataset. We can
observe that minimizing ˆMIχ2(Zd;Zy) consistently leads
to improved performance on both datasets.

4. Conclusions
In this paper, we introduced an alternate form of chi-square
mutual information that simplifies and improves its estima-
tion quality. We show that the CHI2MC estimates based
on this form are effective for invariant learning and can
handle discrete and continuous variables. We employed
CHI2MC for learning fair predictors and achieve similar or
better performance on benchmarks datasets. Furthermore,
we demonstrate that CHI2MC is effective in learning high-
dimensional invariant representations that lead to improved
domain generalization performance.
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A. Proof of Remark 1
Remark 1. Let PX|Y and PY |X be the conditional distribu-
tions that admit densities p(x|y) and p(y|x), respectively.
MIχ2(X;Y ) between X and Y can be expressed as:

MIχ2(X;Y ) =

∫ ∫
p(x | y)p(y | x)dxdy − 1, (3)

Proof. Starting from the definition of Chi-square depen-
dence measure (See definition 1),

MIχ2(X;Y ) = Dχ2(PX,Y ||PXPY )

=

∫ ∫
p(x,y)2

p(x)p(y)
dxdy − 1

MIχ2(X;Y ) + 1 =

∫ ∫ ( p(x,y)

p(x)p(y)

)2

p(x)p(y)dxdy

=

∫ ∫ (
p(x | y)p(y)

p(x)p(y)

)2

p(x)p(y)dxdy

=

∫ ∫ (
p(x | y)p(y)

p(x)p(y)

)2

p(x)p(y)dxdy

=

∫ ∫ (
p(x | y)

p(x)

)2

p(x)p(y)dxdy

=

∫ ∫ (
p(x | y)

p(x)

)2

p(x)p(y)dxdy

=

∫ ∫
p(x | y)2

p(x)
p(y)dxdy

=

∫ ∫
p(x | y)2

p(x)
p(y)dxdy

=

∫ ∫
p(x | y)p(x | y)p(y)

p(x)
dxdy

=

∫ ∫
p(x | y)p(x,y)

p(x)
dxdy

=

∫ ∫
p(x | y)p(y | x)dxdy

(12)

B. MIχ2(X;Y ) when one of the variables is
discrete

Case 1: Both variables are discrete.

ˆMIχ2(X;Y ) =
∑
j

∑
i

p(Y = j | X = i)p(X = i | Y = j)− 1

(13)
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ˆMIχ2(X;Y |Z) =
1

K

K−1∑
k=0

∑
j

∑
i

p(Y = j | X = i, zk)p(X = i | Y = j, zk)− 1

where zk ∼ p(z)

(14)

Case 2: One of the variables is discrete. Without loss of
generality, let us assume Y is discrete.

ˆMIχ2(X;Y ) =
∑
j

∫
p(Y = j | x)p(x|Y = j)dx− 1

=
∑
j

Ep(x|Y=j)[p(Y = j | x)]− 1

(15)

If we draw Nj samples from each empirical conditional dis-
tribution p(x|Y = j), we can approximate theMIχ2(X;Y )
as

ˆMIχ2(X;Y ) =

M−1∑
j=0

1

Nj

Nj−1∑
i=0

p(Y = j | xi,j)− 1

where xi,j ∼ p(x|Y = j)

(16)

Samples from the conditional distribution p(x|Y = j) can
be directly obtained from the observed empirical data with-
out learning the distribution. Thus, we can obtain this esti-
mate by first assuming a form for the conditional distribution
p(Y = j | x) with appropriate parametrization φx→y and
subsequently learning the parameters by maximizing the
conditional likelihood of the observed data.

We can extend this to conditional χ2 mutual information
MIχ2(X;Y |Z) as

ˆMIχ2(X;Y |Z) =
1

K

K−1∑
k=0

M−1∑
j=0

1

Nj

Nj−1∑
i=0

p(Y = j | xi,j,k, zk)− 1

where zk ∼ p(z)

and xi,j,k ∼ p(x|Y = j, zk)

(17)

Samples zk and xi,j,k can be easily obtained from the train-
ing samples for discrete Z. For continuous Z we can learn
a sampler for the distribution PX|Y,Z .

C. Experiments on Synthetic Data
Consider two variables X and Y that are drawn from
D-dimensional zero mean, unit variance Gaussian distri-
butions with varying degrees of correlation i.e., p(x) =

p(y) = N (0, I) and p(x,y) = N (0,Σ). Let us denote,
z = [x,y]T . We are then interested in computing,

MIχ2(X;Y ) =

∫ ∫
p(x,y)2

p(x)p(y)
dxdy − 1

=

∫
N (z | 0,Σ)2

N (z | 0, I)
dz− 1

(18)

Rewrite as,

MIχ2(X;Y ) =

∫
N (z | 0,Σ)N (z | 0,Σ)

N (z | 0, I)
dz− 1 (19)

Product of two Gaussian densities, N (z | 0, A)N (z |
0, A) = KN (z | 0, A/2), with K = (2π)−D/2|2A|−1/2.
Plugging this result in the above equation we get,

MIχ2(X;Y ) =

∫
(2π)−D/2|2Σ|−1/2N (z | 0,Σ/2)

N (z | 0, I)
dz− 1,

= (2π)−D/2|2Σ|−1/2

∫
|Σ/2|−1/2e−0.5zT (Σ/2)−1z

e−0.5zT Iz
dz− 1

= (2π)−D/2|2Σ|−1/2|Σ/2|−1/2

∫
e−

1
2z
T (2Σ−1−I)−1zdz− 1,

(20)

Realizing that the quantity inside the integral is an unnor-
malized Gaussian, we get,

MIχ2(X;Y ) = |2Σ|−1/2|Σ/2|−1/2|(2Σ−1 − I)−1|1/2 − 1

=
|(2Σ−1 − I)−1|1/2

|Σ|
− 1

(21)

In Figure 1, we show the effect of the number of samples
and data dimension on the CHI2MI-MC estimate for a syn-
thetic example. The two variable X and Y are drawn from
1 and 10-D zero mean, unit variance Gaussian distributions
with varying degrees of correlation. We can analytically
compute the ground truth MIχ2(X;Y ) in this case (the
derivation and additional details can be found in the Ap-
pendix). CHI2MI-MC estimate converges to ground truth
with increasing number of samples from the proposal distri-
bution.

D. Discussion: MIKL(X;Y ) and MIχ2(X;Y )

Let us look at the IS estimate of the KL-Mutual Information
MIKL(X;Y ), again using a proposal distribution for the
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joint distribution of the form q(x,y) = q(y)p(x|y):

MIKL(X;Y ) = DKL(PX,Y ||PXPY )

= Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y|x)

p(y)

]
= Eq(x,y)

[
log
[p(y|x)

p(y)

]p(x,y)

q(x,y)

]
= Eq(y)p(x|y)

[
log
[p(y|x)

p(y)

]p(y)

q(y)

]
(22)

The above estimate still relies on potentially complex p(y).
On the other-hand, using the inequality log(x) ≤ x − 1
for x > 0, it is easy to show that for any distribution q(y),

ˆMIχ2(X;Y ) is an unbiased estimate of the upper bound to
MIKL(X;Y ),

MIKL(X;Y ) ≤ Ep(y)p(x|y)

[p(y|x)

p(y)

]
− 1

= Eq(y)p(x|y)

[p(y|x)

q(y)

]
− 1

:= MIχ2(X;Y ) = Eq(x,y)[ ˆMIχ2(X;Y )]

(23)

E. Related Work and Background
Invariant representations and predictors that are sufficiently
responsive to the task under consideration while being in-
variant to any confounding factors has long been consid-
ered as crucial for successful learning and generalization
(Kolchinsky et al., 2019).

Fair Machine Learning: The goal of fair machine learning
is to learn models that are invariant to sensitive attributes.
Reliance of a model on these sensitive attributes can lead to
unwanted bias towards a subpopulation. One approach to
algorithmic fairness is to learn representations from covari-
ates X such that they do not contain information about the
sensitive attributes (Zemel et al., 2013; Louizos et al., 2015).
Such approaches are referred to as pre-processing methods.
Post-processing methods (Hardt et al., 2016; Pleiss et al.,
2017) learn to transform the predictions of a trained model to
satisfy a measure of fairness. In-processing algorithmic fair-
ness methodologies (Calmon et al., 2017; Kamishima et al.,
2011) are designed to directly learn predictors Ŷ = hθ(X)
that possess the desired invariance.

Adversarial in-processing methods (Zhang et al., 2018; Bar-
rett et al., 2019) involve learning an adversary aφ(·) that is
trained to predict the sensitive variable from the predictions
Ŷ . Fair predictors hθ(·) can be learned by minimizing risk
R(θ) or the expected prediction error between the predicted

outcome and ground truth outcome variable captured by loss
l(y, hθ(x)), typically negative log likelihood, while maxi-
mizing risk R(φ) or the expected prediction error between
the predicted sensitive attribute and ground truth sensitive
variable captured by loss l(s, aφ(ŷ)). This leads to solving
the following alternating optimization over the parameters
θ and φ.

arg min
φ

Ep(x,s)[l(s, aφ(hθ(x)))]

arg min
θ

Ep(x,y)[l(y, hθ(x))]− λEp(x,s)[l(s, aφ(hθ(x)))]

(24)

Recently, (Roy & Boddeti, 2019) showed that maximizing
the entropy of the adversary that is trying to predict the
sensitive attribute was more effective than maximising the
adversary’s loss, as done in adversarial debiasing.

Domain Generalization: In domain adaptation and gener-
alization, the domain or environment of the data samples can
be understood as the sensitive attributes. Domain adaptation
methods typically assume access to labeled or unlabeled
samples from the test domain. The invariance is achieved
by matching or aligning the feature distribution across do-
mains (Fernando et al., 2013; Ganin & Lempitsky, 2015;
Yan et al., 2017; Shu et al., 2018). Domain generaliza-
tion is a more challenging scenario where no samples from
the test/target domain are observed during training. Ad-
versarial approaches (Motiian et al., 2017; Maria Carlucci
et al., 2019), with access to multiple training domains, learn
domain agnostic representations that successfully fool an
adversary that is trying to predict the source domain of the
samples from these representations. The recently proposed
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019)
paradigm aims to achieve domain generalization by learn-
ing representations that render a classifier built on these
representations invariant across domains or environments.

Measuring and Minimizing Dependence: Several recent
approaches (Ozair et al., 2019; Lopez-Paz et al., 2013;
Moyer et al., 2018; Greenfeld & Shalit, 2019) propose to
measure or enforce these independence relations by mini-
mizing directly or indirectly a dependence measure between
the variables such as MIKL or Hilbert Schmidt Indepen-
dence Criterion (HSIC). It can be easily shown that max-
imising the entropy of the adversary’s loss, as done in (Roy
& Boddeti, 2019), is equivalent to minimising the upper-
bound of MIKL in (Barber & Agakov, 2004) by using a
distribution that is uniform over the support u(y) as the
variational approximation q(y).

MIKL(X;Y ) ≤ Ep(x,y)

[
log

p(y | x)

u(y)

]
= Ep(x)[KL(p(y|x)||u(y)]

(25)

Most similar to our work, in (Mary et al., 2019) the authors
formulate a constrained optimization problem that aims to
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Figure 1. Effect of the number of samples, data dimension and the proposal distribution on the CHI2MI-MC estimate. The plots show the
estimates over 10 runs with varying levels of ground truth chi-square mutual information. M corresponds to the number of samples from
the proposal distribution used for the estimate and D corresponds to the dimension of the variables.

enforce independence by ensuring that the HGR dependency
measure is below a small ε. The HGR constraint is relaxed
and instead the L1 norm of the χ2-divergence between the
joint and the marginal distributions is minimized. The den-
sities are estimated using a Kernel Density Estimator (KDE)
and the divergence is computed over a mesh grid which
can scale poorly with data dimensions and grid granularity.
We address these issues with the CHI2MC estimate of the
chi-square mutual information.

F. Demographic Parity and Equality of Odds
Estimation

Demographic Parity is enforced by minimizing the estimate
ˆ

MIφχ2(S;hθ(X)). When Y and S are discrete and binary,

following Equation 16 we can estimate MIφχ2(D;hθ(X))
as

ˆ
MIφχ2(S;hθ(X)) =

1

Nj=0

Nj=0−1∑
i=0

pφ(S = 0|hθ(xi,j=0))

+
1

Nj=1

Nj=1−1∑
i=0

pφ(S = 1|hθ(xi,j=1))− 1

where xi,j ∼ p(x|S = j)

(26)

Here, the estimate involves learning the parameters φ of
conditional distribution pφ(s|ŷ).

Equality of Odds is enforced by minimizing the estimate

ˆ
MIφχ2(S;hθ(X)|Y ). Using the learned conditional distri-
bution pφ(s|ŷ, y), the conditional mutual information is
estimated as:

ˆ
MIφχ2(S;hθ(X)|Y )

=
1

2

1∑
k=0

1∑
j=0

1

Nj

Nj−1∑
i=0

pφ(S = j | hθ(xi,j,k), Y = k)− 1

where xi,j,k ∼ p(x|S = j, Y = k)

(27)

G. DIVA for Domain Generalization
DIVA starts with the following variational lower bound per
input x for the model:

L(d,x, y) = Eqφy (zy|x)qφd (zd|x)qφx (zx|x)[logpθ(x|zl, zd, zx)]

− βKL(qφy (zy|x)||p(zy|y))

− βKL(qφd(zd|x)||p(zd|d))

− βKL(qφx(zx|x)||p(zx))

(28)

To encourage the separation of the domain and label-specific
latent spaces, the authors additionally learn classifiers to
predict label y and domain d from zy and zd, respectively.
This leads to the following modification to the lower bound:

FDIV A(d,x, y) = L(d,x, y) + αyEqφy (zy|x)[logqwy (y|zy)]

+ αdEqφd (zd|x)[logqwd(d|zd)]
(29)



Chi-square Information for Invariant Learning

The semi-supervised variant of DIVA that was found to be
more challenging than the fully supervised setting. Here,
the variational lower-bound is given as:

Lu(d,x, y) = Eqφy (zy|x),qφd (zd|x)qφx (zx|x)[logpθ(x|zl, zd, zx)]

− βKL(qφd(zd|x)||p(zd|d))

− βKL(qφx(zx|x)||p(zx))

+ βEqφy (zy|x)qwy (y|zy)[p(zy|y)− qφy (zy|x)]

+ Eqφy (zy|x)qwy (y|zy)[p(y)− qwy (y|zy)]

(30)

Assuming N labeled samples and M unlabeled samples,
the semi-supervised objective is given as,

FSS−DIV A :=

N∑
n=1

FDIV A(dn,xn, yn) +

M∑
m=1

L(dm,xm, ym)

+ αdEqφd (zd|xm)[logqwd(dm|zd)]
(31)

H. Training Details for Domain
Generalization Experiment

We provide the training details that are specific to
DIVA+CHI2MC here and refer to relevant sections in the
appendix section of DIVA (Ilse et al., 2019) for the common
aspects. Instead of searching the best hyperparameters, we
fix them to default values found in the code to see the effect
of CHI2MC regularization.

Rotated MNIST: The training procedure and DIVA archi-
tecture details can be found in section 5.1.1 and 5.1.2 of
(Ilse et al., 2019). We set αd = 2000.0, αy = 4200.0 and
βmax = 1.0.

Malaria Cell Images: The training procedure and DIVA
architecture details can be found in section 5.2.2 and 5.1.4
of (Ilse et al., 2019). We set αd = 100000.0, αy = 75000.0
and βmax = 1.0.

For both datasets, the dimensions of zd, zy and zx are set to
64. We alternate the training of the DIVA model parameters
and the CHI2MC estimators parameters (φz,d) for 1 steps
each. We use a Gaussian distribution for pφz,d(zd|zy) =
N (aφz,d(zy), I). The architecture of aφz,d(·) consists of
a fully-connected network with a single hidden layer of
dimension 20. The parameters φz,d are learned by maximis-
ing the likelihood pφz,d(zd|zy). We use ADAM optimizer
with default setting for all the parameters.
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