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Abstract
Generalization Performance of Deep Learning
models trained using Empirical Risk Minimiza-
tion can be improved significantly by using Data
Augmentation strategies such as simple transfor-
mations, or using Mixed Samples. We attempt to
empirically analyze the impact of such strategies
on the transfer of generalization between teacher
and student models in a distillation setup. We
observe that if a teacher is trained using any of
the mixed sample augmentation strategies, such
as MixUp or CutMix, the student model distilled
from it is impaired in its generalization capabil-
ities. We hypothesize that such strategies limit
a model’s capability to learn example-specific
features, leading to a loss in quality of the su-
pervision signal during distillation. We present
a novel Class-Discrimination metric to quantita-
tively measure this dichotomy in performance and
link it to the discriminative capacity induced by
the different strategies on a network’s latent space.

1. Introduction
A deeper analysis of implicit regularization techniques has
shown that as neural networks increase in size, they are
actually able to create solutions with lower complexity
(Neyshabur, 2017), corresponding to better generalization
performance. However, the size of such complex neural
networks proves to be a hindrance when being deployed
on more reasonable hardware. Several techniques such
as model quantization (Zhou et al., 2017), model prun-
ing (Han et al., 2015), and more recently, lottery tickets
(Jonathan Frankle, 2018) enable the extraction of a sub-
network from the original network that approximates the
performance of the original model. However, knowledge
based distillation can also be used to separately train a
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Figure 1. Impact of the different augmentation strategies on teacher
and student models tested on CIFAR-10. Note that Mixed Sample
Augmentation strategies help improve teacher performance, but
corresponding student performance is impaired.

smaller, lightweight model, possibly without even using any
external annotations on given data. In a distillation setup,
where a smaller parameter space(student) attempts to mimic
the softened softmax output of a larger space(teacher), stu-
dent performance improves considerably, when compared
to standalone training, but there still exists a significant gen-
eralization gap between the two models. Besides trying to
minimize this generalization gap, one should also consider
the viability of using one or many of the implicit regulariz-
ers available during the cumbersome training process. One
such regularizer draws inspiration from the varying degree
of noise in training data in natural settings, and is often
referred to as Vicinal Risk Minimization. Contemporary
augmentation strategies such as Random Flip, Random Ro-
tate, Cut Out (DeVries & Taylor, 2017), etc. are widely
popular, but the scope of a vicinity is not explicitly defined
in such strategies. Mixed Sample Data Augmentation Tech-
niques like Mix Up (Zhang et al., 2017) and Cut Mix (Yun
et al., 2019) or FMix (Harris et al., 2020) provide a new
outlook on the concept of vicinity. Considered as standalone
techniques, they can lead to state-of-the-art results in stan-
dard Deep Learning tasks, but it is interesting to note the
impact each technique has on the supervision signal from
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the teacher model to the student model. We hypothesize that
even though Data Augmentation techniques provide good
regularization, they impair the distillation process because
of several implicit qualitative biases in the techniques. This
impairment is much more pronounced in the Mixed Sample
Data Augmentation Techniques. Our contributions are thus
summarized as follows:

• We demonstrate that popular data augmentation tech-
niques, and especially Mixed Sample techniques, such
as MixUp and CutMix when applied on a teacher
model, can impair the transfer of generalization ca-
pabilities onto a student model in a distillation setting.

• We present a novel similarity-based metric to help
explain some qualitative traits inherent in the latent
representations of such models. These findings are also
backed by a KL-Divergence based Similarity metric,
presented in the Appendix.

• We analyze the adversarial impact of Mixed Sample
Augmentation strategies on the distillation objective
when presented with data under distributional shift.

• We present empirical proof that data augmentation
techniques tend to increasingly make models more
discriminative and regularizes on example-specific fea-
tures pertinent to the image.

2. Experimental Setup
Comparison Methods: Using the standard Empirical Risk
Minimization principle, the loss objective is optimized only
on the training samples, whereas in Vicinal Risk Minimiza-
tion, virtual data points, and possibly labels, are also sam-
pled from the vicinity of the real data points. It is hard
to replicate an estimate of density around available data
points, but the augmentation strategies discussed below can
be thought of as extended VRM techniques as they provide
a natural improvement over the existing empirical distri-
bution. Moreover, a lot of recent work attempts to under-
stand the qualitative abilities of such techniques (He et al.,
2019; Gontijo-Lopes et al., 2020). We consider standard
transformations such as flipping, splitting, scaling, rotating,
cropping. It is important to note that these augmentations
are data set dependent and require domain expertise. In this
work, we test random cropping and random flipping along
the horizontal axis. Cut Out is a generalization technique
inspired by Dropout (Srivastava et al., 2014). In addition to
these strategies, we consider Mixed sample strategies such
as Mixup(Zhang et al., 2017), where a convex combination
of data samples and their labels are generated as follows.

x̂ = λxi + (1− λ)xj
ŷ = λyi + (1− λ)yj

Here, λ ∼ β(α, α) is the mixture percentage of each image.
This creates a target value that is a mix of the two original
target values. By using an implicit bias that linear interpo-
lations of data should lead to predictions that are linearly
interpolated in the target space, Mix Up enables generation
of well-calibrated models whose generalization performance
is slightly better (Thulasidasan et al., 2019). Capturing a
similar idea, (Yun et al., 2019) introduced Cut Mix that
blends the classes of images (Yuji Tokozume, 2018) like
Mix Up, but uses a mask to drop and fill the two different
images.

x̂ = M� xi + (1−M)� xj
ŷ = λyi + (1− λ)yj

where M is a binary mask that contains the information of
where to drop and fill the image, � denotes element-wise
multiplication and λ ∼ β(1, 1) is the combination ratio.

Knowledge Distillation: As mentioned previously, we at-
tempt to understand the impact of different augmentation
strategies in a simple distillation setup, where a smaller
model is trained by forcing it to mimic the temperature-
treated probability distributions of a larger, cumbersome
model. One can carefully tune an α value to appropriately
weigh the Cross-Entropy loss against the labeling, and the
distillation loss against the teacher’s predictions.

L(x, y) = (1−α)LCE(fS(x), y)+ατ2DKL(fτS(x), fτT (x))

Datasets: Measuring Generalization is a cumbersome and
ill-defined task and it is important to analyse performance
of the different candidate models on not only unseen test
data, but even test data with some natural variations in it.
In our setup we consider the CIFAR-10 test set to measure
the model’s performance on unseen data lying within the
seen distribution. We also use the CINIC-10 dataset as
an out-of-sample generalization test. This data set is col-
lected by (Darlow et al., 2018) and contains both CIFAR-10
and ImageNet images in its test fold. However, we just
use the 70,000 ImageNet images that have been bucketized
into CIFAR-10 classes. Another interesting test set is the
CIFAR-10H dataset(Peterson et al., 2019) , that contains
the exact same images as the CIFAR-10 images, but addi-
tionally provides the original probability distributions based
on the labelings provided by the human annotators for each
image. We use this to measure the closeness of a model’s
predictions with human beliefs about a data sample. We
also run a similar set of experiments on MNIST data.

Generalization Measures: We evaluate each model on the
basis of standard confusion metrics, such as Accuracy, F-1
Score, Precision and Recall, however we observed consis-
tent behavior across the different confusion metrics. More-
over, since we have access to the probability distributions for
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Table 1. Performance of the different Teacher and Student Models on CIFAR-10 Test Set. The KLD Metric is the distance between
Human labeled confidence scores and Model prediction probabilities. Expected Calibration Error(ECE) measures prediction quality

MODELS TEACHER LENET STUDENT ALEXNET STUDENT

CIFAR-10 CINIC CIFAR-10 CINIC CIFAR-10 CINIC
STRATEGY ACC. KLD ACC. ACC. KLD ACC. ACC. KLD ACC.

BASELINE 0.852 0.656 0.600 0.652 1.002 0.457 0.769 0.710 0.544
AUGMENT 0.940 0.466 0.687 0.631 0.951 0.439 0.777 0.735 0.549
CUTOUT 0.880 0.220 0.630 0.644 0.987 0.451 0.785 0.726 0.555
MIXUP 0.868 0.641 0.614 0.633 0.991 0.444 0.714 0.836 0.498
CUTMIX 0.954 0.524 0.716 0.621 0.987 0.439 0.720 0.776 0.499

Table 2. Performance on the MNIST Test Set.

ALEXNET TEACHER LENET STUDENT
MODELS ACCURACY LOSS ACCURACY LOSS

BASELINE 0.9958 0.020 0.9868 0.039
MIXUP 0.9960 0.010 0.9886 0.074
CUTMIX 0.9938 0.104 0.9861 0.107

each CIFAR test sample, we can easily compare a model’s
softmax score vector with the human-labeled distribution
using a Cross Entropy measure, which is nothing but the KL
Divergence across the two distributions.

LCE =

N∑
i=1

DKL(pf (xi),ph(xi))

We also propose a novel metric to explain the discriminative
power of the different models we train. This operates on
the penultimate layer embeddings generated by the model
and can be thought of as a measure of how well-separated
the embedding manifold is. It takes into account both the
intra-class and the inter-class similarity and defines the dis-
criminative power of the model as the difference between
them. If intra-class similarity is high, class representations
are cohesive and more compressed. If inter-class similarity
is low, class representations are less adhesive and are far
away from each other. An optimal classifier will tend to
have high cohesion C and low adhesion A, and thus higher
discriminative power D. To compute this metric, we first
standardize the embeddings, and define the cohesion and
adhesion metrics as inter- and intra-class similarities, re-
spectively using a cosine similarity function S. We define
intra-class cohesion C as the following, where we deal with
embeddings from just a single class i.

C(i) =
1

NC(NC − 1)

NC−1∑
i=1

NC∑
j=i+1

S(di, dj)

and, inter-class Adhesion as the following, which is com-
puted across all possible pairs of classes i and j:

A(i,j) =
1

NiNj

Ni∑
k=1

Nj∑
l=1

S(dk, dl)

Where, Nk represents the number of instances in Class k,
and di represents the embedding vector corresponding to
image Ii. Furthermore we define the class-discrimination
score as:

D =
1√
d
[
1

K

K∑
i=1

C(i) − 2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

A(i,j)]

Where, K represents the total number of classes and d rep-
resents the dimensionality of the embeddings.

Experimental Details: The models were implemented in
PyTorch, with different parameter values for the different
augmentation techniques. Knowledge distillation was per-
formed with a temperature value of 20 and α = 0.5. When
performing augmentation, baseline and standard data aug-
mentation did not require explicit parameters. MixUp, and
CutMix used β = 1 and α = 0.5. Finally, Cut Mix used
alpha and beta parameters of 0.5 and 1, respectively. These
values were chosen based on original paper implementation
of the techniques, and could be fine tuned in later work. Five
ResNet18 models (Kaiming He, 2015) were trained using
the data augmentation techniques discussed above, on the
CIFAR-10 training dataset. Two sets of student networks
were built from the LeNet(Y. LeCun & Haffner, 1998) and
AlexNet(Krizhevsky et al., 2012) architectures, with no data
augmentation techniques added during the distillation setup.

3. Results and Discussion
As can be seen in Table 1, there is an impairment of general-
ization for student models derived from teachers trained us-
ing Mixed Sample Augmentation. This is consistent across
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Figure 2. Latent Space Visualization from Penultimate Layer, dimensionally reduced using tSNE. From L-R: Baseline, CutMix, CutOut,
Augmented. Notice the well-separated class representations in the augmented models as compared to the baseline model

Table 3. Class Discrimination Evaluation for Teacher Models

METRICS COHESION ADHESION DISCRIMINATION

BASELINE 0.739 -0.041 0.246
AUGMENT 0.886 -0.049 0.296
CUTOUT 0.783 -0.043 0.261
MIXUP 0.793 -0.042 0.255
CUTMIX 0.917 -0.050 0.306

both the sets of student networks. Moreover, out of dis-
tribution performance of such models is also much worse
than the baseline models and standard augmentation models.
This trend holds in the MNIST dataset as well as seen in Ta-
ble 2. This reversal of behavior is quite counter-intuitive, as
we expect better generalized teacher models to transfer their
capabilities to their students in a corresponding fashion. In
an attempt to explain this behavior, we visualize the penulti-
mate layer embeddings in Figure 2 for the different teacher
models. We choose four classes that can be paired up using
semantic similarity. We note that for CutMix, that uses a
linear interpolation of both images and labels, the clusters
are much more compressed and each semantic group lies
much farther away from the other than any other strategy.
Moreover, there is little interaction between the classes, as
not a lot of points lie between the clusters. On the other
hand, the baseline model manifold presents itself as much
more uniform, wherein a lot of points lie on the boundaries
of the class clusters and there is a gradual change in rep-
resentational capability of the model between the classes.
The two different semantic groups are closer in the baseline,
when compared to any other augmentation strategy. This
separability between classes and semantic groups exists in
Cutout and transformation based Augmentations, but is not
as pronounced as the interpolative Cut Mix.

To quantify the behavior observed in the latent space visual-
iztions, we present the novel Discrimination scores for the
different teacher models in Table 3. We find that data aug-
mentation, in general creates a more discriminant space(high
cohesion, low adhesion). Intuitively, a model with loose,

yet well-separated class representation space(low cohesion,
low adhesion) will make a better teacher than one with tight
representations. This is consistent with the ideas presented
in (He et al., 2019) wherein data augmentation strategies
are believed to regularizers that focus more on class-specific
major features, and simultaneously regularizing nuanced, ex-
ample specific features. We interpret this as a great attribute
in a standalone performance perspective, but distillation
performance depends largely on the amount of information
encoded in all the latent features encoded by the teacher
model. Thus, if the generated features within any given
class have greater variance, they are able to encode more
information about the class’ relationship with other classes
and are expected to generate more generalized probabil-
ity distributions. This is a key factor in generating better
quality students. This also helps explaining the superior
performance of Cutout and Augmentation that add new in-
formation by retaining the same label and transforming the
image. In addition to this, we analyze the quality of predic-
tions by generating visual heatmaps corresponding to KL
Divergence across the prediction and human labeled distri-
bution, and create a KL-Divergence based class separability
measure, presented in the Appendix.

Some recent works attempt to explain the relationship be-
tween implicit regularizers and knowledge distillation, such
as (Müller et al., 2019), which models the adversarial impact
of label smoothing on distillation, while (Arani et al., 2019)
analyses the beneficial impact of using trial-to-trial variabil-
ity during distillation. (Cho & Hariharan, 2019) analyses the
impact of Early Stopping on Distillation, but none refer to
data augmentation strategies. We believe that by conducting
this empirical study, we have been able to set a precedent
about training Neural Networks with a certain objective.
The analysis can be made more holistic by including re-
sults using data from a different modality, or by considering
student performance under adversarial attack. Nonetheless,
this work provides a novel outlook on data augmentation
strategies and sets an order of preference when a practitioner
may want to use Distillation as a downstream task.
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Figure 3. Reliability curves for different models. From L-R: Teacher Models, AlexNet Models, LeNet Models. It is observed that data
augmentation generates calibrated predictions

formulation of this class-separability metric can be written
as:

Sf =
1

C2

C∑
i=1

C∑
j=1

DKL(pf,i, pf,j)

Where, pf,k ∈ RC represents the average model prediction
distribution for the class k, and C represents the number of
classes.

Table 4. Class Separability Score Sf

MODELS TEACHER LENET ALEXNET

BASELINE 3.73 3.21 3.07
AUGMENT 5.19 3.14 3.23
CUTOUT 4.30 3.14 3.41
MIXUP 5.32 2.92 2.17
CUTMIX 5.33 2.89 2.27

As the class separability between probability distributions
of different teacher models grows, one can imagine that it
tends to generate well-knit tight clusters for each class in the
data. This adversely impacts the generalization performance
of the students distilled from such teachers.

Prediction Quality: To test the idea of generating high
quality probability distributions, we make use of the CIFAR-
10 Human labeled datasets, and measure the quality of the
average model confidence distributions against the human
confidence estimates. This can again be represented as a
KL-Divergence between the probability distributions of a
model’s average prediction probabilities for a given class
against the average human distribution. We present this
information in a Confusion Matrix like visualization in 5.
Each cell represents the KL-Divergence between the human
estimate on that class and the model’s estimate. The KL-
Divergences are all scaled uniformly and are color coded,

Figure 4. Average human confidence distribution across ground
truth classes in CIFAR-10. Diagonal elements, that have the high-
est confidence have been masked to reveal implicit patterns be-
tween different classes

so higher values correspond to brighter pixel values. We
are more interested in the non-diagonal elements as they
reveal the mutual information between classes and note that
the Cut Mix Matrix is much brighter in those pixels when
compared to the Baseline. This points out the fact that
the mutual information between different classes is better
encoded in the Baseline than Cut Mix-trained model. This
enables the creation of a superior representation manifold
for distillation to take place.

Model Calibration: We also measure calibration perfor-
mance across the several models, and note that interpolative
techniques generate better calibrated models consistently
across teacher and student models. This is evident from
the reliability diagrams in 3 and Figure 6. However, it has
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Figure 5. Relative KL-Divergence Confusion Matrices for Base-
line Teacher(L) and CutMix Teacher(R)

been hypothesized in (Guo et al., 2017) that smaller mod-
els like LeNet generally tend to exhibit better Calibration
performance than overparameterized, modern models like
ResNet. This trend is visible as the reliability curves for all
models tend to hug the ideal straight line closer as the model
complexity decreases. However, no direct relationship can
be found between the calibration performance of a student
and the augmentation applied on its teacher model.

Figure 6. Expected Calibration Error for the different Models.
Smaller models like LeNet usually have better calibration per-
formance and previous studies also show that linear interpolation
of data samples always leads to better model calibration

B. Augmenting the Students
Apart from the Accuracy, we also analyzed the F-1 Score,
Precision and Recall metrics for all of the models trained.
We found these values consistent with our findings, that aug-
mentation techniques provide an adversarial impact on all
stages of training. The lack of improvement from augmen-
tation is shown through both AlexNet and LeNet students
trained from augmented ResNet teachers. Additionally, we

used a small ablation study with ResNet teachers and LeNet
students to compare how augmentation effected each stage
of the distillation process: no augmentation, augmented
teacher with a baseline student, baseline teacher with an
augmented student, and augmented teacher and student.
The results are compiled in tables 5 and 6.
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BASELINE LENET BASELINE ALEXNET
MODEL TEST SET ACCURACY PRECISION RECALL F1-SCORE ACCURACY PRECISION RECALL F1-SCORE ACCURACY PRECISION RECALL F1-SCORE

BASELINE CIFAR-10 0.852 0.851 0.852 0.851 0.652 0.648 0.652 0.650 0.768 0.767 0.769 0.768
CINIC 0.600 0.602 0.600 0.593 0.456 0.452 0.457 0.449 0.544 0.550 0.544 0.529

AUGMENTATION CIFAR-10 0.940 0.940 0.940 0.940 0.631 0.632 0.631 0.474 0.777 0.776 0.777 0.766
CINIC 0.630 0.620 0.628 0.629 0.439 0.434 0.435 0.435 0.549 0.557 0.549 0.535

CUT OUT CIFAR-10 0.879 0.878 0.880 0.879 0.644 0.643 0.644 0.643 0.785 0.783 0.785 0.784
CINIC 0.629 0.620 0.628 0.630 0.451 0.447 0.451 0.445 0.554 0.562 0.554 0.540

MIX UP CIFAR-10 0.867 0.954 0.867 0.953 0.633 0.631 0.633 0.632 0.714 0.712 0.714 0.712
CINIC 0.603 0.606 0.603 0.598 0.444 0.435 0.443 0.433 0.497 0.501 0.498 0.477

CUT MIX CIFAR-10 0.954 0.869 0.954 0.868 0.621 0.617 0.621 0.619 0.720 0.717 0.720 0.718
CINIC 0.710 0.707 0.720 0.710 0.439 0.434 0.439 0.435 0.498 0.502 0.498 0.478

Table 5. RESNET TEACHER METRICS WITH DIFFERENT AUGMENTATION STRATEGIES, AND LENET AND ALEXNET BASELINE

STUDENT METRICS DISTILLED FROM CORRESPONDING TEACHERS

BASELINE TEACHER AUGMENTED TEACHER
STUDENT MODEL TEST SET ACCURACY PRECISION RECALL F1-SCORE ACCURACY PRECISION RECALL F1-SCORE

BASELINE CIFAR-10 0.652 0.648 0.652 0.650 - - - -
CINIC 0.456 0.452 0.457 0.449 - - - -

AUGMENTATION CIFAR-10 0.641 0.639 0.641 0.639 0.641 0.637 0.641 0.638
CINIC 0.451 0.446 0.451 0.444 0.445 0.441 0.445 0.441

CUT OUT CIFAR-10 0.635 0.630 0.635 0.632 0.636 0.643 0.636 0.638
CINIC 0.446 0.446 0.439 0.441 0.440 0.451 0.440 0.440

MIX UP CIFAR-10 0.647 0.645 0.647 0.647 0.626 0.622 0.626 0.624
CINIC 0.457 0.455 0.457 0.452 0.603 0.606 0.603 0.598

CUT MIX CIFAR-10 0.629 0.626 0.629 0.627 0.635 0.631 0.635 0.633
CINIC 0.439 0.433 0.439 0.434 0.446 0.443 0.446 0.441

Table 6. WE MIRRORED THE AUGMENTATION STRATEGY IN THE TEACHER MODEL TO TRAIN THE CORRESPONDING STUDENT

MODELS AND NOTED NO MAJOR DIFFERENCE IN PERFORMANCE. LENET STUDENT METRICS TRAINED WITH AUGMENTATION

FROM A) BASELINE TEACHER, AND B) TEACHER WITH SAME AUGMENTATION AS STUDENT.


